755
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted Multi-component Reaction for the Green Synthesis of Novel 4-(5-hydroxybenzo[a]phenazin-6-yl)-5-phenyl-1, 3-dihydro-2H-imidazol-2-one Using H3PW12O40@nano-TiO2 as Recyclable Catalyst

ORCID Icon &
Pages 813-824 | Received 09 Aug 2022, Accepted 16 Oct 2022, Published online: 28 Oct 2022

References

  • Zhang, G.P.; Chen, D.Y. Fabrication of Bi2MoO6/ZnO Hierarchical Heterostructures with Enhanced Visible-Light Photocatalytic Activity. Appl. Catal. B. Environ. 2019, 250, 313–324.
  • Thangavel, S.; Krishnamoorthy, K.; Kim, S.J.; Venugopal, G. Designing ZnS Decorated Reduced Graphene-Oxide Nanohybrid via Microwave Route and Their Application in Photocatalysis. J. Alloy. Comp. 2016, 683, 456–462.
  • Moussa, H.; Girot, E.; Mozet, K. ZnO Rods/Reduced Graphene Oxide Composites Prepared via a Solvothermal Reaction for Efficient Sunlight-Driven Photocatalysis. Appl. Catal B. Environ. 2016, 185, 11–21.
  • Taheri , M; Mohebat, R. A magnetically-separable TiO2-H3PW12O40@Fe3O4/EN as magnetic core-shell nanoparticles on metal-organic framework MIL-101(Cr). J Mater Science: Mater Electro. 2021, 32, 3104–3115.
  • Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Supported Molybdenum on Graphene Oxide/Fe3O4: An Efficient, Magnetically Separable Catalyst for one-pot Construction of Spiro-Oxindole Dihydropyridines in Deep Eutectic Solvent Under Microwave Irradiation. Cat. Commun. 2017, 88, 39–44.
  • Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions. Curr. Opin. Gree. Sustain. Chem 2019, 15, 27–37.
  • Alberti, S.; Caratto, V.; Peddis, D.; Belviso, C.; Ferretti, M. Synthesis and Characterization of a new Photocatalyst Based on TiO2 Nanoparticles Supported on a Magnetic Zeolite Obtained from Iron and Steel Industrial Waste. J. Alloy Comp. 2019, 797, 820–825.
  • Deng, C.; Hong, R.J.; Jing, M. Photocatalytic Performance of TiO2 Thin Film Decorated with Cu2O Nanoparticles by Laser Ablation. Opt. Mater. 2019, 94, 130–137.
  • Chiarello, G.L.; Dozzi, M.V.; Selli, E. TiO 2 -Based Materials for Photocatalytic Hydrogen Production. J. Energy. Chem. 2017, 26, 250–258.
  • Zhang, K.; Liu, H.F.; Nie, C.H. Controllable Synthesis of Honeycomb-Structured ZnO Nanomaterials for Photocatalytic Degradation of Methylene Blue. Mater. Lett. 2019, 253, 30–33.
  • Ye, Y.H.; Li, X.; Ynterma, D.; Rijnaarts, H.H.M. Significant Enhancement of Micropollutant Photocatalytic Degradation Using a TiO2 Nanotube Array Photoanode Based Photocatalytic Fuel Cell. Chem. Eng. J. 2018, 354, 553–562.
  • Yu, J.G.; Yu, X.X. Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres. Environ. Sci. Technol. 2008, 42, 4902–4907.
  • Ma, S.S.; Xue, J.J.; Zhou, Y.M.; Zhang, Z.W. Photochemical Synthesis of ZnO/Ag2O Heterostructures with Enhanced Ultraviolet and Visible Photocatalytic Activity. J. Mater. Chem. A 2014, 2, 7272–7280.
  • Niknam, K.; Saberi, D.; Sadegheyan, M.; Deris, A. Silica-bonded S-Sulfonic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4,4′-(Arylmethylene)bis(1H-Pyrazol-5-ols). Tetrahed. Lett. 2010, 51, 692–4.
  • Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of Commercial Microwave Ovens to Organic Synthesis. Tetrahedron Lett. 1986, 27, 4945–8.
  • Xin, Y.; Nagata, T.; Kato, K.; Shirai, T. Microwave-Assisted Synthesis of Pt Nanoparticles via Liquid-Phase Polyol Reaction for Catalytic Volatile Organic Compound Elimination. ACS. Applied Nano. Mater. 2022, 5, 4305–15.
  • Wu, H.; She, Y.; Fan, L.Y. Stereoselective Synthesis of β-Amino Ketones via Direct Mannich-Type Reaction Catalyzed with Silica Sulfuric Acid. Tetrahedron 2007, 63, 2404–8.
  • Bloxham, J.; Dell, C.P.; Smith, C. Preparation of Some New Benzylidenemalononitriles by an SNAr Reaction: Application to Naphtho[1,2-b]Pyran Synthesis. Heterocycles 1994, 38, 399–08.
