2,568
Views
1
CrossRef citations to date
0
Altmetric
Review

Graphene-based composites for biomedical applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 724-748 | Received 13 Jul 2022, Accepted 21 Sep 2022, Published online: 07 Nov 2022

References

  • Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130 (18), 5856–5857.
  • Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of Graphene and its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35 (1), 52–71.
  • Young, R.J.; Kinloch, I.A.; Gong, L.; Novoselov, K.S. The Mechanics of Graphene Nanocomposites: A Review. Compos. Sci. Technol. 2012, 72 (12), 1459–1476.
  • Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43 (16), 6515–6530.
  • Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666–669.
  • Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based Ultracapacitors. Nano Lett. 2008, 8 (10), 3498–3502.
  • Geim, A. Graphene Prehistory. Phys. Scr. 2012, T146, 014003.
  • Zhang, L.; Xia, J.; Zhao, Q.; Liu, L. Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small 2010, 6 (4), 537–544.
  • Kim, H.; Macosko, C.W. Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites. Macromolecules. 2008, 41 (9), 3317–3327.
  • Kelly, B.T., Physics of Graphite, Applied Science: United Kingdom, 1981.
  • Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, Structure and Applications of Graphene-Based 2D Heterostructures. Chem. Soc. Rev. 2017, 46 (15), 4572–4613.
  • Shi, G.; Araby, S.; Gibson, C.T.; Meng, Q.; Zhu, S.; Ma, J. Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Adv. Funct. Mater. 2018, 28 (19), 1706705.
  • Qian, W.; Chen, Z.; Cottingham, S.; Merrill, W.A.; Swartz, N.A.; Goforth, A.M.; Clare, T.L.; Jiao, J. Surfactant-free Hybridization of Transition Metal Oxidenanoparticles with Conductive Graphene for High-Performance Supercapacitor. Green Chem. 2012, 14 (2), 371–377.
  • Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490 (7419), 192–200.
  • Qian. W.; Greaney, P.A.; Fowler, S.; Chiu, S.K.; Goforth, A.M.; Jiao, J. Low-Temperature Nitrogen Doping in Ammonia Solution for Production of N-doped TiO2-Hybridized Graphene as a Highly Efficient Photocatalyst for Water Treatment. ACS Sustain. Chem. Eng. 2014, 2 (7), 1802–1810.
  • Mousavi, S.M.; Low, F.W.; Hashemi, S.A.; Lai, C.W.; Ghasemi, Y.; Soroshnia, S.; Savardashtaki, A.; Babapoor, A.; Pynadathu Rumjit, N.; Goh, S.M.; Amin, N.; Tiong, S.K. Development of Graphene Based Nanocomposites Towards Medical and Biological Applications. Artif. Cells. Nanomed. Biotechnol. 2020, 48 (1), 1189–1205.
  • Xu, H.; Wu, X.; Li, X.; Luo, C.; Liang, F.; Orignac, E.; Zhang, J.; Chu, J. Properties of Graphene-Metal Contacts Probed by Raman Spectroscopy. Carbon. N. Y. 2018, 127, 491–497.
  • Hicks, J.; Shepperd, K.; Wang, F.; Conrad, E.H. The Structure of Graphene Grown on the SiC Surface. J. Phys. D: Appl. Phys. 2012, 45 (15), 154002.
  • Imanzadeh, H.; Bakirhan, N.K.; Kuralay, F.; Amiri, M.; Ozkan, S.A. Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions. Crit. Rev. Anal. Chem. 2021, 41 (9), 1–22.
  • Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A.C. Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15 (12), 564–589.
  • Huang, X.; Guan, J.; Lin, Z.; Liu, B.; Xing, S.; Wang, W.; Guo, J. Epitaxial Growth and Band Structure of Te Film on Graphene. Nano Lett. 2017, 17 (8), 4619–4623.
  • Chen, Y.; Li, M.-C.; Wang, Q.-M.; Wang, G.-S.; Wei, X.; Song, G.-F.; Kong, X.-M.; Xu, Y.; Liu, Y. Structure and Electronic Properties of Closed-Ring Defects in Epitaxial Graphene. Mater. Res. Express 2020, 7 (5), 055602.
  • Tan, H.; Wang, D.; Guo, Y. Thermal Growth of Graphene: A Review. Coat. 2018, 8 (1), 40.
  • Piñas, J.A.; Andrade, T.S.; Oliveira, A.T.; Salomão, P.E.A.; Rodriguez, M.; Silva, A.C.; Oliveira, H.S.; Monteiro, D.S.; Pereira, M.C. Production of Reduced Graphene Oxide Platelets from Graphite Flakes Using the Fenton Reaction as an Alternative to Harmful Oxidizing Agents. J. Nanomater. 2019, 2019, 5736563.
