891
Views
1
CrossRef citations to date
0
Altmetric
Letter

Efficient synthesis of 3-hydroxy chromones via oxidative cyclization mediated by lipase

, , , , , , , & ORCID Icon show all
Pages 689-694 | Received 25 May 2022, Accepted 15 Sep 2022, Published online: 27 Sep 2022

References

  • Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chem. Rev. 2014, 114 (9), 4960–4992.
  • Dziuba, D.; Karpenko, I.A.; Barthes, N.P.F.; Michel, B.Y.; Klymchenko, A.S.; Benhida, R.; Demchenko, A.P.; Mely, Y.; Burger, A. Rational Design of a Solvatochromic Fluorescent Uracil Analogue with a Dual-band Ratiometric Response Based on 3-Hydroxy Chromone. Chem.-Eur. J. 2014, 20 (7), 1998–2009.
  • Perveaux, A.; Lorphelin, M.; Lasorne, B.; Lauvergnat, D. Fast and Slow Excited-State Intramolecular Proton Transfer in 3-Hydroxychromone: A Two-State Story? Phys. Chem. Chem. Phys. 2017, 19 (9), 6579–6593.
  • Li, X.; Li, J.; Dong, X.W.; Gao, X.; Zhang, D.; Liu, C.L. A Novel 3-Hydroxychromone Fluorescence Sensor for Intracellular Zn2+ and its Application in the Recognition of Prostate Cancer Cells. Sens. Actuators B Chem. 2017, 245, 129–136.
  • Klymchenko, A.S.; Ozturk, T.; Pivovarenko, V.G.; Demchenko, A.P. A 3-Hydroxychromone with Dramatically Improved Fluorescence Properties. Tetrahedron Lett. 2001, 42 (45), 7967–7970.
  • Liu, J.J.; Chen, X.Z.; Zhang, Y.Y.; Gao, G.; Zhang, X.Y.; Hou, S.C.; Hou, Y.X. A Novel 3-Hydroxychromone Fluorescent Probe for Hydrogen Sulfide Based on an Excited-State Intramolecular Proton Transfer Mechanism. New J. Chem. 2018, 42 (15), 12918–12923.
  • Murata, A.; Ito, T.; Fujiyasu, K.; Suzuki, T. Reaction of 3-Hydroxychromone with Metallic Ions. Bunseki Kagaku 1966, 15, 143–149.
  • Reddy, K.C.; Mallaiah, B.V.; Srimannarayana, G. Bayer-Villiger Oxidation of Chromone 3-Carboxaldehyes—a Facile Method for the Synthesis of 3-Hydroxychromones. Curr. Sci. 1980, 49 (1), 18–19.
  • Constantino, M.G.; Lacerda, V.J.; Da Silva, G.V.J. An Efficient Synthesis of 3-Hydroxychromone Using Niobium Pentachloride. J. Heterocycl. Chem. 2003, 34 (34), 369–371.
  • Gudipati, R.; Kandula, V.; Raghavulu, K.; Basavaiah, K.; Yennam, S.; Behera, M. Peroxy-benzoic Acid Mediated Domino C[sp2] Hydroxylation /Annulation of Enaminones for the Synthesis of 3-Hydroxy Chromones. Chemistry Select 2020, 5 (23), 7093–7097.
  • Hult, K.; Berglund, P. Enzyme Promiscuity: Mechanism and Applications. Trends Biotechnol. 2007, 25 (5), 231–238.
  • Leveson-Gower, R.B.; Mayer, C.; Roelfes, G. The Importance of Catalytic Promiscuity for Enzyme Design and Evolution. Nat. Rev. Chem. 2019, 3 (12), 687–705.
  • Singla, P.; Bhardwaj, R.D. Enzyme Promiscuity – A Light on the “Darker” Side of Enzyme Specificity. Biocatal. Biotransform. 2020, 38 (2), 81–92.
  • Li, F.; Tang, X.Y.; Xu, Y.N.; Wang, C.; Wang, Z.J.; Li, Z.Q.; Wang, L. A Dual-Protein Cascade Reaction for the Regioselective Synthesis of Quinoxalines. Org. Lett. 2020, 22 (10), 3900–3904.