  • Pan, L.; Olson, D.H.; Ciemnolonski, L.R.; Heddy, R.; Li, J. Separation of Hydrocarbons with a Microporous Metal-Organic Framework. Angew. Chem. Int. Ed. 2006, 118, 632–635.
  • Jhung, S.H.; Lee, J.-H.; Yoon, J.W.; Serre, C.; Chang, J.S. Microwave Synthesis of Chromium Terephthalate MIL-101 and its Benzene Sorption Ability. Adv. Mater. 2006, 19, 121–124.
  • Tong, M.; Liu, D.; Yang, Q.; Devautourvinot, S.; Maurin, G.; Zhong, C. Influence of Framework Metal Ions on the dye Capture Behavior of MIL-100 (Fe, Cr) MOF Type Solids. J. Mater. Chem. A. 2013, 1, 8534–8537.
  • Zhou, M.; Wu, Y.N.; Qiao, J.; Zhang, J.; Mcdonald, A.; Li, G.; Li, F. The Removal of Bisphenol A from Aqueous Solutions by MIL-53(Al) and Mesostructured MIL-53(Al). J. Colloid. Interface. Sci. 2013, 405, 157–163.
  • Eskandari, K.; Pourshojaei, Y.; Haghani, F.; Shabani, M.; Asadipour, A. Synthesis, and Molecular Modeling of bis(3-(Piperazine-1-yl)Propyl)Tungstate (BPPT) Nanoparticles, and its First Catalytic Application for one-pot Synthesis of 4H-Chromene Derivatives. Heliyon 2019, 5, e02426–2430.
  • Ohata, Y.; Tomonaga, M.; Watanabe, Y.; Tomura, K.; Kimura, K.; Akaki, T.; Adachi, K.; Kodama, E.N.; Matsuzaki, Y.; Hayashi, H. Antiviral Activity and Resistance Profile of the Novel HIV-1 Non-Catalytic Site Integrase Inhibitor JTP-0157602. J. Virology 2022, 96, 1843–21.
  • Maes, M.; Schouteden, S.; Alaerts, L.; Depla, D.; Vos, D.E.D. Extracting organic contaminants from water using the metal-organic framework Cr (OH)${OCCH-CO}. Phys. Chem. Chem. Phys. 2011, 13, 5587–5589.
  • Veisi, V.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. In Situ Decorated Pd NPs on Chitosan-Encapsulated Fe3O4/SiO2-NH2 as Magnetic Catalyst in Suzuki-Miyaura Coupling and 4-Nitrophenol Reduction. Carbohydrate. Polymers. (Basel) 2020, 235, 115966–115974.
  • Zhang, W.; Veisi, H.; Sharifi, R.; Salamat, D.; Karmakar, B. Fabrication of Pd NPs on Pectin-Modified Fe3O4 NPs: A Magnetically Retrievable Nanocatalyst for Efficient C–C and C–N Cross Coupling Reactions and an Investigation of its Cardiovascular Protective Effects. Int. J. Biol. Macromol. 2020, 160, 1252–1262.
  • Li, Y.; Song, Y., Ma, A., et al. Surface Immobilization of TiO2 Nanotubes with Bone Morphogenetic Protein-2 Synergistically Enhances Initial Preosteoblast Adhesion and Osseointegration. Biomed. Res. Int. 2019, 23, 1206–1223.
  • Veisi, H.; Hemmati, S.; Safarimehr, P. In Situ Immobilized Palladium Nanoparticles on Surface of Polymethyldopa Coated-Magnetic Nanoparticles (Fe3O4@PMDA/Pd): A Magnetically Recyclable Nanocatalyst for Cyanation of Aryl Halides with K4[Fe(CN)6]. J. Cat. 2018, 365, 204–212.
  • Ghorbani Shahna, F.; Bahrami, A.; Alimohammadi, I. Chlorobenzene Degeradation by non-Thermal Plasma Combined with EG-TiO2/ZnO as a Photocatalyst: Effect of Photocatalyst on CO2 Selectivity and Byproducts Reduction. J. Hazar. Mater 2017, 324, 544–553.
  • Jafari, S.; SaeidAzizian, S.; Jaleh, B. Enhancement of Methyl Violet Removal by Modification of TiO2 Nanoparticles with AgI. J. Indus. Engin. Chem. 2012, 18, 2124–2128.
  • FeiziMohazzab, B.; Jaleh, B.; Nasrollahzadeh, M. Laser Ablation-Assisted Synthesis of GO/TiO2/Au Nanocomposite: Applications in K3[Fe(CN)6] and Nigrosin Reduction. Mole. Cat 2019, 473, 110401–110410.
  • Eslamipanah, M.; Jaleh, B.; Feizi Mohazzab, B. Facile Synthesis and Electrochemical Hydrogen Storage of Bentonite/TiO2/Au Nanocomposite. Int. J. Hydrog. Energy 2020, 45, 33771–33788.
