6,629
Views
3
CrossRef citations to date
0
Altmetric
Review

Extraction of cellulose nanocrystals from agricultural by-products: a review

ORCID Icon
Pages 582-597 | Received 30 May 2022, Accepted 31 Aug 2022, Published online: 14 Sep 2022

References

  • Araújo, D.; Vilarinho, M.; Machado, A. Effect of Combined Dilute-Alkaline and Green Pretreatments on Corncob Fractionation: Pretreated Biomass Characterization and Regenerated Cellulose Film Production. Ind. Crops Prod. 2019, 141, 111785. DOI:10.1016/J.INDCROP.2019.111785.
  • Mateo, S.; Peinado, S.; Morillas-Gutiérrez, F.; La Rubia, M.D.; Moya, A.J. Nanocellulose from Agricultural Wastes: Products and Applications—A Review. Processes 2021, 9 (9), 1594. DOI:10.3390/pr9091594.
  • Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its Derivatives: Towards Biomedical Applications. Cellulose. 2021, 28, 1893–1931. DOI:10.1007/s10570-020-03674-w.
  • Liu, C.; Luan, P.; Li, Q.; Cheng, Z.; Xiang, P.; Liu, D.; Hou, Y.; Yang, Y.; Zhu, H. Biopolymers Derived from Trees as Sustainable Multifunctional Materials: A Review. Adv. Mater. 2021, 33 (28), 1–27. DOI:10.1002/adma.202001654.
  • Wang, X.; Pang, Z.; Chen, C.; Xia, Q.; Zhou, Y.; Jing, S.; Wang, R.; Ray, U.; Gan, W.; Li, C.; Chen, G.; Foster, B.; Li, T.; Hu, L.; All-Natural, D. Rolled-Up Straws Based on Cellulose Micro- and Nano-Hybrid Fibers. Adv. Funct. Mater. 2020, 30, 1–9. DOI:10.1002/adfm.201910417.
  • Yu, X.; Jiang, Y.; Wu, Q.; Wei, Z.; Lin, X.; Chen, Y. Preparation and Characterization of Cellulose Nanocrystal Extraction from Pennisetum Hydridum Fertilized by Municipal Sewage Sludge via Sulfuric Acid Hydrolysis. Frontiers in Energy Research 2021, 9, 774783. DOI:10.3389/fenrg.2021.774783.
  • Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. DOI:10.3389/fchem.2020.00392.
  • Patil, T.V.; Patel, D.K.; Dutta, S.D.; Ganguly, K.; Santra, T.S.; Lim, K.T. Nanocellulose, a Versatile Platform: From the Delivery of Active Molecules to Tissue Engineering Applications. Bioactive Mater. 2022, 9, 566–589. DOI:10.1016/j.bioactmat.2021.07.006.
  • Hitam, C.N.C.; Jalil, A.A. Recent Advances on Nanocellulose Biomaterials for Environmental Health Photoremediation: An Overview. Environ. Res. 2022, 204, 111964. DOI:10.1016/J.ENVRES.2021.111964.
  • Raza, M.; Abu-Jdayil, B. Cellulose Nanocrystals from Lignocellulosic Feedstock: A Review of Production Technology and Surface Chemistry Modification. Cellulose 2022, 29, 1–38. DOI:10.1007/s10570-021-04371-y.
  • Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N.; Wastes, A. Agricultural Waste Concept, Generation, Utilization and Management. Niger. J. Technol. 2016, 35 (4), 957–964.
  • Akinjokun, A.I.; Petrik, L.F.; Ogunfowokan, A.O.; Ajao, J.; Ojumu, T.V. Isolation and Characterization of Nanocrystalline Cellulose from Cocoa pod Husk (CPH) Biomass Wastes. Heliyon 2021, 7 (4), e06680. DOI:10.1016/j.heliyon.2021.e06680.
  • Requena, R.; Jiménez-Quero, A.; Vargas, M.; Moriana, R.; Chiralt, A.; Vilaplana, F. Integral Fractionation of Rice Husks into Bioactive Arabinoxylans, Cellulose Nanocrystals, and Silica Particles. ACS Sustain. Chem. Eng. 2019, 7 (6), 6275–6286. DOI:10.1021/acssuschemeng.8b06692.
  • Shi, S.C.; Liu, G.T. Cellulose Nanocrystal Extraction from Rice Straw Using a Chlorine-Free Bleaching Process. Cellulose 2021, 28 (10), 6147–6158. DOI:10.1007/s10570-021-03889-5.
  • Wahib, S.A.; Da’na, D.A.; Al-Ghouti, M.A. Insight into the Extraction and Characterization of Cellulose Nanocrystals from Date Pits. Arabian Journal of Chemistry 2022, 15 (3), 103650. DOI:10.1016/j.arabjc.2021.103650.
  • S.M. Beyan, T.A. Amibo, S.V. Prabhu, A.G. Ayalew, Production of Nanocellulose Crystal Derived from Enset Fiber Using Acid Hydrolysis Coupled with Ultrasonication, Isolation, Statistical Modeling, Optimization, and Characterizations, J. Nanomater. 2021, 7492532. DOI:10.1155/2021/7492532.