  • Ton, N.N.T.; Dao, A.T.N.; Kato, K.; Ikenaga, T.; Trinh, D.X.; Taniike, T. One-pot Synthesis of TiO2/Graphene Nanocomposites for Excellent Visible Light Photocatalysis Based on Chemical Exfoliation Method. Carbon. N. Y. 2018, 133, 109–117.
  • Wang, C.; Vinodgopal, K.; Dai, G.-P. Large-area Synthesis and Growth Mechanism of Graphene by Chemical Vapor Deposition. Chem. Vap. Depos. Nanotechnol. 2018, 5, 97–113.
  • Pirzado, A.A.; Le Normand, F.; Romero, T.; Paszkiewicz, S.; Papaefthimiou, V.; Ihiawakrim, D.; Janowska, I. Few-layer Graphene from Mechanical Exfoliation of Graphite-Based Materials: Structure-Dependent Characteristics. Chem. Eng. 2019, 3 (2), 37.
  • Ghasemi, F.; Razi, S.; Madanipour, K. Single-Step Laser-Assisted Graphene Oxide Reduction and Nonlinear Optical Properties Exploration via CW Laser Excitation. J. Electron. Mater. 2018, 47 (5), 2871–2879.
  • Kymakis, E.; Petridis, C.; Anthopoulos, T.D.; Stratakis, E. Laser-assisted Reduction of Graphene Oxide for Flexible, Large-Area Optoelectronics. IEEE J. Sel. Top. Quantum Electron. 2013, 20 (1), 106–115.
  • Criado, A.; Melchionna, M.; Marchesan, S.; Prato, M. The Covalent Functionalization of Graphene on Substrates. Angew. Chem. Int. Ed. 2015, 54 (37), 10734–10750.
  • Sturala, J.; Luxa, J.; Pumera, M.; Sofer, Z. Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chem. Eur. J. 2018, 24 (23), 5992–6006.
  • Hossain, M.Z.; Razak, M.B.A.; Yoshimoto, S.; Mukai, K.; Koitaya, T.; Yoshinobu, J.; Sone, H.; Hosaka, S.; Hersam, M.C. Aqueous-phase Oxidation of Epitaxial Graphene on the Silicon Face of SiC (0001). J. Phys. Chem. C 2014, 118 (2), 1014–1020.
  • Hossain, M.Z.; Johns, J.E.; Bevan, K.H.; Karmel, H.J.; Liang, Y.T.; Yoshimoto, S.; Mukai, K.; Koitaya, T.; Yoshinobu, J.; Kawai, M.; Lear, A.M.; Kesmodel, L.L.; Tait, S.L.; Hersam, M.C. Chemically Homogeneous and Thermally Reversible Oxidation of Epitaxial Graphene. Nat. Chem. 2012, 4 (4), 305–309.
  • Yuan, L.; Zhang, C.; Zhang, X.; Lou, M.; Ye, F.; Jacobson, C.R.; Dong, L.; Zhou, L.; Lou, M.; Cheng, Z.; Ajayan, P.M.; Nordlander, P.; Halas, N.J. Photocatalytic Hydrogenation of Graphene Using Pd Nanocones. Nano Lett. 2019, 19 (7), 4413–4419.
  • Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; Novoselov, K.S. Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Sci. 2009, 323 (5914), 610–613.
  • Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G.I.N.; Huang, Y.; Zheng, L.; Zhang, T. Pd Single-Atom Catalysts on Nitrogen-Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Adv. Mater. 2019, 31 (18), 1900509.
  • Bullock, C.J.; Bussy, C. Biocompatibility Considerations in the Design of Graphene Biomedical Materials. Adv. Mater. Interfaces. 2019, 6 (11), 1900229.
  • Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, Facts and Challenges for Graphene in Biomedical Applications. Chem. Soc. Rev. 2017, 46 (15), 4400–4416.
  • Adhikari, M.; Orasugh, J.T.; Chattopadhyay, D. Biomedical Application of Polymer-Graphene Composites, in Polymer Nanocomposites Containing Graphene; Elsevier, Woodhead Publishing Limited: Cambridge, 2022; pp 507–535.
  • Marsden, A.J.; Papageorgiou, D.G.; Vallés, C.; Liscio, A.; Palermo, V.; Bissett, M.A.; Young, R.J.; Kinloch, I.A. Electrical Percolation in Graphene–Polymer Composites. 2D Mater. 2018, 5 (3), 032003.
  • Du, J.; Cheng, H.M. The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromol. Chem. Phys. 2012, 213 (10–11), 1060–1077.
