2,448
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Facile synthesis of bismuth terephthalate metal–organic frameworks and their visible-light-driven photocatalytic activities toward Rhodamine B dye

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 572-581 | Received 17 May 2022, Accepted 23 Aug 2022, Published online: 08 Sep 2022

References

  • Liu, H.; Wang, C.; Wang, G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem - An Asian J 2020, 15, 3239–3253. doi:10.1002/asia.202000895. Cited: in:: PMID: 32860468.
  • Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.J.; Belver, C. A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts 2019, 9. doi:10.3390/catal9010052.
  • Wen, Y.; Zhang, P.; Sharma, V.K.; Ma, X.; Zhou, H.C. Metal-organic Frameworks for Environmental Applications. Cell Reports Phys Sci 2021, 2, 100348. doi:10.1016/j.xcrp.2021.100348.
  • Mahmoodi, N.M.; Hayati, B.; Arami, M. Textile Dye Removal from Single and Ternary Systems Using Date Stones: Kinetic, Isotherm, and Thermodynamic Studies. J. Chem. Eng. Data 2010, 55, 4638–4649. doi:10.1021/je1002384.
  • Hayati, B.; Mahmoodi, N.M. Modification of Activated Carbon by the Alkaline Treatment to Remove the Dyes from Wastewater: Mechanism, Isotherm and Kinetic. Desalin Water Treat 2012, 47, 322–333. doi:10.1080/19443994.2012.696429.
  • Thakur, A.; Kaur, H. Response Surface Optimization of Rhodamine B dye Removal Using Paper Industry Waste as Adsorbent. Int J Ind Chem 2017, 8, 175–186. doi:10.1007/s40090-017-0113-4.
  • Duy Trinh, N.; Hoang, H.H.; Xuan Linh, N.; Huu Vinh, N.; Thi Vu, H.; Thanh Nguyen, H.; Do, S.T.; Viet N-Vo, D. Visible Light Induced Enhanced Photocatalytic Degradation of Industrial Effluents (Rhodamine B) Using BiVO4 Nanoparticles. IOP Conf Ser Mater Sci Eng 2019, 542. doi:10.1088/1757-899X/542/1/012060.
  • Cui, Y.; Goldup, S.M.; Dunn, S. Photodegradation of Rhodamine B Over Ag Modified Ferroelectric BaTiO3 Under Simulated Solar Light: Pathways and Mechanism. RSC Adv. 2015, 5, 30372–30379. doi:10.1039/c5ra00798d.
  • Mahmoodi, N.M.; Taghizadeh, M.; Taghizadeh, A. Mesoporous Activated Carbons of low-Cost Agricultural bio-Wastes with High Adsorption Capacity: Preparation and Artificial Neural Network Modeling of dye Removal from Single and Multicomponent (Binary and Ternary) Systems. J. Mol. Liq. 2018, 269, 217–228. doi:10.1016/j.molliq.2018.07.108.
  • Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Zhang, M.; Wei, G.; Khan, E.; Hau Ng, Y.; Sik Ok, Y. Recent Advances in Photodegradation of Antibiotic Residues in Water. Chem. Eng. J. 2021, 405, 126806. doi:10.1016/j.cej.2020.126806.
  • Zajda, M.; Aleksander-Kwaterczak, U. Wastewater Treatment Methods for Effluents from the Confectionery Industry-An Overview. J Ecol Eng 2019, 20, 293–304. doi:10.12911/22998993/112557.
  • Tang, J.; Liu, H.; Zhao, C.; Rao, T.; Hu, L.; Hu, C.; Zhang, L.; Li, T. A Novel ZrGeO4 Catalyst for Degradation of Organic dye Pollutants at Room Temperature Without Light Illumination. Green Chem Lett Rev 2020, 13, 215–222. doi:10.1080/17518253.2020.1804625.
  • Nguyen, T.H.A.; Tran, T.D.M.; Ky Vo, T.; Nguyen, Q.T.; Nguyen, V.-C. Facile Synthesis of low-Cost Chitosan/Fe3O4@C Composite for Highly Efficient Adsorption of Levofloxacin Antibiotic. Chem. Eng. Commun. 2022, 1–13. doi:10.1080/00986445.2022.2053680.