  • Gabriel, T.; Wondu, K.; Dilebo, J. Valorization of Khat (Catha Edulis) Waste for the Production of Cellulose Fibers and Nanocrystals. PLoS ONE 2021, 16 (2), 1–20. DOI:10.1371/journal.pone.0246794.
  • Ahmad, N.L.; Ahmad, I. Extraction and Characterization of Nano Cellulose from Coconut Fiber. Malaysian J. Anal. Sci. 2013, 17, 109–118. http://inis.iaea.org/search/search.aspx?orig_q = RN:44127753.
  • Thomas, M.G.; Abraham, E.; Jyotishkumar, P.; Maria, H.J.; Pothen, L.A.; Thomas, S. Nanocelluloses from Jute Fibers and Their Nanocomposites with Natural Rubber: Preparation and Characterization. Int. J. Biol. Macromol. 2015, 81, 768–777. DOI:10.1016/J.IJBIOMAC.2015.08.053.
  • Kusmono, R.F.; Listyanda, M.W.; Wildan, M.N. Ilman, Preparation and Characterization of Cellulose Nanocrystal Extracted from Ramie Fibers by Sulfuric Acid Hydrolysis. Heliyon 2020, 6 (11), e05486. DOI:10.1016/j.heliyon.2020.e05486.
  • Tan, X.; Peng, Q.; Yang, K.; Yang, T.; Saskova, J.; Wiener, J.; Venkataraman, M.; Militky, J.; Xiong, W.; Xu, J. Preparation and Characterization of Corn Husk Nanocellulose Coating on Electrospun Polyamide 6. Alexandria Eng. J. 2022, 61 (6), 4529–4540. DOI:10.1016/j.aej.2021.10.011.
  • Karimi, S.; Tahir, P.M.; Karimi, A.; Dufresne, A.; Abdulkhani, A. Kenaf Bast Cellulosic Fibers Hierarchy: A Comprehensive Approach from Micro to Nano. Carbohydr. Polym. 2014, 101, 878–885. DOI:10.1016/j.carbpol.2013.09.106.
  • Liu, Z.; He, M.; Ma, G.; Yang, G.; Chen, J. Preparation and Characterization of Cellulose Nanocrystals from Wheat Straw and Corn Stalk. Palpu Chongi Gisul/J. Korea Tech. Assoc. Pulp Paper Ind. 2019, 51 (2), 40–48. DOI:10.7584/JKTAPPI.2019.04.51.2.40.
  • Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and Characterization of Carboxymethyl Cellulose-Based Composite Films Reinforced by Cellulose Nanocrystals Derived from pea Hull Waste for Food Packaging Applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112. DOI:10.1016/j.ijbiomac.2020.09.010.
  • Fitriani, F.; Aprilia, S.; Arahman, N.; Bilad, M.R.; Amin, A.; Huda, N.; Roslan, J. Isolation and Characterization of Nanocrystalline Cellulose Isolated from Pineapple Crown Leaf Fiber Agricultural Wastes Using Acid Hydrolysis. Polymers. 2021, 13 (s), 4188. DOI:10.3390/polym13234188.
  • Nguyen, C.T.X.; Bui, K.H.; Truong, B.Y.; Do, N.H.N.; Le, P.T.K. Nanocellulose from Pineapple Leaf and Its Applications Towards High-Value Engineering Materials. Chem. Eng. Trans. 2021, 89, 19–24. DOI:10.3303/CET2189004.
  • Araya-Chavarría, K.; Rojas, R.; Ramírez-Amador, K.; Sulbarán-Rangel, B.; Rojas, O.; Esquivel-Alfaro, M. Cellulose Nanofibers as Functional Biomaterial from Pineapple Stubbles via TEMPO Oxidation and Mechanical Process. Waste. Biomass. Valor. 2022, 13 (3), 1749–1758. DOI:10.1007/s12649-021-01619-3.
  • Owonubi, S.J.; Agwuncha, S.C.; Malima, N.M.; Shombe, G.B.; Makhatha, E.M.; Revaprasadu, N. Non-woody Biomass as Sources of Nanocellulose Particles: A Review of Extraction Procedures. Front. Energy Res. 2021, 9, 608825. DOI:10.3389/fenrg.2021.608825.
  • Ventura-Cruz, S.; Tecante, A. Nanocellulose and Microcrystalline Cellulose from Agricultural Waste: Review on Isolation and Application as Reinforcement in Polymeric Matrices. Food Hydrocolloids 2021, 118, 106771. DOI:10.1016/j.foodhyd.2021.106771.
  • Reshmy, R.; Thomas, D.; Philip, E.; Paul, S.A.; Madhavan, A.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Tarafdar, A.; Pandey, A. Potential of Nanocellulose for Wastewater Treatment. Chemosphere 2021, 281, 130738. DOI:10.1016/j.chemosphere.2021.130738.