  • Silva, M.; Leow, C.; Kreider, P.B.; Notthoff, C.; Kluth, P.; Tricoli, A.; Compston, P. 3D Printing of Graphene-Based Polymeric Nanocomposites for Biomedical Applications. Funct Compos. Mater. 2021, 2 (1), 1–21.
  • Liu, T.; Zhu, C.; Wu, W.; Liao, K.-N.; Gong, X.; Sun, Q.; Li, R.K.Y. Facilely Prepared Layer-by-Layer Graphene Membrane-Based Pressure Sensor with High Sensitivity and Stability for Smart Wearable Devices. J. Mater. Sci. Technol. 2020, 45, 241–247.
  • Lee, T.; Yun, T.; Park, B.; Sharma, B.; Song, H.-K.; Kim, B.-S. Hybrid Multilayer Thin Film Supercapacitor of Graphene Nanosheets with Polyaniline: Importance of Establishing Intimate Electronic Contact Through Nanoscale Blending. J. Mater. Chem. 2012, 22 (39), 21092–21099.
  • Park, J.S.; Cho, S.M.; Kim, W.-J.; Yoo, P.J. Fabrication of Graphene Thin Films Based on Layer-by-Layer Self-Assembly of Functionalized Graphene Nanosheets. ACS Appl. Mater. Interfaces 2011, 3 (2), 360–368.
  • Lee, T.; Min, S.H.; Gu, M.; Jung, Y.K.; Seong, D.G.; Kim, B.-S. Layer-by-layer Assembly for Graphene-Based Multilayer Nanocomposites: Synthesis and Applications. Chem. Mater. 2015, 27 (11), 3785–3796.
  • Dubey, N.; Bentini, R.; Islam, I.; Cao, T.; Castro Neto, A.H.; Rosa, V. Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Stem. Cells. Int. 2015, 2015, 1–12.
  • Vlassiouk, I.; Polizos, G.; Cooper, R.; Ivanov, I.; Keum, J.K.; Paulauskas, F.; Datskos, P.; Smirnov, S. Strong and Electrically Conductive Graphene-Based Composite Fibers and Laminates. ACS Appl. Mater. Interfaces 2015, 7 (20), 10702–10709.
  • Ferrari, A.C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N. Science and Technology Roadmap for Graphene, Related two-Dimensional Crystals, and Hybrid Systems. Nanoscale. 2015, 7 (11), 4598–4810.
  • Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321 (5887), 385–388.
  • Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.B.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and Characterization of Graphene Oxide Paper. Nature 2007, 448 (7152), 457–460.
  • Bai, J.; Allaoui, A. Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation. Compos. Part A Appl. Sci. Manuf. 2003, 34 (8), 689–694.
  • Bao, C.; Guo, Y.; Song, L.; Hu, Y. Poly (Vinyl Alcohol) Nanocomposites Based on Graphene and Graphite Oxide: A Comparative Investigation of Property and Mechanism. J. Mater. Chem. 2011, 21 (36), 13942–13950.
  • Wang, J.; Hu, H.; Xu, C.; Zhang, M.; Shang, X. Preparation and Mechanical and Electrical Properties of Graphene Nanosheets–Poly (Methyl Methacrylate) Nanocomposites via in Situ Suspension Polymerization. J. Appl. Polym. Sci. 2011, 122 (3), 1866–1871.
  • Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; Nguyen, S.T.; Aksay, I.A.; Prud'Homme, R.K.; Brinson, L.C. Functionalized Graphene Sheets for Polymer Nanocomposites. Nat. Nanotechnol. 2008, 3 (6), 327–331.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22 (35), 3906–3924.
  • Phiri, J.; Johansson, L.-S.; Gane, P.; Maloney, T. A Comparative Study of Mechanical, Thermal and Electrical Properties of Graphene-, Graphene Oxide-and Reduced Graphene Oxide-Doped Microfibrillated Cellulose Nanocomposites. Compos. Part B: Eng. 2018, 147, 104–113.
  • Yu, A.; Ramesh, P.; Itkis, M.E.; Bekyarova, E.; Haddon, R.C. Graphite Nanoplatelet− Epoxy Composite Thermal Interface Materials. J. Phys. Chem. C 2007, 111 (21), 7565–7569.
  • Guo, Y.; Bao, C.; Song, L.; Yuan, B.; Hu, Y. In Situ Polymerization of Graphene, Graphite Oxide, and Functionalized Graphite Oxide Into Epoxy Resin and Comparison Study of on-the-Flame Behavior. Ind. Eng. Chem. Res. 2011, 50 (13), 7772–7783.
  • Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Single-layer Graphene Nanosheets with Controlled Grafting of Polymer Chains. J. Mater. Chem. 2010, 20 (10), 1982–1992.
  • Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-Level Dispersion of Graphene Into Poly (Vinyl Alcohol) and Effective Reinforcement of Their Nanocomposites. Adv. Funct. Mater. 2009, 19 (14), 2297–2302.
  • Kim, I.H.; Jeong, Y.G. Polylactide/Exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modulus, and Electrical Conductivity. J. Polym. Sci., Part B: Polym. Phys. 2010, 48 (8), 850–858.
  • Hu, Y.; Shen, J.; Li, N.; Ma, H.; Shi, M.; Yan, B.; Huang, W.; Wang, W.; Ye, M. Comparison of the Thermal Properties Between Composites Reinforced by Raw and Amino-Functionalized Carbon Materials. Compos. Sci. Technol. 2010, 70 (15), 2176–2182.
  • Bui, K.; Duong, H.M.; Striolo, A.; Papavassiliou, D.V. Effective Heat Transfer Properties of Graphene Sheet Nanocomposites and Comparison to Carbon Nanotube Nanocomposites. J. Phys. Chem. C 2011, 115 (10), 3872–3880.
  • Bai, S.; Jiang, L.; Xu, N.; Jin, M.; Jiang, S. Enhancement of Mechanical and Electrical Properties of Graphene/Cement Composite due to Improved Dispersion of Graphene by Addition of Silica Fume. Constr. Build. Mater. 2018, 164, 433–441.
  • Cusati, T.; Fiori, G.; Gahoi, A.; Passi, V.; Lemme, M.C.; Fortunelli, A.; Iannaccone, G. Electrical Properties of Graphene-Metal Contacts. Sci. Rep. 2017, 7 (1), 1–11.
  • Nimbalkar, A.; Kim, H. Opportunities and Challenges in Twisted Bilayer Graphene: A Review. Nano-Micro Lett. 2020, 12 (1), 1–20.
  • Pham, V.H.; Cuong, T.V.; Dang, T.T.; Hur, S.H.; Kong, B.-S.; Kim, E.J.; Shin, E.W.; Chung, J.S. Superior Conductive Polystyrene–Chemically Converted Graphene Nanocomposite. J. Mater. Chem. 2011, 21 (30), 11312–11316.
  • Raghu, A.V.; Lee, Y.R.; Jeong, H.M.; Shin, C.M. Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. Macromol. Chem. Phys. 2008, 209 (24), 2487–2493.
  • Du, J.; Zhao, L.; Zeng, Y.; Zhang, L.; Li, F.; Liu, P.; Liu, C. Comparison of Electrical Properties Between Multi-Walled Carbon Nanotube and Graphene Nanosheet/High Density Polyethylene Composites with a Segregated Network Structure. Carbon. N. Y. 2011, 49 (4), 1094–1100.
  • Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-Based Composite Materials. Nature 2006, 442 (7100), 282–286.
  • Hyo Won, K.; Kim, H.W.; Yoon, H.W.; Yoon, S.-M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; Choi, J.-Y.; Park, H.B. Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes. Science 2013, 342 (6154), 91–95.
  • Wang, J.; Xu, C.; Zhang, M.; Shang, X. Preparation of Graphene/Poly (Vinyl Alcohol) Nanocomposites with Enhanced Mechanical Properties and Water Resistance. Polym. Int. 2011, 60 (5), 816–822.
  • Kim, H.M.; Lee, J.K.; Lee, H.S. Transparent and High gas Barrier Films Based on Poly (Vinyl Alcohol)/Graphene Oxide Composites. Thin Solid Films 2011, 519 (22), 7766–7771.
  • Kim, H.; Miura, Y.; Macosko, C.W. Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem. Mater. 2010, 22 (11), 3441–3450.
  • Kim, H.; Macosko, C.W. Processing-property Relationships of Polycarbonate/Graphene Composites. Polymer 2009, 50 (15), 3797–3809.
  • Tadyszak, K.; Wychowaniec, J.K.; Litowczenko, J. Biomedical Applications of Graphene-Based Structures. Nanomaterials 2018, 8 (11), 944.
  • Aydin, T.; Gurcan, C.; Taheri, H.; Yilmazer, A. Graphene Based Materials in Neural Tissue Regeneration. Cell Biol. Translational Med. 2018, 3, 129–142.
  • Xia, M.-Y.; Xie, Y.; Yu, C.-H.; Chen, G.-Y.; Li, Y.-H.; Zhang, T.; Peng, Q. Graphene-based Nanomaterials: The Promising Active Agents for Antibiotics-Independent Antibacterial Applications. J. Controlled Release 2019, 307, 16–31.
