2,234
Views
15
CrossRef citations to date
0
Altmetric
Letter

Preparation of a novel Fe3O4@SiO2@propyl@DBU magnetic core–shell nanocatalyst for Knoevenagel reaction in aqueous medium

, &
Pages 85-98 | Received 25 Aug 2020, Accepted 03 Dec 2020, Published online: 22 Dec 2020

References

  • Freeman, F. Properties and Reactions of Ylidenemalononitriles. Chem. Rev. 1980, 80, 329–350.
  • Zhao, S.; Wang, X.; Zhang, L. Rapid and Efficient Knoevenagel Condensation Catalyzed by a Novel Protic Ionic Liquid Under Ultrasonic Irradiation. RSC Adv. 2013, 3, 11691–11696.
  • Wach, A.; Drozdek, M.; Dudek, B.; Biazik, M.; Lątka, P.; Kustrowski, P. Differences in Catalytic Activity of Poly(Vinylamine) Introduced on Surface of Mesoporous SBA-15 by Grafting from and Grafting onto Methods in Knoevenagel Condensation. J. Phys. Chem. C 2015, 119, 19954–19966.
  • Elhamifar, D.; Kazempoor, S.; Karimi, B. Amine-functionalized Ionic Liquid-Based Mesoporous Organosilica as a Highly Efficient Nanocatalyst for The Knoevenagel Condensation. Catal. Sci. Technol. 2016, 6, 4318–4326.
  • Mase, N.; Horibe, T. Organocatalytic Knoevenagel Condensations by Means of Carbamic Acid Ammonium Salts. T. Org. Lett.. 2013, 15, 1854–1857.
  • Tran, U.P.N.; Le, K.A.; Phan, N.T.S. Expanding Applications of Metal-Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS Catal. 2011, 1, 120–127.
  • Das, A.; Anbu, N.; M, S.K.; Dhakshinamoorthy, A.; Biswas, S. A Functionalized UiO-66 MOF for Turn-on Flfluorescence Sensing of Superoxide in Water and Efficient Catalysis for Knoevenagel Condensation. Dalton Trans. 2019, 48, 17371–17380.
  • Gao, M.-L.; Qi, M.-H.; Liu, L.; Han, Z.-B. An Exceptionally Stable Core–Shell MOF/COF Bifunctional Catalyst for a Highly Efficient Cascade Deacetalization-Knoevenagel Condensation Reaction. Chem. Commun. 2019, 55, 6377–6380.
  • He, Z.; Zhao, X.; Pan, X.; Li, Y.; Wang, X.; Xu, H.; Xu, Z. Ligand Geometry Controlling Zn-MOF Partial Structures for Their Catalytic Performance in Knoevenagel Condensation. RSC Adv. 2019, 9, 25170–25176.
  • Hu, Y.; Zhang, J.; Huo, H.; Wang, Z.; Xu, X.; Yang, Y.; Lin, K.; Fan, R. One-pot Synthesis of Bimetallic Metal-Organic Frameworks (MOFs) as Acid-Base Bifunctional Catalysts for Tandem Reaction. Catal. Sci. Technol. 2020, 10, 315–322.
  • Yao, C.; Zhou, S.; Kang, X.; Zhao, Y.; Yan, R.; Zhang, Y.; Wen, L. A Cationic Zinc-Organic Framework with Lewis Acidic and Basic Bifunctional Sites as an Efficient Solvent-Free Catalyst: CO2 Fixation and Knoevenagel Condensation Reaction. Inorg. Chem. 2018, 57, 11157–11165.
  • Asgharnejad, L.; Abbasi, A.; Najafi, M.; Janczak, J. Synthesis and Structure of Three New Alkaline Earth Metal-Organic Frameworks with High Thermal Stability as Catalysts for Knoevenagel Condensation. Cryst. Growth Des. 2019, 19, 2679–2686.