  • Yu, S.; Sun, J.; Shi, Y.; Wang, Q.; Wu, J.; Liu, J. Nanocellulose from Various Biomass Wastes: Its Preparation and Potential Usages Towards the High Value-Added Products. Environ. Sci. Ecotechnol. 2021, 5, 100077. DOI:10.1016/j.ese.2020.100077.
  • Kaur, P.; Sharma, N.; Munagala, M.; Rajkhowa, R.; Aallardyce, B.; Shastri, Y.; Agrawal, R. Nanocellulose: Resources, Physio-Chemical Properties, Current Uses and Future Applications. Front. Nanotechnol. 2021, 3, 1–17. DOI:10.3389/fnano.2021.747329.
  • Cao, J.; Xia, X.; Wang, L.; Zhang, Z.; Liu, X. A Novel CNC Milling Energy Consumption Prediction Method Based on Program Parsing and Parallel Neural Network. Sustainability 2021, 13 (24), 13918. DOI:10.3390/su132413918.
  • P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, G. Guan, Nanocellulose: Extraction and Application, Carbon Resources Conver. 2018, 1 (1), 32–43. DOI:10.1016/j.crcon.2018.05.004.
  • Wang, X.; Cheng, S.; Li, Z.; Men, Y.; Wu, J. Impacts of Cellulase and Amylase on Enzymatic Hydrolysis and Methane Production in the Anaerobic Digestion of Corn Straw. Sustainability 2020, 12 (13), 5453. DOI:10.3390/su12135453.
  • Jaiswal, A.K.; Kumar, V.; Khakalo, A.; Lahtinen, P.; Solin, K.; Pere, J.; Toivakka, M. Rheological Behavior of High Consistency Enzymatically Fibrillated Cellulose Suspensions. Cellulose 2021, 28 (4), 2087–2104. DOI:10.1007/s10570-021-03688-y.
  • Oviedo, V.R.; Balbé, F.P.; Rodrigues Jr, L.F.; Sagrillo, M.R.; Fagan, S.B.; da S. Fernandes, L. Bacterial Nanocellulose Membranes as Potential Chronic Wound Dressing: Influence of Alternative Culture Media on Nanofiber Diameter – A Brief Review. Discip. Sci. Ciênc. Nat. Tecnol. 2021, 22 (3), 31–44. DOI:10.37779/nt.v22i3.4091.
  • Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of Bacterial Cellulose by Gluconacetobacter Hansenii Using Corn Steep Liquor as Nutrient Sources. Front. Microbiol. 2017, 8, 1–12. DOI:10.3389/fmicb.2017.02027.
  • Revin, V.; Liyaskina, E.; Nazarkina, M.; Bogatyreva, A.; Shchankin, M. Cost-effective Production of Bacterial Cellulose Using Acidic Food Industry by-Products. Braz. J. Microbiol. 2018, 49, 151–159. DOI:10.1016/j.bjm.2017.12.012.
  • Marestoni, L.D.; da S. Barud, H.; Gomes, R.J.; Catarino, R.P.F.; Hata, N.N.Y.; Ressutte, J.B.; Spinosa, W.A. Commercial and Potential Applications of Bacterial Cellulose in Brazil: Ten Years Review. Polimeros 2021, 30 (4), e2020047. DOI:10.1590/0104-1428.09420.
  • Güzel, M.; Akpınar, Ö. Preparation and Characterization of Bacterial Cellulose Produced from Fruit and Vegetable Peels by Komagataeibacter Hansenii GA2016. Int. J. Biol. Macromol. 2020, 162, 1597–1604. DOI:10.1016/j.ijbiomac.2020.08.049.
  • Kadier, A.; Ilyas, R.A.; Huzaifah, M.R.M.; Harihastuti, N.; Sapuan, S.M.; Harussani, M.M.; Azlin, M.N.M.; Yuliasni, R.; Ibrahim, R.; Atikah, M.S.N.; Wang, J.; Chandrasekhar, K.; Amirulislam, M.; Sharma, S.; Punia, S.; Rajasekar, A.; Asyraf, M.R.M.; Ishak, M.R. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers. 2021, 13 (19), 3365. DOI:10.3390/polym13193365.
  • Abol-Fotouh, D.; Hassan, M.A.; Shokry, H.; Roig, A.; Azab, M.S.; Kashyout, A.E.H.B. Bacterial Nanocellulose from Agro-Industrial Wastes: Low-Cost and Enhanced Production by Komagataeibacter Saccharivorans MD1. Sci. Rep. 2020, 10 (1), 1–14. DOI:10.1038/s41598-020-60315-9.
  • Hussain, K.F.W.; Wasim, Z.; Taous, S. Production of Bacterial Cellulose from Industrial Wastes: A Review. Cellulose 2019, 26 (5), 2895–2911. DOI:10.1007/s10570-019-02307-1.
  • Squinca, P.; Bilatto, S.; Badino, A.C.; Farinas, C.S. Nanocellulose Production in Future Biorefineries: An Integrated Approach Using Tailor-Made Enzymes. ACS Sustain. Chem. Eng. 2020, 8 (5), 2277–2286. DOI:10.1021/acssuschemeng.9b06790.