  • Zare, P.; Aleemardani, M.; Seifalian, A.; Bagher, Z.; Seifalian, A.M. Graphene Oxide: Opportunities and Challenges in Biomedicine. Nanomaterials 2021, 11 (5), 1083.
  • Fatima, N.; Qazi, U.Y.; Mansha, A.; Bhatti, I.A.; Javaid, R.; Abbas, Q.; Nadeem, N.; Rehan, Z.A.; Noreen, S.; Zahid, M. Recent Developments for Antimicrobial Applications of Graphene-Based Polymeric Composites: A Review. J. Ind. Eng. Chem. 2021, 100, 40–58.
  • Wan, C.; Chen, B. Poly (ϵ-Caprolactone)/Graphene Oxide Biocomposites: Mechanical Properties and Bioactivity. Biomed. Mater. 2011, 6 (5), 055010.
  • Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Yadav, R.M.; Verma, R.K.; Singh, D.P.; Tan, W.K.; Pérez del Pino, A.; Moshkalev, S.A.; Matsuda, A. A Review on Synthesis of Graphene, h-BN and MoS 2 for Energy Storage Applications: Recent Progress and Perspectives. Nano Res. 2019, 12 (11), 2655–2694.
  • Sookhakian, M.; Basirun, W.J.; Teridi, M.A.M.; Mahmoudian, M.R.; Azarang, M.; Zalnezhad, E.; Yoon, G.H.; Alias, Y. Prussian Blue-Nitrogen-Doped Graphene Nanocomposite as Hybrid Electrode for Energy Storage Applications. Electrochim. Acta 2017, 230, 316–323.
  • Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its Sensor-Based Applications: A Review. Sens. Actuators, A 2018, 270, 177–194.
  • Omar, N.A.S.; Fen, Y.; Saleviter, S.; Daniyal, W.; Anas, N.; Ramdzan, N.; Roshidi, M. Development of a Graphene-Based Surface Plasmon Resonance Optical Sensor Chip for Potential Biomedical Application. Materials 2019, 12 (12), 1928.
  • Rodder, M.A.; Vasishta, S.; Dodabalapur, A. Double-gate MoS2 Field-Effect Transistor with a Multilayer Graphene Floating Gate: A Versatile Device for Logic, Memory, and Synaptic Applications. ACS Appl. Mater. Interfaces. 2020, 12 (30), 33926–33933.
  • Zafar, Z.; Wang, W.-H.; Liu, M.-Y.; Ni, Z.-H.; You, Y.-M. Nonvolatile Memory Based on Molecular Ferroelectric/Graphene Field Effect Transistor. ACS Appl. Mater. Interfaces. 2018, 10 (45), 39187–39193.
  • Yao, Y.; Ping, J. Recent Advances in Graphene-Based Freestanding Paper-Like Materials for Sensing Applications. TrAC, Trends Anal. Chem. 2018, 105, 75–88.
  • Lin, S.; Ju, S.; Shi, G.; Zhang, J.; He, Y.; Jiang, D. Ultrathin Nitrogen-Doping Graphene Films for Flexible and Stretchable EMI Shielding Materials. J. Mater. Sci. 2019, 54 (9), 7165–7179.
  • Yao, Y.; Jiang, C.; Ping, J. Flexible Freestanding Graphene Paper-Based Potentiometric Enzymatic Aptasensor for Ultrasensitive Wireless Detection of Kanamycin. Biosens. Bioelectron. 2019, 123, 178–184.
  • Jiang, C.; Li, X.; Yao, Y.; Lan, L.; Shao, Y.; Zhao, F.; Ying, Y.; Ping, J. A Multifunctional and Highly Flexible Triboelectric Nanogenerator Based on MXene-Enabled Porous Film Integrated with Laser-Induced Graphene Electrode. Nano Energy 2019, 66, 104121.
  • Won, S.; Van Lam, D.; Lee, J.Y.; Jung, H.-J.; Hur, M.; Kim, K.-S.; Lee, H.-J.; Kim, J.-H. Graphene-based Stretchable and Transparent Moisture Barrier. Nanotechnology 2018, 29 (12), 125705.
  • Ruan, H.; Zhang, Q.; Liao, W.; Li, Y.; Huang, X.; Xu, X.; Lu, S. Enhancing Tribological, Mechanical, and Thermal Properties of Polyimide Composites by the Synergistic Effect Between Graphene and Ionic Liquid. Mater. Des. 2020, 189, 108527.
  • Zou, D.; Ma, X.; Liu, X.; Zheng, P.; Hu, Y. Thermal Performance Enhancement of Composite Phase Change Materials (PCM) Using Graphene and Carbon Nanotubes as Additives for the Potential Application in Lithium-ion Power Battery. Int. J. Heat Mass Transfer 2018, 120, 33–41.
