950
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of carrierized cellulase Cellulase@MIL-88B(Fe) and its enzymatic properties

, , , &
Pages 627-637 | Received 29 Jul 2022, Accepted 09 Sep 2022, Published online: 23 Sep 2022

References

  • Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444.
  • Zhang, Y.; Hua, P.; Muhammad, Y.; Tang, Y.; Shao, S.; Gao, Z.; Wang, J.; Wang, R.; Hu, Y.; Kuang, L.; Zhao, Z.; Zhao, Z. High-Density Immobilization of Laccase on Hollow Nano-Sphere NH2-MIL-88(Fe) Host with Interfacial Defects to Improve Enzyme Activity and Stability for Remazol Brilliant Blue R Decolorization. Chem. Eng. J. 2021, 405, 127003.
  • Cai, W.T.; Xu, J.X.; Du, K.; Cheng, J. Degradation of Bisphenol A Using Horseradish Peroxidase Immobilized on MIL-88B(Fe). Chinese J. Environ. Eng. 2021, 15, 10.
  • Amari, A.; Alzahrani, F.M.; Alsaiari, N.S.; Katubi, K.M.; Rebah, F.B.; Tahoon, M.A. Magnetic Metal Organic Framework Immobilized Laccase for Wastewater Decolorization. Processes 2021, 9, 774.
  • Wang, D.; Zheng, P.; Chen, P.; Wu, D. Immobilization of Alpha-L-rhamnosidase on a Magnetic Metal-Organic Framework to Effectively Improve Its Reusability in the Hydrolysis of Rutin. Bioresour. Technol. 2021, 323, 124611.
  • Lin, Y.; Liu, X.; Xing, Z. Preparation and Characterization of Magnetic Fe3O4-Chitosan Nanoparticles for Cellulase Immobilization. Cellulose 2017, 24, 5541–5550.
  • Poorakbar, E.; Shafiee, A.; Saboury, A.A. Synthesis of Magnetic Gold Mesoporous Silica Nanoparticles Core Shell for Cellulase Enzyme Immobilization: Improvement of Enzymatic Activity and Thermal Stability. Process Biochem. 2018, 71, 92–100.
  • Zhang, X.; Zheng, S.; Tao, J. In Situ Encapsulation of Cellulase in a Novel Mesoporous Metal-Organic Framework. Catal. Lett. 2022, 152, 699–706.
  • Qi, B.; Luo, J.; Wan, Y. Immobilization of Cellulase on a Core-Shell Structured Metal-Organic Framework Composites: Better Inhibitors Tolerance and Easier Recycling. Bioresour. Technol. 2018, 268, 577–582.
  • Wang, Y.; Feng, C.; Guo, R. Cellulase Immobilized by Sodium Alginate-Polyethylene Glycol-Chitosan for Hydrolysis Enhancement of Microcrystalline Cellulose. Process Biochem. 2021, 107, 38–47.
  • Wang, Z.; Liu, Y.; Li, J. Efficient Immobilization of Enzymes on Amino Functionalized MIL-125-NH2 Metal Organic Framework. Biotechnol. Bioprocess Eng. 2022, 27, 135–144.
  • Huang, W.; Pan, S.; Li, Y.; Yu, L.; Liu, R. Immobilization and Characterization of Cellulase on Hydroxy and Aldehyde Functionalized Magnetic Fe2O3@Fe3O4 Nanocomposites Prepared via a Novel Rapid Combustion Process. Int. J. Biol. Macromol. 2020, 162, 845–852.
  • Miao, X.; Pi, L.; Fang, L.; Wu, R.; Xiong, C. Application and Characterization of Magnetic Chitosan Microspheres for Enhanced Immobilization of Cellulase. Biocatal. Biotransform. 2016, 34, 272–282.
  • Mo, H.; Qiu, J. Preparation of Chitosan@magnetic Porous Biochar as Support for Cellulase Immobilization by Using Glutaraldehyde. Polymers. (Basel) 2020, 12, 2672.
  • Lee, D.G.; Ponvel, K.M.; Kim, M.; Hwang, S.; Ahn, I.; Lee, C. Immobilization of Lipase on Hydrophobic Nano-Sized Magnetite Particles. J. Mol. Catal. B: Enzym. 2009, 57, 62–66.
  • Raza, S.; Yong, X.; Deng, J. Immobilizing Cellulase on Multi-Layered Magnetic Hollow Particles: Preparation, Bio-Catalysis and Adsorption Performances. Microporous Mesoporous Mater. 2019, 285, 112–119.
  • Li, L.; Xia, W.; Ma, G.; Chen, Y.; Ma, Y. A Study on the Enzymatic Properties and Reuse of Cellulase Immobilized With Carbon Nanotubes and Sodium Alginate. AMB. Express. 2019, 9, 112.
  • Wang, Y.; Chen, D.; Wang, G.; Zhao, C.; Ma, Y.; Yang, W. Immobilization of Cellulase on Styrene@maleic Anhydride Copolymer Nanoparticles With Improved Stability Against pH Changes. Chem. Eng. J. 2018, 336, 152–159.
  • Wu, L.; Zeng, Q.; Ding, R.; Tu, P.; Xia, M. Fe3O4@Acid Activated Montmorillonite@cellulase Composites: Preparation, Structure, and Enzyme Activity. Appl. Clay Sci. 2019, 179, 105129.
  • Imran, M.; Hussain, A.; Anwar, Z.; Zeeshan, N.; Yaseen, A.; Akmal, M.; Idris, M. Immobilization of Fungal Cellulase on Calcium Alginate and Xerogel Matrix. Waste. Biomass. Valorization. 2020, 11, 1229–1237.
  • Yassin, M.A.; Gad, A.A.M.; Ghanem, A.M.; Rehim, M.H.A. Green Synthesis of Cellulose Nanofibers Using Immobilized Cellulase. Carbohydr. Polym. 2019, 205, 255–260.
  • Sillu, D.; Agnihotri, S. Cellulase Immobilization Onto Magnetic Halloysite Nanotubes: Enhanced Enzyme Activity and Stability With High Cellulose Saccharification. ACS. Sustain. Chem. Eng. 2020, 8, 900–913.
  • Ahmeda, I.N.; Yang, X.; Dubale, A.A.; Li, R.; Ma, Y.; Wang, L.; Hou, G.; Guan, R.; Xie, M. Hydrolysis of Cellulose Using Cellulase Physically Immobilized on Highly Stable Zirconium Based Metal-Organic Frameworks. Bioresour. Technol. 2018, 270, 377–382.
  • Han, J.; Rong, J.; Wang, Y.; Liu, Q.; Tang, X.; Li, C.; Ni, L. Immobilization of Cellulase on Thermo-Sensitive Magnetic Microspheres: Improved Stability and Reproducibility. Bioprocess Biosyst. Eng. 2018, 41, 1051–1060.
  • Taheri, K.A.; Kharazmi, S.; Nasrollahzadeh, M. Recent Developments in Enzyme Immobilization Technology for High-Throughput Processing in Food Industries. Crit. Rev. Food Sci. Nutr. 2020, 3, 1–37.
  • Nezhad, M.K.; Aghaei, H. Tosylated Cloisite as a New Heterofunctional Carrier for Covalent Immobilization of Lipase and Its Utilization for Production of Biodiesel from Waste Frying Oil. Renewable Energy 2021, 164, 876–888.