  • Lu, H.; Zhang, L.; Liu, C.; He, Z.; Zhou, X.; Ni, Y. A Novel Method to Prepare Lignocellulose Nanofibrils Directly from Bamboo Chips. Cellulose 2018, 25 (12), 7043–7051. DOI:10.1007/s10570-018-2067-x.
  • Jiang, F.; Hsieh, Y.-L. Cellulose Nanocrystal Isolation from Tomato Peels and Assembled Nanofibers. Carbohydr. Polym. 2015, 122, 60–68. DOI:10.1016/j.carbpol.2014.12.064.
  • Abdul Rahman, N.H.; Chieng, B.W.; Ibrahim, N.A.; Abdul Rahman, N. Extraction and Characterization of Cellulose Nanocrystals from Tea Leaf Waste Fibers. Polymers. 2017, 9 (11), 588. DOI:10.3390/polym9110588.
  • Mahardika, M.; Abral, H.; Kasim, A.; Arief, S.; Asrofi, M. Production of Nanocellulose from Pineapple Leaf Fibers via High-Shear Homogenization and Ultrasonication. Fibers 2018, 6 (2), 28. DOI:10.3390/fib6020028.
  • Amirulhakim, H.; Juwono, A.L.; Roseno, S. Isolation and Characterization of Cellulose Nanofiber from Subang Pineapple Leaf Fiber Waste Produced Using Ultrafine Grinding Method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1098 (6), 62067. DOI:10.1088/1757-899x/1098/6/062067.
  • dos Santos, R.M.; Flauzino Neto, W.P.; Silvério, H.A.; Martins, D.F.; Dantas, N.O.; Pasquini, D. Cellulose Nanocrystals from Pineapple Leaf, a new Approach for the Reuse of This Agro-Waste. Ind. Crops Prod. 2013, 50, 707–714. DOI:10.1016/j.indcrop.2013.08.049.
  • Ditzel, F.I.; Prestes, E.; Carvalho, B.M.; Demiate, I.M.; Pinheiro, L.A. Nanocrystalline Cellulose Extracted from Pine Wood and Corncob. Carbohydr. Polym. 2017, 157, 1577–1585. DOI:10.1016/j.carbpol.2016.11.036.
  • Silvério, H.A.; Flauzino Neto, W.P.; Dantas, N.O.; Pasquini, D. Extraction and Characterization of Cellulose Nanocrystals from Corncob for Application as Reinforcing Agent in Nanocomposites. Ind. Crops Prod. 2013, 44, 427–436. DOI:10.1016/j.indcrop.2012.10.014.
  • Larissa, L.A.; Fonsêca, A.F.; Pereira, F.V.; Druzian, J.I. Extraction and Characterization of Cellulose Nanocrystals from Corn Stover. Cellul. Chem. Technol. 2015, 49, 127–133.
  • Lu, P.; Hsieh, Y.-L. Preparation and Characterization of Cellulose Nanocrystals from Rice Straw. Carbohydr. Polym. 2012, 87, 564–573.
  • Srithongkham, S.; Vivitchanont, L.; Krongtaew, C. Starch/Cellulose Biocomposites Prepared by High-Shear Homogenization/Compression Molding. J. Mater. Sci. Eng. 2012, 2, 213–222.
  • Zainuddin, S.Y.Z.; Ahmad, I.; Kargarzadeh, H.; Abdullah, I.; Dufresne, A. Potential of Using Multiscale Kenaf Fibers as Reinforcing Filler in Cassava Starch-Kenaf Biocomposites. Carbohydr. Polym. 2013, 92 (2), 2299–2305. DOI:10.1016/j.carbpol.2012.11.106.
  • Zaini, L.H.; Jonoobi, M.; Tahir, P.; Karimi, S. Isolation and Characterization of Cellulose Whiskers from Kenaf (Hibiscus Cannabinus L.) Bast Fibers - Bing, 2013; Scientific Research Publishing, 2013, 37–44.
  • Melikoğlu, A.Y.; Bilek, S.E.; Cesur, S. Optimum Alkaline Treatment Parameters for the Extraction of Cellulose and Production of Cellulose Nanocrystals from Apple Pomace. Carbohydr. Polym. 2019, 215, 330–337. DOI:10.1016/j.carbpol.2019.03.103.
  • Lu, S.; Ma, T.; Hu, X.; Zhao, J.; Liao, X.; Song, Y.; Hu, X. Facile Extraction and Characterization of Cellulose Nanocrystals from Agricultural Waste Sugarcane Straw. J. Sci. Food Agric. 2022, 102 (1), 312–321. DOI:10.1002/jsfa.11360.
  • Hemmati, F.; Jafari, S.M.; Taheri, R.A. Optimization of Homogenization-Sonication Technique for the Production of Cellulose Nanocrystals from Cotton Linter. Int. J. Biol. Macromol. 2019, 137, 374–381. DOI:10.1016/j.ijbiomac.2019.06.241.
  • Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. A Review of Nanocellulose as a New Material Towards Environmental Sustainability. Sci. Total Environ. 2021, 775, 145871. DOI:10.1016/j.scitotenv.2021.145871.
  • Meng, F.; Wang, G.; Du, X.; Wang, Z.; Xu, S.; Zhang, Y. Extraction and Characterization of Cellulose Nanofibers and Nanocrystals from Liquefied Banana Pseudo-Stem Residue. Compos. Part B: Eng. 2019, 160, 341–347. DOI:10.1016/j.compositesb.2018.08.048.
  • Du, C.; Li, H.; Li, B.; Liu, M.; Zhan, H. Characteristics and Properties of Cellulose Nanofibers Prepared by TEMPO Oxidation of Corn Husk. BioResources 2016, 11 (2), 5276–5284. DOI:10.15376/biores.11.2.5276-5284.
  • Pacheco, C.M.; Bustos A, C.; Reyes, G. Cellulose Nanocrystals from Blueberry Pruning Residues Isolated by Ionic Liquids and TEMPO-Oxidation Combined with Mechanical Disintegration. J. Dispersion Sci. Technol. 2020, 41 (11), 1731–1741. DOI:10.1080/01932691.2020.1775092.
  • Pulido-Barragán, E.U.; Morales-Cepeda, A.B.; Castro-Guerrero, C.F.; Koschella, A.; Heinze, T. Upgrading Euphorbia Antisyphilitica Fiber Compost: A Waste Material Turned into Nanocrystalline Cellulose. Ind. Crops Prod. 2021, 160, 113111. DOI:10.1016/j.indcrop.2020.113111.
  • Marwanto, M.; Maulana, M.I.; Febrianto, F.; Wistara, N.J.; Nikmatin, S.; Masruchin, N.; Zaini, L.H.; Lee, S.-H.; Kim, N.-H. Effect of Oxidation Time on the Properties of Cellulose Nanocrystals Prepared from Balsa and Kapok Fibers Using Ammonium Persulfate. Polymers. 2021, 13 (11), 1894. DOI:10.3390/polym13111894.
  • Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of Cellulose Nanofibrils: A Review of Recent Advances. Ind. Crops Prod. 2016, 93, 2–25. DOI:10.1016/j.indcrop.2016.02.016.
  • Daud, J.B.; Lee, K.-Y. Surface Modification of Nanocellulose. In Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. (Eds.), Handbook of Nanocellulose and Cellulose Nanocomposites, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2017; pp. 101–122. DOI:10.1002/9783527689972.ch3.
  • Nechita, P.; Panaitescu, D.M. Improving the Dispersibility of Cellulose Microfibrillated Structures in Polymer Matrix by Controlling Drying Conditions and Chemical Surface Modifications. Cellul. Chem. Technol. 2013, 47, 711–719.
  • Wu, L.; Xu, Z.; Gong, J.; Li, J.; Mo, J. Preparation, Characterization and Acetylation of Cellulose Nanocrystal Allomorphs. Cellulose 2018, 25 (9), 4905–4918. DOI:10.1007/s10570-018-1937-6.
  • Zhang, Z.; Sèbe, G.; Hou, Y.; Wang, J.; Huang, J.; Zhou, G. Grafting Polymers from Cellulose Nanocrystals via Surface-Initiated Atom Transfer Radical Polymerization. J. Appl. Polym. Sci. 2021, 138 (48), 51458.
  • S.C. Pech-Cohuo, G. Canche-Escamilla, A. Valadez-González, V.V.A. Fernández-Escamilla, J. Uribe-Calderon, Production and Modification of Cellulose Nanocrystals from Agave Tequilana Weber Waste and Its Effect on the Melt Rheology of PLA. Int. J. Polym. Sci. 2018, 3567901. DOI:10.1155/2018/3567901.
  • Agarwal, J.; Mohanty, S.; Nayak, S.K. Valorization of Pineapple Peel Waste and Sisal Fiber: Study of Cellulose Nanocrystals on Polypropylene Nanocomposites. J. Appl. Polym. Sci. 2020, 137 (42), 1–19. DOI:10.1002/app.49291.
  • Olad, A.; Doustdar, F.; Gharekhani, H. Fabrication and Characterization of a Starch-Based Superabsorbent Hydrogel Composite Reinforced with Cellulose Nanocrystals from Potato Peel Waste. Colloids Surf., A 2020, 601, 124962. DOI:10.1016/j.colsurfa.2020.124962.
  • Paul Guin, J.; Bhardwaj, Y.K.; Varshney, L. Radiation Grafting: A Voyage from bio-Waste Corn Husk to an Efficient Thermostable Adsorbent. Carbohydr. Polym. 2018, 183, 151–164. DOI:10.1016/j.carbpol.2017.11.101.
  • Yu, H.-Y.; Chen, R.; Chen, G.-Y.; Liu, L.; Yang, X.-G.; Yao, J.-M. Silylation of Cellulose Nanocrystals and Their Reinforcement of Commercial Silicone Rubber. J. Nanopart. Res. 2015, 17, 361. DOI:10.1007/s11051-015-3165-4.
  • Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Gindl-Altmutter, W.; Bacher, M.; Edler, M.; Griesser, T. Surface Chemical Functionalization of Cellulose Nanocrystals by 3-Aminopropyltriethoxysilane. Int. J. Biol. Macromol. 2018, 106, 1288–1296. DOI:10.1016/j.ijbiomac.2017.08.136.
  • Fortunati, E.; Luzi, F.; Puglia, D.; Petrucci, R.; Kenny, J.M.; Torre, L. Processing of PLA Nanocomposites with Cellulose Nanocrystals Extracted from Posidonia Oceanica Waste: Innovative Reuse of Coastal Plant. Ind. Crops Prod. 2015, 67, 439–447. DOI:10.1016/j.indcrop.2015.01.075.
  • Wijaya, C.J.; Saputra, S.N.; Soetaredjo, F.E.; Putro, J.N.; Lin, C.X.; Kurniawan, A.; Ju, Y.H.; Ismadji, S. Cellulose Nanocrystals from Passion Fruit Peels Waste as Antibiotic Drug Carrier. Carbohydr. Polym. 2017, 175, 370–376. DOI:10.1016/j.carbpol.2017.08.004.
  • Angkuratipakorn, T.; Sriprai, A.; Tantrawong, S.; Chaiyasit, W.; Singkhonrat, J. Fabrication and Characterization of Rice Bran oil-in-Water Pickering Emulsion Stabilized by Cellulose Nanocrystals. Colloids Surf. A 2017, 522, 310–319. DOI:10.1016/j.colsurfa.2017.03.014.
  • Risite, H.; Salim, M.H.; Oudinot, B.T.; houssaine Ablouh, E.; Joyeux, H.T.; Sehaqui, H.; Razafimahatratra, J.H.A.; Qaiss, A.E.K.; El Achaby, M.; Kassab, Z. Artemisia Annua Stems a New Sustainable Source for Cellulosic Materials: Production and Characterization of Cellulose Microfibers and Nanocrystals. Waste Biomass. Valor. 2022, 13 (4), 2411–2423. DOI:10.1007/s12649-021-01658-w.
  • de Souza, A.G.; Barbosa, R.F.S.; Rosa, D.S. Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites. J. Polym. Environ. 2020, 28 (7), 1851–1868. DOI:10.1007/s10924-020-01731-w.
  • Perumal, A.B.; Nambiar, R.B.; Sellamuthu, P.S.; Sadiku, E.R.; Li, X.; He, Y. Extraction of Cellulose Nanocrystals from Areca Waste and its Application in Eco-Friendly Biocomposite Film. Chemosphere 2022, 287, 132084. DOI:10.1016/j.chemosphere.2021.132084.
  • Kassab, Z.; Aziz, F.; Hannache, H.; Ben Youcef, H.; El Achaby, M. Improved Mechanical Properties of k-Carrageenan-Based Nanocomposite Films Reinforced with Cellulose Nanocrystals. Int. J. Biol. Macromol. 2019, 123, 1248–1256. DOI:10.1016/j.ijbiomac.2018.12.030.
  • Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt Boix, A. Isolation and Characterisation of Microcrystalline Cellulose and Cellulose Nanocrystals from Coffee Husk and Comparative Study with Rice Husk. Carbohydr. Polym. 2018, 191, 205–215. DOI:10.1016/j.carbpol.2018.03.022.
  • E.E. Elemike, A.C. Ekennia, D.C. Onwudiwe, R.O. Ezeani, Agro-Waste Materials: Sustainable Substrates in Nanotechnology, In Nanobiotechnology for Plant Protection; Abd-Elsalam, K.A., Periakaruppan, R., Eds.; Elsevier, 2022; pp. 187–214. DOI:10.1016/B978-0-12-823575-1.00022-6.
  • Rehsmy, R.; Madhavan, A.; Philip, E.; Paul, S.A.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Pandey, A. Sugarcane Bagasse Derived Nanocellulose Reinforced with Frankincense (Boswellia Serrata): Physicochemical Properties, Biodegradability and Antimicrobial Effect for Controlling Microbial Growth for Food Packaging Application. Environ. Technol. Innov. 2021, 21, 101335. DOI:10.1016/j.eti.2020.101335.
  • Srivastava, K.R.; Dixit, S.; Pal, D.; Mishra, P.; Srivastava, P.; Srivastava, N.; Hashem, A.; Alqarawi, A.; Abd Allah, E.F. Effect of Nanocellulose on Mechanical and Barrier Properties of PVA–Banana Pseudostem Fiber Composite Films. Environ. Technol. Innov. 2020, 21, 101312. DOI:10.1016/j.eti.2020.101312.
  • Lu, P.; Yang, Y.; Liu, R.; Liu, X.; Ma, J.; Wu, M.; Wang, S. Preparation of Sugarcane Bagasse Nanocellulose Hydrogel as a Colourimetric Freshness Indicator for Intelligent Food Packaging. Carbohydr. Polym. 2020, 249, 116831. DOI:10.1016/j.carbpol.2020.116831.