  • Mahmoodi, N.M.; Saffar-Dastgerdi, M.H. Clean Laccase Immobilized Nanobiocatalysts (Graphene Oxide - Zeolite Nanocomposites): From Production to Detailed Biocatalytic Degradation of Organic Pollutant. Appl Catal B Environ 2020, 268, 118443. doi:10.1016/j.apcatb.2019.118443.
  • Hoque, M.A.; Guzman, M.I. Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. Materials (Basel) 2018, 11. doi:10.3390/ma11101990.
  • Ahmed, S.N.; Haider, W. Heterogeneous Photocatalysis and its Potential Applications in Water and Wastewater Treatment: A Review. Nanotechnology 2018, 29. doi:10.1088/1361-6528/aac6ea.
  • Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K.; Wang, S. A Review on Photocatalysis for Air Treatment : From Catalyst Development to Reactor Design A Review on Photocatalysis for air Treatment : From Catalyst Development to Reactor Design. Chem. Eng. J. 2016, 310, 537–559. doi:10.1016/j.cej.2016.06.090.
  • Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl Energy Mater 2018, 1, 6657–6693. doi:10.1021/acsaem.8b01345.
  • Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches Toward Photocatalyst by Design. ACS Catal. 2017, 7, 8006–8022. doi:10.1021/acscatal.7b02662.
  • Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P., Zhang, R., et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. doi:10.1016/j.jclepro.2020.121725.
  • Riaz, S.; Park, S.-J. An Overview of TiO2-Based Photocatalytic Membrane Reactors for Water and Wastewater Treatments. J. Ind. Eng. Chem. 2020, 84, 23–41. doi:10.1016/j.jiec.2019.12.021.
  • Mahmoodi, N.M. Photocatalytic Degradation of Dyes Using Carbon Nanotube and Titania Nanoparticle. Water, Air, Soil Pollut. 2013, 224, 1612. doi:10.1007/s11270-013-1612-3.
  • Sheikh, M.; Pazirofteh, M.; Dehghani, M.; Asghari, M.; Rezakazemi, M.; Valderrama, C.; Cortina, J.-L. Application of ZnO Nanostructures in Ceramic and Polymeric Membranes for Water and Wastewater Technologies: A Review. Chem. Eng. J. 2020, 391, 123475. doi:10.1016/j.cej.2019.123475.
  • Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. doi:10.1016/j.rser.2017.08.020.
  • Dong, C.; Ji, J.; Yang, Z.; Xiao, Y.; Xing, M.; Zhang, J. Research Progress of Photocatalysis Based on Highly Dispersed Titanium in Mesoporous SiO2. Chinese Chem Lett 2019, 30, 853–862. doi:10.1016/j.cclet.2019.03.020.
  • Mahmoodi, N.M. Manganese Ferrite Nanoparticle: Synthesis, Characterization, and Photocatalytic dye Degradation Ability. Desalin Water Treat 2015, 53, 84–90. doi:10.1080/19443994.2013.834519.
  • Teixeira, S.; Mora, H.; Blasse, L.-M.; Martins, P.M.; Carabineiro, S.A.C.; Lanceros-Méndez, S.; Kühn, K.; Cuniberti, G. Photocatalytic Degradation of Recalcitrant Micropollutants by Reusable Fe3O4/SiO2/TiO2 Particles. J. Photochem. Photobiol. A. Chem. 2017, 345, 27–35. doi:10.1016/j.jphotochem.2017.05.024.
  • Wang, Q.; Gao, Q.; Al-Enizi, A.M.; Nafady, A. Ma S. Recent Advances in MOF-Based Photocatalysis: Environmental Remediation Under Visible Light. Inorg. Chem. Front. Royal Society of Chemistry 2020, 7, 300–339.
  • Nasalevich, M.A.; Van Der Veen, M.; Kapteijn, F.; Gascon, J. Metal-organic Frameworks as Heterogeneous Photocatalysts: Advantages and Challenges. CrystEngComm 2014, 16, 4919–4926. doi:10.1039/c4ce00032c.
