567
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study the effect of simple extraction techniques to synthesizing promising antimicrobial bio-capped copper oxide nanoparticles

, , , , & ORCID Icon
Article: 2260417 | Received 17 Apr 2023, Accepted 13 Sep 2023, Published online: 28 Sep 2023

References

  • Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 26, 102336. doi:10.1016/j.eti.2022.102336.
  • Al-fa Abu-kharma, A.M.; Awwad, M.H. Green Synthesis of Copper Oxide Nanoparticles Using Bougainvillea Leaves Aqueous Extract and Antibacterial Activity Evaluation. Chem Int 2021, 7 (3), 155–162.
  • Mahmoud, N.M.R.; Elbadawy, H.A.; Refaat, H.M. An Efficient Green Protocol for Photo-Degradation of Bromophenol Blue dye. Desalin. Water. Treat. 2021, 229, 403–412. doi:10.5004/dwt.2021.27384.
  • Ahmad, W.; Pandey, A.; Rajput, V.; Kumar, V.; Verma, M.; Kim, H. Plant Extract Mediated Cost-Effective tin Oxide Nanoparticles: A Review on Synthesis, Properties, and Potential Applications. Curr. Res. Green Sustain. Chem. 2021, 4, 100211. doi:10.1016/j.crgsc.2021.100211.
  • SD, D.S.; Roshan, A.; Sharma Timilsina, S.; Sunita, S. A review on the medical plant Psidium guajava Linn. (Myrtaceae). J. Drug Deliv. Ther. 2013, 3, 162–168. doi:10.22270/jddt.v3i2.404.
  • Qian, H.; Nihorimbere, V. Antioxidant Power of Phytochemicals from Psidium guajava. J. Zhejiang Univ. Sci. 2004, 5, 676–683. doi:10.1631/jzus.2004.0676.
  • Gutiérrez, R.M.P.; Mitchell, S.; Solis, R.V. Psidium Guajava: A Review of its Traditional Uses, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2008, 117 (1), 1–27. doi:10.1016/j.jep.2008.01.025.
  • Seo, J.; Lee, S.; Elam, M.L.; Johnson, S.A.; Kang, J.; Arjmandi, B.H. Study to Find the Best Extraction Solvent for Use with Guava Leaves (Psidium guajava L.) for High Antioxidant Efficacy. Food Sci. Nutr. 2014, 2 (2), 174–180. doi:10.1002/fsn3.91.
  • Sampath Kumar, N.S.; Sarbon, N.M., Rana, S.S., et al. Extraction of Bioactive Compounds from Psidium guajava Leaves and its Utilization in Preparation of Jellies. AMB Expr. 2021, 11 (1). doi:10.1186/s13568-021-01194-9.
  • Sathiyavimal, S.; Vasantharaj, S., Veeramani, V., et al. Green Chemistry Route of Biosynthesized Copper Oxide Nanoparticles Using Psidium guajava Leaf Extract and Their Antibacterial Activity and Effective Removal of Industrial Dyes. J. Environ. Chem. Eng. 2021, 9 (2), 105033. doi:10.1016/j.jece.2021.105033.
  • Eghbali, S.; Askari, S.F.; Avan, R.; Sahebkar, A. Therapeutic Effects of Punica granatum (Pomegranate): An Updated Review of Clinical Trials. J. Nutr. Metab. 2021, 5297162. doi:10.1155/2021/5297162.
  • El-Hadary, A.E.; Taha, M. Pomegranate Peel Methanolic-Extract Improves the Shelf-Life of Edible-Oils Under Accelerated Oxidation Conditions. Food Sci. Nutr. 2020, 8 (4), 1798–1811. doi:10.1002/fsn3.1391.
  • Siddiqui, V.U.; Ansari, A.; Chauhan, R.; Siddiqi, W.A. Green Synthesis of Copper Oxide (CuO) Nanoparticles by Punica granatum Peel Extract. Mater. Today Proc. 2020, 6, 751–755. doi:10.1016/j.matpr.2020.05.504.