  • Yu-Ri, S.; Jin-Woo, K.; Seonwoo, H.; Jangho, K.; Hoon, C.J.; Ki-Taek, L. Cellulose-based Nanocrystals: Sources and Applications via Agricultural Byproducts. J. Biosyst. Eng. 2018, 43, 59–71. DOI:10.5307/JBE.2018.43.1.059.
  • Urbina, L.; Corcuera, MÁ; Gabilondo, N.; Eceiza, A.; Retegi, A. A Review of Bacterial Cellulose: Sustainable Production from Agricultural Waste and Applications in Various Fields. Cellulose 2021, 28, 8229–8253. DOI:10.1007/s10570-021-04020-4.
  • Alzate-Arbeláez, A.F.; Dorta, E.; López-Alarcón, C.; Cortés, F.B.; Rojano, B.A. Immobilization of Andean Berry (Vaccinium Meridionale) Polyphenols on Nanocellulose Isolated from Banana Residues: A Natural Food Additive with Antioxidant Properties. Food Chem. 2019, 294, 503–517. DOI:10.1016/j.foodchem.2019.05.085.
  • Xie, Y.; Niu, X.; Yang, J.; Fan, R.; Shi, J.; Ullah, N.; Feng, X.; Chen, L. Active Biodegradable Films Based on the Whole Potato Peel Incorporated with Bacterial Cellulose and Curcumin. Int. J. Biol. Macromol. 2020, 150, 480–491. DOI:10.1016/j.ijbiomac.2020.01.291.
  • Patel, D.K.; Dutta, S.D.; Lim, K.-T. Recent Progress in Cellulose-Based Smart Nanocrystals by Agricultural Resources. Multifunct. Hybrid Nanomater. Sustain. Agri-Food Ecosyst. 2020, 461–483. DOI:10.1016/b978-0-12-821354-4.00019-4.
  • Shrestha, P.; Sadiq, M.B.; Anal, A.K. Development of Antibacterial Biocomposites Reinforced with Cellulose Nanocrystals Derived from Banana Pseudostem. Carbohydrate Polymer Technol. Appl. 2021, 2, 100112. DOI:10.1016/j.carpta.2021.100112.
  • Jackson, J.K.; Letchford, K.; Wasserman, B.Z.; Ye, L.; Hamad, W.Y.; Burt, H.M. The use of Nanocrystalline Cellulose for the Binding and Controlled Release of Drugs. Int. J. Nanomed. 2011, 6, 321–330. DOI:10.2147/ijn.s16749.
  • Gao, Y.; Guo, X.; Liu, Y.; Fang, Z.; Zhang, M.; Zhang, R.; You, L.; Li, T.; Liu, R.H. A Full Utilization of Rice Husk to Evaluate Phytochemical Bioactivities and Prepare Cellulose Nanocrystals. Sci. Rep. 2018, 8, 1–8. DOI:10.1038/s41598-018-27635-3.
  • Lam, N.T.; Chollakup, R.; Smitthipong, W.; Nimchua, T.; Sukyai, P. Utilizing Cellulose from Sugarcane Bagasse Mixed with Poly(Vinyl Alcohol) for Tissue Engineering Scaffold Fabrication. Ind. Crops Prod. 2017, 100, 183–197. DOI:10.1016/j.indcrop.2017.02.031.
  • Lam, N.T.; Chollakup, R.; Smitthipong, W.; Nimchua, T.; Sukyai, P. Characterization of Cellulose Nanocrystals Extracted from Sugarcane Bagasse for Potential Biomedical Materials. Sugar Tech. 2017, 19, 539–552. DOI:10.1007/s12355-016-0507-1.
  • Taer, E.; Apriwandi, A.; Ningsih, Y.S.; Taslim, R.; Agustino, A. Preparation of Activated Carbon Electrode from Pineapple Crown Waste for Supercapacitor Application. Int. J. Electrochem. Sci. 2019, 14, 2462–2475. DOI:10.20964/2019.03.17.
  • Shahi, N.; Lee, E.; Min, B.; Kim, D.J. Rice Husk-Derived Cellulose Nanofibers: A Potential Sensor for Water-Soluble Gases. Sensors 2021, 21 (13), 4415. DOI:10.3390/s21134415.
  • Nang An, V.; Chi Nhan, H.T.; Tap, T.D.; Van, T.T.T.; Van Viet, P.; Van Hieu, L. Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes. J. Polym. Environ. 2020, 28 (5), 1465–1474. DOI:10.1007/s10924-020-01695-x.
  • Al Haj, Y.; Mousavihashemi, S.; Robertson, D.; Borghei, M.; Pääkkönen, T.; Rojas, O.J.; Kontturi, E.; Kallio, T.; Vapaavuori, J. Biowaste-derived Electrode and Electrolyte Materials for Flexible Supercapacitors. Chem. Eng. J. 2022, 435, 135058. DOI:10.1016/j.cej.2022.135058.