  • Zhang, Y.; Wang, Y.; Liu, L.; Wei, N.; Gao, M.-L.; Zhao, D.; Han, Z.-B. Robust Bifunctional Lanthanide Cluster Based Metal-Organic Frameworks (MOFs) for Tandem Deacetalization-Knoevenagel Reaction. Inorg. Chem. 2018, 57, 2193–2198.
  • Shcherban, N.D.; Mäki-Arvela, P.; Aho, A.; Sergiienko, S.A.; Yaremov, P.S.; Eränenb, K.; Murzin, D.Y. Melamine-derived Graphitic Carbon Nitride as a New Effective Metal-Free Catalyst for Knoevenagel Condensation of Benzaldehyde with Ethylcyanoacetate. Catal. Sci. Technol. 2018, 8, 2928–2937.
  • Tavakolian, M.; Najafpour, M.M. Molybdenum Carbide as an Efficient and Durable Catalyst for Aqueous Knoevenagel Condensation. New J. Chem. 2019, 43, 16437–16440.
  • Sun, Y.; Cao, C.; Huang, P.; Yang, S.; Song, W. Amines Functionalized C60 as Solid Base Catalysts for Knoevenagel Condensation with High Activity and Stability. RSC Adv. 2015, 5, 86082–86087.
  • Jain, K.; Chaudhuri, S.; Palc, K.; Das, K. The Knoevenagel Condensation Using Quinine as an Organocatalyst Under Solvent-Free Conditions. New J. Chem. 2019, 43, 1299–1304.
  • Dou, M.-Y.; Zhong, D.-D.; Huang, X.-Q.; Yang, G.-Y. Imidazole-induced Self-Assembly of Polyoxovanadate Cluster Organic Framework for Efficient Knoevenagel Condensation Under Mild Conditions. Cryst. Eng. Comm. 2020, 22, 4147–4153.
  • Kong, H.; He, P.; Yang, Z.; Xu, Q.; Wang, J.; Ban, R.; Ma, P.; Wang, J.; Niu, J. Selenotungstates Incorporating Organophosphonate Ligands and Metal Ions: Synthesis, Characterization, Magnetism and Catalytic Efficiency in Knoevenagel Condensation Reaction. Dalton Trans. 2020, 49, 7420–7425.
  • Li, C.; Zhong, D.; Huang, X.; Shen, G.; Li, Q.; Du, J.; Wang, S.; Li, J.; Dou, J. Two Organic-Inorganic Hybrid Polyoxovanadates as Reusable Catalysts for Knoevenagel Condensation. New J. Chem. 2019, 43, 5813–5819.
  • Qian, B.; Wang, F.; Li, D.; Li, Y.; Zhang, B.; Zhu, J. Preparation of Pickering Emulsion by Modification of Amine-Functionalized Graphene Oxide Surface with Organosilane: Efficient Catalyst for Knoevenagel Condensation of Malononitrile with Aldehydes at Mild Temperature. New J. Chem. 2020, 44, 5995–6002.
  • Schejn, A.; Mazet, T.; Falk, V.; Balan, L.; Aranda, L.; Medjahdi, G.; Schneider, R. Fe3O4@ZIF-8: Magnetically Recoverable Catalysts by Loading Fe3O4 Nanoparticles Inside a Zinc Imidazolate Framework. Dalton Trans. 2015, 44, 10136–10140.
  • Yu, Y.; Zhu, W.; Shi, B.; Lü, C. Construction of Thermo-Responsive Polymer Brushes Decorated Fe3O4@Catechol-Formaldehyde Resin Core-Shell Nanospheres Stabilized Carbon Dots/PdNPs Nanohybrid and its Application as an Efficient Catalyst. J. Mater. Chem. A 2020, 8, 4017–4029.
  • Grass, R.N.; Athanassiou, E.K.; Stark, W.J. Covalently Functionalized Cobalt Nanoparticles as a Platform for Magnetic Separations in Organic Synthesis. Angew. Chem. Int. Ed. 2007, 46, 4909–4912.