  • Fan, Z.; Pereira, L.F.C.; Hirvonen, P.; Ervasti, M.M.; Elder, K.R.; Donadio, D.; Ala-Nissila, T.; Harju, A. Thermal Conductivity Decomposition in two-Dimensional Materials: Application to Graphene. Phys. Rev. B 2017, 95 (14), 144309.
  • Zhang, F.; Li, Y.-H.; Li, J.-Y.; Tang, Z.-R.; Xu, Y.-J. 3D Graphene-Based Gel Photocatalysts for Environmental Pollutants Degradation. Environ. Pollut. 2019, 253, 365–376.
  • Zakeri, A.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S.M.; Hashemi, S.A.R.; Karimi Zade, A.; Amani, A.M.; Savardashtaki, A.; Mirzaei, E.; Jahandideh, S.; Movahedpour, A. Polyethylenimine-based Nanocarriers in Co-Delivery of Drug and Gene: A Developing Horizon. Nano Rev. Exp. 2018, 9 (1), 1488497.
  • Choudhary, P.; Das, S.K. Bio-reduced Graphene Oxide as a Nanoscale Antimicrobial Coating for Medical Devices. ACS Omega 2019, 4 (1), 387–397.
  • Qu, Y.; He, F.; Yu, C.; Liang, X.; Liang, D.; Ma, L.; Zhang, Q.; Lv, J.; Wu, J. Advances on Graphene-Based Nanomaterials for Biomedical Applications. Mater. Sci. Eng. C 2018, 90, 764–780.
  • Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1 (3), 203–212.
  • Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z. A Functionalized Graphene Oxide-Iron Oxide Nanocomposite for Magnetically Targeted Drug Delivery, Photothermal Therapy, and Magnetic Resonance Imaging. Nano Res. 2012, 5 (3), 199–212.
  • Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in Biomedicine: Theranostic Applications. Chem. Soc. Rev. 2013, 42 (2), 530–547.
  • Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal Imaging Guided Photothermal Therapy Using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. Adv. Mater. 2012, 24 (14), 1868–1872.
  • Chen, J.; Sekone, A.K.; Lu, M.-C.; Liu, C.-A.; Lee, M.-T. Indocyanine Green Loaded Reduced Graphene Oxide for in Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging. Nanoscale Res. Lett. 2016, 11 (1), 1–11.
  • Yue, L.; Wang, J.; Dai, Z.; Hu, Z.; Chen, X.; Qi, Y.; Zheng, X.; Yu, D. pH-responsive, Self-Sacrificial Nanotheranostic Agent for Potential in Vivo and in Vitro Dual Modal MRI/CT Imaging, Real-Time, and In Situ Monitoring of Cancer Therapy. Bioconjugate Chem. 2017, 28 (2), 400–409.
  • Lin, J.; Huang, Y.; Huang, P. Graphene-based Nanomaterials in Bioimaging. Biomed. Appl. Funct. Nanomater. 2018, 1, 247–287.
  • Mansuriya, B.D.; Altintas, Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors 2020, 20 (4), 1072.
  • Ping, J.; Wang, Y.; Wu, J.; Ying, Y. Development of an Electrochemically Reduced Graphene Oxide Modified Disposable Bismuth Film Electrode and its Application for Stripping Analysis of Heavy Metals in Milk. Food Chem. 2014, 151, 65–71.
  • Feng, W.; Wang, Z. Biomedical Applications of Chitosan-Graphene Oxide Nanocomposites. Iscience 2022, 25 (1), 103629.
  • Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-based Sensors for Human Health Monitoring. Front. Chem. 2019, 7, 399.
  • Mehmood, A.; Mubarak, N.M.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Siddiqui, M.T.H.; Baloch, H.A.; Nizamuddin, S.; Mazari, S. Graphene Based Nanomaterials for Strain Sensor Application—A Review. J. Environmen. Chem. Eng. 2020, 8 (3), 103743.
  • Singh, D.P.; Herrera, C.E.; Kumar, R. Graphene Oxide: An Efficient Material and Recent Approach for Biotechnological and Biomedical Applications. Mater. Sci. Eng. C 2018, 86, 173–197.
  • Hashemzadeh, H.; Raissi, H. Understanding Loading, Diffusion and Releasing of Doxorubicin and Paclitaxel Dual Delivery in Graphene and Graphene Oxide Carriers as Highly Efficient Drug Delivery Systems. Appl. Surf. Sci. 2020, 500, 144220.
  • Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene Quantum Dots for Cancer Targeted Drug Delivery. Int. J. Pharm. 2017, 518 (1–2), 185–192.