  • Jaleh, B.; Sheikhi Shahidzadeh, E.; Azizian, S.; Shokoufeh Ghahri Saremi, S. Effects of UV Irradiation Treated Polycarbonate Substrates on Properties of Nanocrystalline TiO2 sol-gel Derived Thin Films. J. Inter. 2018, 2, 73–79.
  • Veisi, H.; Mohammadi, L.; Hemmati, S.; Tamoradi, T.; Mohammadi, P. n Situ Immobilized Silver Nanoparticles on Rubia tinctorum ExtractCoated Ultrasmall Iron Oxide Nanoparticles: An Efficient Nanocatalyst with Magnetic Recyclability for Synthesis of Propargylamines by A3 Coupling Reaction. ACS. Omega. doi: 10.1021/acsomega.9b01720.
  • Veisia, H.; Tamoradia, T.; Rashtiania, A.; Hemmatia, S.; Karmakar, B. Palladium Nanoparticles Anchored Polydopamine-Coated Graphene oxide/Fe3O4 nanoparticles (GO/Fe3O4@PDA/Pd) as a Novel Recyclable Heterogeneous Catalyst in the Facile Cyanation of Haloarenes Using K4[Fe(CN)6] as Cyanide Source. J. Ind. Eng. Chem 2020, 90, 379–388.
  • Clifford, E.R.; Bradley, R.W.; Wey, L.T. New Phenazine Based Anolyte Material for High Voltage Organic Redox Flow Batteries. Chem. Comuni 2021, 57, 2986–2989.
  • Khurana, J.M.; Chaudhary, A.; Lumb, A.; Nand, B. An Expedient Four-Component Domino Protocol for the Synthesis of Novel Benzo[a]Phenazine Annulated Heterocycles and Their Photophysical Studies. Green. Chem. 2012, 14, 2321–2327.
  • Saluja, P.; Chaudhary, A.; Khurana, J.M. Synthesis of Novel Fluorescent Benzo[a]Pyrano[2,3-c]Phenazine and Benzo[a]Chromeno[2,3-c]Phenazine Derivatives via Facile Four-Component Domino Protocol. Tetra. Lett. 2014, 55, 3431–3435.
  • Rajeswari, M.; Khanna, G.; Chaudhary, A.; Khurana, J.M. Multicomponent domino process for the synthesis of some novel benzo[a]chromenophenazine fused ring systems using H2SO4, phosphotungstic acid, and[NMP]H2PO4. Synth. Commun. 2015, 45, 1426–1432.
  • Yazdani-Elah-Abadi, A.; Mohebat, R.; Maghsoodlou, M.T.; Heydari, R. One-Pot, Sequential Four-Component Synthesis of Benzo[a]chromeno[2,3-c]phenazine Derivatives Using SiO2–SO3H as an Efficient and Recoverable Catalyst Under Conventional Heating and Microwave Irradiation. Poly. Arom. Com. 2018, 38, 92–101.
  • Taheri, M.; Mohebat, R.; Moslemin, M.H. Multi-Component Reaction Synthesis of Novel 3-phenyl-3,4-dihydro-2H-benzo[a][1,3]oxazino[5,6-c]Phenazine Derivatives Catalyzed by Reusable ZnO-PTA@Fe3O4/EN-MIL-101(Cr) Nano Powder at Room Temperature. Green. Chem. Lett. Rev. 2020, 13, 179–191.
  • Taheri, M.; Mohebat, R.; Moslemin, M.H. Synthesis of benzo[a]furo[2, 3-c]Phenazine Derivatives Through an Efficient, Rapid and via Microwave Irradiation Under Solvent-Free Conditions Catalyzed by H3PW12O40@Fe3O4-ZnO for High-Performance Removal of Methylene Blue. Arti. Cell. Nano. Biotech. 2021, 49, 250–260.
  • Ma, J.; Zhu, C.; Xu, Y. Photocatalytic Degradation of Gaseous Benzene with H3PW12O40/TiO2/Palygorskite Composite Catalyst. J. Sau. Chem. Soc. 2017, 21, 132–142.
  • Taheri, M.; Mohebat, R.; Moslemin, M.H. Synthesis of one-pot pyrazolo[4’,3':5,6]pyrano[2,3-c] phenazin-15-yl) methanone derivatives via a multi-component using Fe3O4@TiO2-SO3H as a recoverable magnetic catalyst under microwave irradiation. Green. Chem. Lett. Rev. 2020, 13, 165–178.
  • Taheri, M.; Mohebat, R.; Moslemin, M.H. Microwave-Assisted Multi-Component Green Synthesis of Benzo[α]Furo[2, 3-c]Phenazine Derivatives via a Magnetically-Separable Fe3O4@rGO@ZnO-HPA Nanocatalyst Under Solvent-Free Conditions. Poly. Arom. Com. 2021, in press.