  • Liew, K.H.; Rocha, M.; Pereira, C.; Pires, A.L.; Pereira, A.M.; Yarmo, M.A.; Juan, J.C.; Yusop, R.M.; Peixoto, A.F.; Freire, C. Highly Active Ruthenium Supported on Magnetically Recyclable Chitosan-Based Nanocatalyst for Nitroarenes Reduction. Chem. Cat. Chem. 2017, 9, 3930–3941.
  • Maleki, A. One-pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in The Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles. Tetrahedron Lett. 2013, 54, 2055–2059.
  • Maleki, A. Fe3O4/SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for The One-Pot Multicomponent Synthesis of Diazepines. Tetrahedron 2012, 68, 7827–7833.
  • Maleki, A.; Kari, T. Novel Leaking-Free, Green, Double Core/Shell, Palladium-Loaded Magnetic Heterogeneous Nanocatalyst for Selective Aerobic Oxidation. Catal. Lett. 2018, 148, 2929–2934.
  • Maleki, A.; Panahzadeh, M.; Reza, E.-K. Agar: a Natural and Environmentally-Friendly Support Composed of Copper Oxide Nanoparticles for The Green Synthesis of 1,2,3-Triazoles. Green Chem. Lett. Rev. 2019, 12, 395–406.
  • Maleki, A.; Akhlaghi, E.; Paydar, R. Design, Synthesis, Characterization and Catalytic Performance of a New Cellulose-Based Magnetic Nanocomposite in the One-Pot Three-Component Synthesis of α-Aminonitriles. . Appl. Organometal. Chem. 2016, 30, 382–386.
  • Maleki, A.; Aghaei, M.; Ghamari, N. Facile Synthesis of Tetrahydrobenzoxanthenones via a One-Pot Three-Component Reaction Using an Eco-Friendly and Magnetized Biopolymer Chitosan-Based Heterogeneous Nanocatalyst. Appl. Organometal. Chem. 2016, 30, 939–942.
  • Maleki, A.; Rahimi, R.; Maleki, S. Efficient Oxidation and Epoxidation Using a Chromium (VI)-Based Magnetic Nanocomposite. Environ. Chem. Lett. 2016, 14, 195–199.
  • Maleki, A. One-pot Three-Component Synthesis of Pyrido [2′,1′:2,3] Imidazo[4,5-c] Isoquinolines Using Fe3O4@SiO2–OSO3H as an Efficient Heterogeneous Nanocatalyst. RSC Adv. 2014, 4, 64169–64173.
  • Zhang, M.; Liu, Y.-H.; Shang, Z.-R.; Hu, H.-C.; Zhang, Z.-H. Supported Molybdenum on Graphene Oxide/Fe3O4 : An Efficient, Magnetically Separable Catalyst for One-Pot Construction of Spiro-Oxindole Dihydropyridines in Deep Eutectic Solvent Under Microwave Irradiation. Catal. Commun. 2017, 88, 39–44.
  • Gao, G.; Di, J.-Q.; Zhang, H.-Y.; Mo, L.-P.; Zhang, Z.-H. A Magnetic Metal Organic Framework Material as A Highly Efficient and Recyclable Catalyst for Synthesis of Cyclohexenone Derivatives. J. Catal. 2020, 387, 39–46.
  • Baig, R.B.; Varma, R.S.; Organic Synthesis via Magnetic Attraction: Benign and Sustainable Protocols Using Magnetic Nanoferrites. Green Chem. 2013, 15, 398–417.
  • Zhu, Y.; Fang, Y.; Kaskel, S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery. J. Phys. Chem. C 2010, 114, 16382–16388.
  • Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D.G.; Duan, X. Preparation of Fe3O4@SiO2@Layered Double Hydroxide Core-Shell Microspheres for Magnetic Separation of Proteins. J. Am. Chem. Soc. 2012, 134, 1071–1077.