  • Xu, Y.N.; Li, F.X.; Zhao, N.; Su, J.L.; Wang, C.Y.; Wang, C.D.; Li, Z.Q.; Wang, L. Environment-friendly and Efficient Synthesis of 2-Aminobenzo-Xazoles and 2-Aminobenzothiazoles Catalyzed by Vitreoscilla Hemoglobin Incorporating a Cobalt Porphyrin Cofactor. Green Chem. 2021, 23 (20), 8047–8052.
  • Zhang, J.X.; Qian, W.W.; Wang, C.Y.; Cao, Z.Y.; Chen, S.S.; Zhang, L.; Zhang, Y.; Wang, L. Lipase-mediated Epoxidation of Alkenes in Supercritical Carbon Dioxide. Green Chem. Lett. Rev. 2018, 11 (4), 508–512.
  • Wang, Z.; Chen, X.; Wang, C.Y.; Zhang, L.; Li, F.X.; Zhang, W.A.; Chen, P.; Wang, L. A Mild and Efficient Dakin Reaction Mediated by Lipase. Green Chem. Lett. Rev. 2017, 10 (4), 269–273.
  • Yang, F.J.; Zhang, X.W.; Li, F.X.; Wang, Z.; Wang, L. A Lipase-Glucose Oxidase System for the Efficient Oxidation of N-Heteroaromatic Compounds and Tertiary Amines. Green Chem. 2016, 18 (12), 3518–3521.
  • Silva, W.S.D.; Lapis, A.A.M.; Suarez, P.A.Z.; Neto, B.A.D. Enzyme-mediated Epoxidation of Methyl Oleate Supported by Imidazolium-Based Ionic Liquids. J. Mol. Catal. B: Enzym. 2011, 68 (1), 98–103.
  • Mendez-Sanchez, D.; Rios-Lombardia, N.; Gotor, V.; Gotor-Fernandez, V. Chemoenzymatic Epoxidation of Alkenes Based on Peracid Formation by a Rhizomucor Miehei Lipase-Catalyzed Perhydrolysis Reaction. Tetrahedron 2014, 70 (6), 1144–1148.
  • Kotlewska, A.J.; van Rantwijk, F.; Sheldon, R.A.; Arends, I. Epoxidation and Baeyer-Villiger Oxidation Using Hydrogen Peroxide and a Lipase Dissolved in Ionic Liquids. Green Chem. 2011, 13 (8), 2154–2160.
  • Zhao, Z.Y.; Zhang, L.; Li, F.X.; Tang, X.Y.; Ma, Y.W.; Wang, C.Y.; Wang, Z.; Zhao, R.; Wang, L. A Novel Oxidation of Salicyl Alcohols Catalyzed by Lipase. Catalysts 2017, 7 (12), 354.
  • Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters Necessary to Define an Immobilized Enzyme Preparation. Process Biochem. 2020, 90, 66–80.
  • Arana-Pena, S.; Carballares, D.; Morellon-Sterlling, R.; Berenguer-Murcia, A.; Alcantara, A.R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Enzyme Co-immobilization: Always the Biocatalyst Designers’ Choice … or Not? Biotechnol. Adv. 2021, 51, 107584.
  • Rodrigues, R.C.; Virgen-Ortiz, J.J.; dos Santo, J.C.S.; Berenguer-Murcia, A.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions. Biotechnol. Adv. 2019, 37 (5), 746–770.
  • Hussain, H.; Al-Harrasi, A.; Green, I.R.; Ahmed, I.; Abbas, G.; Rehman, N.U. meta-Chloroperbenzoic Acid (mCPBA): A Versatile Reagent in Organic Synthesis. RSC Adv. 2014, 4 (25), 12882–12917.
  • Guo, Y.H.; Xiang, Y.F.; Wei, L.; Wan, J.P. Thermoinduced Free-Radical C-H Acyloxylation of Tertiary Enaminones: Catalyst-Free Synthesis of Acyloxyl Chromones and Enaminones. Org. Lett. 2018, 20 (13), 3971–3974.
  • Ma, J.S.; Zhang, Z.M.; Wang, B.J.; Kong, X.J.; Wang, Y.G.; Cao, S.G.; Feng, Y. Overexpression and Characterization of a Lipase from Bacillus subtilis. Protein Expression Purif. 2006, 45 (1), 22–29.