  • Li, Y.; Xu, H.; Ouyang, S.; Ye, J. Metal-organic Frameworks for Photocatalysis. Phys. Chem. Chem. Phys. Royal Society of Chemistry 2016, 18, 7563–7572.
  • Piątek, J.; Budnyak, T.M.; Monti, S.; Barcaro, G.; Gueret, R.; Grape, E.S.; Jaworski, A.; Inge, A.K.; Rodrigues, B.V.M.; Slabon, A. Toward Sustainable Li-Ion Battery Recycling: Green Metal–Organic Framework as a Molecular Sieve for the Selective Separation of Cobalt and Nickel. ACS. Sustain. Chem. Eng. 2021, 9, 9770–9778. doi:10.1021/acssuschemeng.1c02146.
  • Vo, T.K.; Kim, J. Facile Synthesis of Magnetic Framework Composite MgFe2O4@UiO-66(Zr) and its Applications in the Adsorption–Photocatalytic Degradation of Tetracycline. Environ Sci Pollut Res 2021, 28, 68261–68275. doi:10.1007/s11356-021-15423-y. Cited: in:: PMID: 34268686.
  • Mahmoodi, N.M.; Abdi, J.; Oveisi, M.; Alinia Asli, M.; Vossoughi, M. Metal-organic Framework (MIL-100 (Fe)): Synthesis, Detailed Photocatalytic dye Degradation Ability in Colored Textile Wastewater and Recycling. Mater. Res. Bull. 2018, 100, 357–366. doi:10.1016/j.materresbull.2017.12.033.
  • Oveisi, M.; Mahmoodi, N.M.; Asli, M.A. Facile and Green Synthesis of Metal-Organic Framework/Inorganic Nanofiber Using Electrospinning for Recyclable Visible-Light Photocatalysis. J Clean Prod. 2019, 222, 669–684. doi:10.1016/j.jclepro.2019.03.066.
  • Liu, N.; Jing, C.; Li, Z.; Huang, W.; Gao, B.; You, F.; Zhang, X. Effect of Synthesis Conditions on the Photocatalytic Degradation of Rhodamine B of MIL-53 (Fe). Mater. Lett. 2019, 237, 92–95.
  • Fatima, R.; Park, S.; Kim, J.-O. Effect of Molar Ration of Ti/Ligand on the Synthesis of MIL-125 (Ti) and its Adsorption and Photocatalytic Properties. J. Ind. Eng. Chem. 2020, 90, 166–177.
  • Oveisi, M.; Alinia Asli, M.; Mahmoodi, N.M. Carbon Nanotube Based Metal-Organic Framework Nanocomposites: Synthesis and Their Photocatalytic Activity for Decolorization of Colored Wastewater. Inorganica Chim Acta [Internet] 2019, 487, 169–176. doi:10.1016/j.ica.2018.12.021.
  • Mahmoodi, N.M.; Taghizadeh, A.; Taghizadeh, M.; Abdi, J. In Situ Deposition of Ag/AgCl on the Surface of Magnetic Metal-Organic Framework Nanocomposite and its Application for the Visible-Light Photocatalytic Degradation of Rhodamine dye. J. Hazard. Mater. 2019, 378, 120741. doi:10.1016/J.JHAZMAT.2019.06.018. Cited: in:: PMID: 31200227.
  • Xu, B.; An, Y.; Liu, Y.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.-H. An Efficient Visible-Light Photocatalyst Made from a Nonpolar Layered Semiconductor by Grafting Electron-Withdrawing Organic Molecules to its Surface. Chem. Commun. 2016, 52, 13507–13510.
  • Vilela, S.M.F.; Devic, T.; Várez, A.; Salles, F.; Horcajada, P. A new Proton-Conducting Bi-Carboxylate Framework. Dalt Trans 2019, 48, 11181–11185.