  • Liu, Y.; Chen, T.; Wu, C.; Qiu, L.; Hu, R.; Li, J.; Cansiz, S.; Zhang, L.; Tan, W. Facile Surface Functionalization of Hydrophobic Magnetic Nanoparticles. J. Am. Chem. Soc. 2014, 136, 12552–12555.
  • Wang, B.G.; Ma, B.C.; Wang, Q.; Wang, W. Superparamagnetic Nanoparticle-Supported (S)-Diphenylprolinol Trimethylsilyl Ether as a Recyclable Catalyst for Asymmetric Michael Addition in Water. Adv. Synth. Catal. 2010, 352, 2923–2928.
  • Yang, H.; Li, G.; Ma, Z. Magnetic Core-Shell-Structured Nanoporous Organosilica Microspheres for The Suzuki-Miyaura Coupling of Aryl Chlorides: Improved Catalytic Activity and Facile Catalyst Recovery. J. Mater. Chem. 2012, 22, 6639–6648.
  • Chakraborty, T.; Sarkar, A. Pd (0) Immobilized on Fe3O4@AHBA: An Efficient Magnetically Separable Heterogeneous Nanocatalyst for C-C Coupling Reactions. J. Coord. Chem. 2019, 72, 3430–3443.
  • Zhao, G.-L.; Shi, Y.-L.; Shi, M. Synthesis of Functionalized 2H-1-Benzopyrans by DBU-Catalyzed Reactions of Salicylic Aldehydes with Allenic Ketones and Esters. Org. Lett. 2005, 7, 4527–4530.
  • Zhao, S.; Meng, D.; Wei, L.; Qiao, Y.; Xi, F. Novel DBU-Based Hydroxyl Ionic Liquid for Efficient Knoevenagel Reaction in Water. Green Chem. Lett. Rev. 2019, 12, 271–277.
  • Meng, D.; Qiao, Y.; Wang, X.; Wen, W.; Zhao, S. DABCO-catalyzed Knoevenagel Condensation of Aldehydes with Ethyl Cyanoacetate Using Hydroxy Ionic Liquid as a Promoter. RSC Adv. 2018, 8, 30180–30185.
  • Gholizadeh, A. A Comparative Study of Physical Properties in Fe3O4 Nanoparticles Prepared by Coprecipitation and Citrate Methods. J. Am. Ceram. Soc. 2017, 100, 1–2.
  • Bu, D.; Li, N.; Zhou, Y.; Feng, H.; Yu, F.; Cheng, C.; Li, M.; Xiao, L.; Ao, Y. Enhenced UV Stability of N-Halamine-Immobilized Fe3O4@SiO2@TiO2 Nanoparticles: Synthesis, Characteristics and Antibacterial Property. New J. Chem. 2020, 44, 10352–10358.
  • Chae, H.S.; Kim, S.D.; Piao, S.H.; Choi, H.J. Core-Shell Structured Fe3O4@SiO2 Nanoparticles Fabricated by Sol-gel Method and Their Magnetorheology. Colloid Polym. Sci. 2016, 294, 647–655.
  • Lu, D.; Fan, H.; Kondamareddy, K.K.; Yu, H.; Wang, A.; Hao, H.; Li, M.; Shen, J. Highly Efficient Visible-Light-Induced Photocatalytic Production of Hydrogen for Magnetically Retrievable Fe3O4@SiO2@MoS2/g-C3N4 Hierarchical Microspheres. ACS Sustain. Chem. Eng. 2018, 6, 9903–9911.
  • Yue, C.; Mao, A.; Wei, Y.; Lue, M. Knoevenagel Condensation Reaction Catalyzed by Task-Specific Ionic Liquid Under Solvent-Free Conditions. Catal. Commun. 2008, 9, 1571–1574.