  • Liu, X.; Cheng, X.; Wang, F.; Feng, L.; Wang, Y.; Zheng, Y.; Guo, R. Targeted Delivery of SNX-2112 by Polysaccharide-Modified Graphene Oxide Nanocomposites for Treatment of Lung Cancer. Carbohydr. Polym. 2018, 185, 85–95.
  • Zare-Zardini, H.; Taheri-Kafrani, A.; Amiri, A.; Bordbar, A.-K. New Generation of Drug Delivery Systems Based on Ginsenoside Rh2-, Lysine-and Arginine-Treated Highly Porous Graphene for Improving Anticancer Activity. Sci. Rep. 2018, 8 (1), 1–15.
  • Alemi, F.; Zarezadeh, R.; Sadigh, A.R.; Hamishehkar, H.; Rahimi, M.; Majidinia, M.; Asemi, Z.; Ebrahimi-Kalan, A.; Yousefi, B.; Rashtchizadeh, N. Graphene Oxide and Reduced Graphene Oxide: Efficient Cargo Platforms for Cancer Theranostics. J. Drug. Deliv. Sci. Technol. 2020, 60, 101974.
  • Shin, S.R.; Li, Y.-C.; Jang, H.L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y.S.; Tamayol, A.; Khademhosseini, A. Graphene-based Materials for Tissue Engineering. Adv. Drug Delivery Rev. 2016, 105, 255–274.
  • Goenka, S.; Sant, V.; Sant, S. Graphene-based Nanomaterials for Drug Delivery and Tissue Engineering. J. Control. Release 2014, 173, 75–88.
  • Solanki, A.; Chueng, S.-T.D.; Yin, P.T.; Kappera, R.; Chhowalla, M.; Lee, K.-B. Axonal Alignment and Enhanced Neuronal Differentiation of Neural Stem Cells on Graphene-Nanoparticle Hybrid Structures. Adv. Mater. 2013, 25 (38), 5477–5482.
  • Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and Graphene Oxide as Nanomaterials for Medicine and Biology Application. J. Nanostruct. Chem. 2018, 8 (2), 123–137.
  • Zuchowska, A.; Chudy, M.; Dybko, A.; Brzozka, Z. Graphene as a new Material in Anticancer Therapy-in Vitro Studies. Sens. Actuators B: Chem. 2017, 243, 152–165.
  • Usman, A.; Hussain, Z.; Riaz, A.; Khan, A.N. Enhanced Mechanical, Thermal and Antimicrobial Properties of Poly (Vinyl Alcohol)/Graphene Oxide/Starch/Silver Nanocomposites Films. Carbohydr. Polym. 2016, 153, 592–599.
  • Li, P.; Sun, S.; Dong, A.; Hao, Y.; Shi, S.; Sun, Z.; Gao, G.; Chen, Y. Developing of a Novel Antibacterial Agent by Functionalization of Graphene Oxide with Guanidine Polymer with Enhanced Antibacterial Activity. Appl. Surf. Sci. 2015, 355, 446–452.
  • Arriagada, P.; Palza, H.; Palma, P.; Flores, M.; Caviedes, P. Poly (Lactic Acid) Composites Based on Graphene Oxide Particles with Antibacterial Behavior Enhanced by Electrical Stimulus and Biocompatibility. J. Biomed. Mater. Res. A 2018, 106 (4), 1051–1060.
  • Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials 2019, 9 (5), 737.
  • Fu, L.; Xie, K.; Zheng, Y.; Zhang, L.; Su, W. Graphene ink Film Based Electrochemical Detector for Paracetamol Analysis. Electronics. 2018, 7 (2), 15.
  • Jakus, A.E.; Secor, E.B.; Rutz, A.L.; Jordan, S.W.; Hersam, M.C.; Shah, R.N. Three-dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications. ACS Nano 2015, 9 (4), 4636–4648.
  • Shareena, T.P.D.; McShan, D.; Dasmahapatra, A.K.; Tchounwou, P. B. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. Nano-micro Lett. 2018, 10 (3), 1–34.
  • Pinto, A.M.; Magalhães, F.D.; Gonçalves, I.C. Polymer Surface Adsorption as a Strategy to Improve the Biocompatibility of Graphene Nanoplatelets. Colloids Surf. B 2016, 146, 818–824.
  • Li, Y.; Wang, J.; Zhao, F.; Bai, B.; Nie, G.; Nel, A.E.; Zhao, Y. Nanomaterial Libraries and Model Organisms for Rapid High-Content Analysis of Nanosafety. Natl. Sci. Rev. 2018, 5 (3), 365–388.