  • V.L. Albernaz, G.A. Joanitti, C.A.P. Lopes, L.P. Silva, Cellulose Nanocrystals Obtained from Rice By-Products and Their Binding Potential to Metallic Ions, J. Nanomater. 2015, 357384. DOI:10.1155/2015/357384.
  • Sadare, O.O.; Yoro, K.O.; Moothi, K.; Daramola, M.O. Lignocellulosic Biomass-Derived Nanocellulose Crystals as Fillers in Membranes for Water and Wastewater Treatment: A Review. Membranes. 2022, 12 (3), 320. DOI:10.3390/membranes12030320.
  • Singh, A.; Joshi, N.C. Synthesis of CNCs from Selected Tropical Fruit (Pine Apple & Pomegranate) Waste and Their Application. Inter. J. Pharm. Res. 2020, 11, 6–9.
  • H.T. Kara, S.T. Anshebo, F.K. Sabir, Adsorptive Removal of Cd(II) Ions from Wastewater Using Maleic Anhydride Nanocellulose, J. Nanotechnol. 2021, 9966811. DOI:10.1155/2021/9966811.
  • Rahman, M.; Maniruzzaman, M. Extraction of Nano-Cellulose from Banana Rachis (Agro-Waste) and Preparation of Nanocellulose-Clay Nanofilter for the Industrial Wastewater Purification. J. Bioremediat. Biodegrad. 2021, 12, 1–7.
  • Shahnaz, T.; Vishnu Priyan, V.; Pandian, S.; Narayanasamy, S. Use of Nanocellulose Extracted from Grass for Adsorption Abatement of Ciprofloxacin and Diclofenac Removal with Phyto, and Fish Toxicity Studies. Environ. Pollut. 2021, 268, 115494. DOI:10.1016/j.envpol.2020.115494.
  • Potenza, M.; Bergamonti, L.; Lottici, P.P.; Righi, L.; Lazzarini, L.; Graiff, C. Green Extraction of Cellulose Nanocrystals of Polymorph II from Cynara Scolymus L.: Challenge for a “Zero Waste” Economy. Crystals. 2022, 12 (5), 672. DOI:10.3390/cryst12050672.
  • Rashid, S.; Dutta, H. Characterization of Nanocellulose Extracted from Short, Medium and Long Grain Rice Husks. Ind. Crops Prod. 2020, 154, 112627. DOI:10.1016/j.indcrop.2020.112627.
  • Tang, J.; He, H.; Wan, R.; Yang, Q.; Luo, H.; Li, L.; Xiong, L. Cellulose Nanocrystals for Skin Barrier Protection by Preparing a Versatile Foundation Liquid. ACS Omega 2021, 6 (4), 2906–2915. DOI:10.1021/acsomega.0c05257.
  • Rajinipriya, M.; Nagalakshmaiah, M.; Robert, M.; Elkoun, S. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustain. Chem. Eng. 2018, 6 (3), 2807–2828. DOI:10.1021/acssuschemeng.7b03437.
  • Pirozzi, A.; Ferrari, G.; Donsì, F. The Use of Nanocellulose in Edible Coatings for the Preservation of Perishable Fruits and Vegetables. Coatings 2021, 11 (8), 990. DOI:10.3390/coatings11080990.
  • Abdullah, N.A.; Rani, M.S.A.; Mohammad, M.; Sainorudin, M.H.; Asim, N.; Yaakob, Z.; Razali, H.; Emdadi, Z. Nanocellulose from Agricultural Waste as an Emerging Nanotechnology Material for Nanotechnology Applications - An Overview. Polimery/Polymers 2021, 66 (3), 157–168. DOI:10.14314/POLIMERY.2021.3.1.
  • Hemmati, F.; Jafari, S.M.; Kashaninejad, M.; Barani Motlagh, M. Synthesis and Characterization of Cellulose Nanocrystals Derived from Walnut Shell Agricultural Residues. Int. J. Biol. Macromol. 2018, 120, 1216–1224. DOI:10.1016/j.ijbiomac.2018.09.012.
  • Zaman, I.; Manshoor, B.; Khalid, A.; Araby, S. From Clay to Graphene for Polymer Nanocomposites–A Survey. J. Polym. Res. 2014, 21, 1–11. DOI:10.1007/s10965-014-0429-0.
  • Zhang, Y.; Haque, A.N.M.A.; Naebe, M. Comparative Preparation Method and Associated Cost of Lignin–Cellulose Nanocrystals. Nanomaterials 2022, 12 (8), 1320. DOI:10.3390/nano12081320.
  • Balea, A.; Blanco, A.; Delgado-Aguilar, M.; Monte, M.C.; Tarrés, Q.; Fuente, E.; Mutjé, P.; Negro, C. Nanocellulose Characterization Challenges. BioResources 2021, 16 (2), 4382–4410.
  • Zuliat, F.A.; Suardi, M.; Djamaan, A. CNC (Cellulose Nanocrystals) Isolation from Various Agriculture and Industrial Waste Using Acid Hydrolysis Methods. IOSR J. Pharm. Biol. Sci. 2020, 15, 42–58. DOI:10.9790/3008-1506034258.