  • Iram, S.; Imran, M.; Kanwal, F.; Iqbal, Z.; Deeba, F.; Iqbal, Q.J. Bismuth(III) Based Metal Organic Frameworks: Luminescence. Gas Adsorption, and Antibacterial Studies. Zeitschrift fur Anorg und Allg Chemie 2019, 645, 50–56. doi:10.1002/zaac.201800383.
  • Nguyen, V.H.; Nguyen, T.D.; Van Nguyen, T. Microwave-Assisted Solvothermal Synthesis and Photocatalytic Activity of Bismuth(III) Based Metal–Organic Framework. Top. Catal. 2020, 63, 1109–1120. doi:10.1007/s11244-020-01271-6.
  • Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of Solvents, pH, Molar Ratio and Temperature in Tuning Metal Organic Framework Architecture. Arab. J. Chem 2019, 12, 295–315.
  • Köppen, M.; Dhakshinamoorthy, A.; Inge, A.K.; Cheung, O.; Ångström, J.; Mayer, P.; Stock, N. Synthesis, Transformation, Catalysis, and Gas Sorption Investigations on the Bismuth Metal–Organic Framework CAU-17. Eur. J. Inorg. Chem. 2018, 2018, 3496–3503. doi:10.1002/ejic.201800321.
  • Ye, F.; Wei, Z.X.; Song, J.F.; Wu, X.H.; Yue, P. Synthesis, Characterization, and Photocatalytic Properties of Bismuth (III)-Benzene-1,3,5-Tricarboxylate. Zeitschrift fur Anorg und Allg Chemie 2017, 643, 669–674. doi:10.1002/zaac.201700096.
  • Wang, G.; Sun, Q.; Liu, Y.; Huang, B.; Dai, Y.; Zhang, X.; Qin, X. A Bismuth-Based Metal-Organic Framework as an Efficient Visible-Light-Driven Photocatalyst. Chem - A Eur J 2015, 21, 2364–2367. doi:10.1002/chem.201405047. Cited: in:: PMID: 25487284.
  • Zhao, X.; Zhong, J.; Hu, J.; Wu, L.; Chen, X. Bismuth Terephthalate Induced Bi(0) for Enhanced RhB Photodegradation and 4-Nitrophenol Reduction. J. Phys. Chem. Solids 2017, 111, 431–438. doi:10.1016/j.jpcs.2017.08.034.
  • Zhao, X.; Xiong, X.; Chen, X.; Hu, J.; Li, J. Synthesis of Halide Anion-Doped Bismuth Terephthalate Hybrids for Organic Pollutant Removal. Appl. Organomet. Chem. 2016, 30, 304–310. doi:10.1002/aoc.3432.
  • Yang, J.; Xie, T.; Liu, C.; Xu, L. Facile Fabrication of Dumbbell-Like β-Bi2O3/Graphene Nanocomposites and Their Highly Efficient Photocatalytic Activity. Materials (Basel) 2018, 11. doi:10.3390/ma11081359.
  • Imran, M.; Kanwal, F.; Latif, S.; Iqbal, Z.; Mitu, L. Heteronuclear Metal-Organic Frameworks; Adsorption and Luminescence Aspects. Rev. Chim. 2020, 71, 38–46. doi:10.37358/RC.20.4.8041.
  • Vo, T.K. Spray Pyrolysis Synthesis and UV-Driven Photocatalytic Activity of Mesoporous Al2O3@TiO2 Microspheres. Environ. Sci. Pollut. Res. Int. 2022, 29, 42991–43003.
  • Iram, S.; Imran, M.; Kanwal, F.; Latif, S.; Iqbal, Z. Bismuth and Lead Based Metal Organic Frameworks: Morphological, Luminescence and Brunauer-Emmett-Teller (BET) Studies. Mater Sci Pol 2020, 38, 132–137. doi:10.2478/msp-2020-0021.
  • Wang, P.; Cheng, M.; Zhang, Z. On Different Photodecomposition Behaviors of Rhodamine B on Laponite and Montmorillonite Clay Under Visible Light Irradiation. J. Saudi Chem. Soc. 2014, 18, 308–316. doi:10.1016/j.jscs.2013.11.006.