  • Ren, Y.-M.; Cai, C. Knoevenagel Condensation of Aromatic Aldehydes with Active Methylene Compounds Using a Catalytic Amount of Iodine and K2CO3 at Room Temperature. Synth. Commun. 2007, 37, 2209–2213.
  • Song, A.; Wang, X.; Lam, K.S. A Convenient Synthesis of Coumarin-3-Carboxylic Acids Via Knoevenagel Condensation of Meldrum’s Acid with Ortho-Hydroxyaryl Aldehydes or Ketones. Tetrahedron Lett. 2003, 44, 1755–1758.
  • Ying, A.-G.; Wang, L.-M.; Chen, X.-Z.; Ye, W.-D. Green and Efficient Knoevenagel Condensation Catalysed by a DBU Based Ionic Liquid in Water. J. Chem. Res. 2010, 34, 30–33.
  • Mowry, D. Nacin-Niacinamide Dintiation in the Microbiologcal Assay Procedrue, β, β-Dimesitylvinyl Alcohol, New Compounds: Ethyl α,4-Dicyanocinnamate. J. Am. Chem. Soc. 1943, 65, 992–993.
  • Pal, R.; Yasmin, H.; Nahar, L.; Datta, B.; Chowdhury, A.; Kundu, J.; Bachar, S.; Sarker, S. Synthesis of 5,6-Dichloroindan-1-Acids and Their Tetrazolyl Derivatives as Analgesic and Anti-Inflammatory Agents. Med. Chem. 2012, 8, 874–882.
  • Li, G.; Xiao, J.; Zhang, W. Knoevenagel Condensation Catalyzed by a Tertiary-Amine Functionalized Polyacrylonitrile Fifiber. Green Chem. 2011, 13, 1828–1836.
  • Zhang, J.; Jiang, T.; Han, B.; Zhu, A.; Ma, X. Knoevenagel Condensation Catalyzed by 1,1,3,3-Tetramethylguanidium Lactate. Synth. Commun. 2006, 36, 3305–3317.
  • Yasuda, H.; Midorikawa, H. The Knoevenagel Reaction Between Hydroxybenzaldehydes and Ethyl Cyanoacetate. Bull. Chem. Soc. Jpn. 1966, 39, 1754–1759.
  • Lemek, T.; Mayr, H. Electrophilicity Parameters for Benzylidenemalononitriles. J. Org. Chem. 2003, 68, 6880–6886.
  • Das, A.; Anbu, N.; M, S.K.; Dhakshinamoorthy, A.; Biswas, S. A Functionalized UiO-66 MOF for Turn-on Fluorescence Sensing of Superoxide in Water and Efficient Catalysis for Knoevenagel Condensation. Dalton Trans. 2019, 48, 17371–17380.
  • Costantino, U.; Cnrini, M.; Montanari, F.; Nocchetti, M. Hydrotalcite-like Compounds as Heterogeneous Catalysts in Liquid Phase Organic Synthesis. II. Preparation of 4H-Chromenes Promoted by Hydrotalcite Doped with Hydrous Tin (IV) Oxide. Microporous Mesoporous Mater. 2008, 107, 16–22.
  • Denmark, S.; Ibrahim, M.; Ambrosi, A. Room Temperature, Reductive Alkylation of Activated Methylene Compounds: Carbon-Carbon Bond Formation Driven by the Rhodium-Catalyzed Water-Gas Shift Reaction. ACS Catal. 2017, 7, 613–630.
  • Oskooie, H.A.; Roomizadeh, E.; Heravi, M.M. Solvent-Free L-Proline Catalyzed Condensation of Ethyl Cyanoacetate with Aldehydes. J. Chem. Res. 2006, 4, 246–247.
  • Ren, Z.; Cao, W.; Tong, W. The Knoevenagel Condensation Reaction of Aromatic Aldehydes with Malononitrile by Grinding in the Absence of Solvents and Catalysts. Synth. Commun. 2002, 32, 3475–3497.