  • Graham, U.M.; Jacobs, G.; Yokel, R.A.; Davis, B.H.; Dozier, A.K.; Birch, M.E.; Tseng, M.T.; Oberdörster, G.; Elder, A.; DeLouise, L. From Dose to Response: In Vivo Nanoparticle Processing and Potential Toxicity. Model. Toxicity Nanoparticles 2017, 947, 71–100.
  • Mao, L.; Morfeld, P.; Bruch, J.; Levy, L.; Ngiewih, Y.; Chaudhuri, I.; Muranko, H.J.; Myerson, R.; McCunney, R.J. Biodistribution and Toxicity of Radio-Labeled few Layer Graphene in Mice After Intratracheal Instillation. Part. Fibre Toxicol. 2015, 13 (1), 1–12.
  • Czarny, B.; Georgin, D.; Berthon, F.; Plastow, G.; Pinault, M.; Patriarche, G.; Thuleau, A.; L’Hermite, M.M.; Taran, F.; Dive, V. Carbon Nanotube Translocation to Distant Organs After Pulmonary Exposure: Insights from in Situ 14C-Radiolabeling and Tissue Radioimaging. ACS Nano 2014, 8 (6), 5715–5724.
  • Bussy, C.; Kostarelos, K. Culture Media Critically Influence Graphene Oxide Effects on Plasma Membranes. Chem 2017, 2 (3), 322–323.
  • Guo, Z.; Xie, C.; Zhang, P.; Zhang, J.; Wang, G.; He, X.; Ma, Y.; Zhao, B.; Zhang, Z. Toxicity and Transformation of Graphene Oxide and Reduced Graphene Oxide in Bacteria Biofilm. Sci. Total Environ. 2017, 580, 1300–1308.
  • Thakur, B.; Zhou, G.; Chang, J.; Pu, H.; Jin, B.; Sui, X.; Yuan, X.; Yang, C.-H.; Magruder, M.; Chen, J. Rapid Detection of Single E. Coli Bacteria Using a Graphene-Based Field-Effect Transistor Device. Biosens. Bioelectron. 2018, 110, 16–22.
  • Xiong, T.; Yuan, X.; Wang, H.; Leng, L.; Li, H.; Wu, Z.; Jiang, L.; Xu, R.; Zeng, G. Implication of Graphene Oxide in Cd-Contaminated Soil: A Case Study of Bacterial Communities. J. Environ. Manag. 2018, 205, 99–106.
  • Alayande, A.B.; Park, H.; Vrouwenvelder, J.S.; Kim, I.S. Implications of Chemical Reduction Using Hydriodic Acid on the Antimicrobial Properties of Graphene Oxide and Reduced Graphene Oxide Membranes. Small 2019, 15 (28), 1901023.
  • Fadeel, B.; Bussy, C.; Merino, S.; Vázquez, E.; Flahaut, E.; Mouchet, F.; Evariste, L.; Gauthier, L.; Koivisto, A.J.; Vogel, U.; Martín, C.; Delogu, L.G.; Buerki-Thurnherr, T.; Wick, P.; Beloin-Saint-Pierre, D.; Hischier, R.; Pelin, M.; Candotto Carniel, F.; Tretiach, M.; Cesca, F.; Benfenati, F.; Scaini, D.; Ballerini, L.; Kostarelos, K.; Prato, M.; Bianco, A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018, 12 (11), 10582–10620.
  • Lu, X.; Feng, X.; Werber, J.R.; Chu, C.; Zucker, I.; Kim, J. -H.; Osuji, C.O.; Elimelech, M. Enhanced Antibacterial Activity Through the Controlled Alignment of Graphene Oxide Nanosheets. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (46), E9793–E9801.
  • Li, R.; Mansukhani, N.D.; Guiney, L.M.; Ji, Z.; Zhao, Y.; Chang, C.H.; French, C.T.; Miller, J.F.; Hersam, M.C.; Nel, A.E.; Xia, T. Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. ACS Nano 2016, 10 (12), 10966–10980.
  • Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.-J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants, and Fungi. Ecotoxicology 2008, 17 (5), 372–386.
  • Cheng, C.; Li, S.; Thomas, A.; Kotov, N.A.; Haag, R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem. Rev. 2017, 117 (3), 1826–1914.
  • Du, S.; Zhang, P.; Zhang, R.; Lu, Q.; Liu, L.; Bao, X.; Liu, H. Reduced Graphene Oxide Induces Cytotoxicity and Inhibits Photosynthetic Performance of the Green Alga Scenedesmus Obliquus. Chemosphere 2016, 164, 499–507.
  • Zhao, J.; Cao, X.; Wang, Z.; Dai, Y.; Xing, B. Mechanistic Understanding Toward the Toxicity of Graphene-Family Materials to Freshwater Algae. Water Res. 2017, 111, 18–27.