  • Vo, T.K.; Kim, J. Facile Synthesis of Magnetic Framework Composite MgFe2O4@UiO-66 (Zr) and its Applications in the Adsorption-Photocatalytic Degradation of Tetracycline. Environ. Sci. Pollut. Res. Int. 2021, 28, 68261–68275.
  • Sha, Z.; Sun, J.; On Chan, H.S.; Jaenicke, S.; Wu, J. Bismuth Tungstate Incorporated Zirconium Metal-Organic Framework Composite with Enhanced Visible-Light Photocatalytic Performance. RSC Adv. 2014, 4, 64977–64984. doi:10.1039/c4ra13000f.
  • Nguyen, V.H.; Van Tan, L.; Lee, T.; Nguyen, T.D. Solvothermal Synthesis and Photocatalytic Activity of Metal-Organic Framework Materials Based on Bismuth and Trimesic Acid. Sustain Chem Pharm 2021, 20, 100385. doi:10.1016/j.scp.2021.100385.
  • Chen, G.; Qian, S.; Tu, X.; Wei, X.; Zou, J.; Leng, L.; Luo, S. Enhancement Photocatalytic Degradation of Rhodamine B on NanoPt Intercalated Zn-Ti Layered Double Hydroxides. Appl. Surf. Sci. 2014, 293, 345–351. doi:10.1016/j.apsusc.2013.12.165.
  • Thi Mai Tho, N.; The Huy, B.; Nha Khanh, D.N.; Quoc Thang, N.; Thi Phuong Dieu, N.; Dai Duong, B.; Thi Kim Phuong, N. Mechanism of Visible-Light Photocatalytic Mineralization of Indigo Carmine Using ZnBi2O4-Bi2S3 Composites. ChemistrySelect 2018, 3, 9986–9994. doi:10.1002/slct.201802151.
  • Nha Khanh, D.N.; Lin, H.N.; Mai Tho, N.T.; Nhat Ha, H.N.; Huy, V.Q.; Phuong Dieu, N.T.; Huy, D.M.; Dat, D.P.; Kim Phuong, N.T. Influence of Ammonia on Properties of TiO2-MgFe2 O4 as High Visible-Light Active Photocatalysts for the Degradation of Rhodamine B. Vietnam J Chem 2018, 56, 798–803. doi:10.1002/vjch.201800090.
  • Jonjana, S.; Phuruangrat, A.; Thongtem, T.; Kuntalue, B.; Thongtem, S. Decolorization of Rhodamine B Photocatalyzed by Ag3PO4/Bi2WO6 Nanocomposites Under Visible Radiation. Mater. Lett. 2018, 218, 146–149. doi:10.1016/J.MATLET.2018.01.176.
  • Wang, C.Y.; Wu, T.; Lin, Y.W. Preparation and Characterization of Bismuth Oxychloride/Reduced Graphene Oxide for Photocatalytic Degradation of Rhodamine B Under White-Light Light-Emitting-Diode and Sunlight Irradiation. J. Photochem. Photobiol. A. Chem. 2019, 371, 355–364. doi:10.1016/J.JPHOTOCHEM.2018.11.043.
  • Campos, W.E.O.; Lopes, A.S.C.; Monteiro, W.R.; Filho, G.N.R.; Nobre, F.X.; Luz, P.T.S.; Nascimento, L.A.S.; Costa, C.E.F.; Monteiro, W.F., Vieira, M.O., et al. Layered Double Hydroxides as Heterostructure LDH@Bi2WO6 Oriented Toward Visible-Light-Driven Applications: Synthesis, Characterization, and its Photocatalytic Properties. React Kinet Mech Catal 2020, 131, 505–524. doi:10.1007/s11144-020-01830-8.
  • Onwumere, J.; Pia̧tek, J.; Budnyak, T.; Chen, J.; Budnyk, S.; Karim, Z.; Thersleff, T.; Kuśtrowski, P.; Mathew, A.P.; Slabon, A. CelluPhot: Hybrid Cellulose−Bismuth Oxybromide Membrane for Pollutant Removal. ACS Appl. Mater. Interfaces 2020, 12, 42891–42901. doi:10.1021/acsami.0c12739.