  • Mahmoud, N.; Mohamed, H.I.; Ahmed, S.B.; Akhtar, S. Efficient Biosynthesis of CuO Nanoparticles with Potential Cytotoxic Activity. Chem. Pap. 2020, 74, 2825–2835. doi:10.1007/s11696-020-01120-6.
  • Saparbekova, A.A.; Kantureyeva, G.O.; Kudasova, D.E.; Konarbayeva, Z.K.; Latif, A.S. Potential of Phenolic Compounds from Pomegranate (Punica granatum L.) by-Product with Significant Antioxidant and Therapeutic Effects: A Narrative Review. Saudi J. Biol. Sci. 2023, 30 (2), 103553. doi:10.1016/j.sjbs.2022.103553.
  • Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria. Int. J. Microbiol. 2013. doi:10.1155/2013/746165.
  • Hamida, R.S.; Ali, M.A.; Goda, D.A.; Khalil, M.I.; Al-Zaban, M.I. Novel Biogenic Silver Nanoparticle-Induced Reactive Oxygen Species Inhibit the Biofilm Formation and Virulence Activities of Methicillin-Resistant Staphylococcus aureus (MRSA) Strain. Front. Bioeng. Biotechnol. 2020, 8, 1–14. doi:10.3389/fbioe.2020.00433.
  • Koulenti Xu, M., et al. Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms. 2019, 7 (8), 270. doi:10.3390/microorganisms7080270.
  • Karaiskos, I.; Giamarellou, H. Multidrug-resistant and Extensively Drug-Resistant Gram-Negative Pathogens: Current and Emerging Therapeutic Approaches. Expert. Opin. Pharmacother. 2014, 15 (10), 1351–1370. doi:10.1517/14656566.2014.914172.
  • Ansari, M.A.; Kalam, A., Al-Sehemi, A.G., et al. Counteraction of Biofilm Formation and Antimicrobial Potential of Terminalia Catappa Functionalized Silver Nanoparticles Against Candida Albicans and Multidrug-Resistant Gram-Negative and Gram-Positive Bacteria. Antibiotics 2021, 10 (6), 725. doi:10.3390/antibiotics10060725.
  • Ansari, M. Sonochemical Synthesis of ZnCo2O4/Ag3PO4 Heterojunction Photocatalysts for the Degradation of Organic Pollutants and Pathogens: A Combined Experimental and Computational Study. New J. Chem. 2022, 46 (29), 14030–14042. doi:10.1039/D2NJ01352E.
  • Begum, S.; Esakkiraja, A.; Asan, S. Green Synthesis, Characterization and Antibacterial Activity of Copper Oxide Nanoparticles Synthesized Using Catharanthus Roseus Leaf Extract. J. Appl. Sci. Comput. 2020, 5 (8), 21–27.
  • Siddiqui, H.; Parra, M.R.; Qureshi, M.S.; Malik, M.M.; Haque, F.Z. Studies of Structural, Optical, and Electrical Properties Associated with Defects in Sodium-Doped Copper Oxide (CuO/Na) Nanostructures. J. Mater. Sci. 2018, 53 (12), 8826–8843. doi:10.1007/s10853-018-2179-6.
  • Wang, R.; Ding, Y.; Liu, R.; Xiang, L.; Du, L. Pomegranate : Constituents, Bioactivities and Pharmacokinetics. Fruit, Veg Cereal Sci Biotechnol 2010, 4 (2), 77–87.
  • Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J. Pomegranate and its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. doi:10.1111/j.1541-4337.2010.00131.x.
  • Bhardwaj, B.S.; Punj, D.; Raji, K.P.; Kailasnath, M.; Chandramohanakumar, N. Green Synthesis of Silver Nanoparticles Using Azadirachta. J. Environ. Sci. 2010, 325 (1), 2367.
  • Ahmed, S.; Mohamed, H.; Al-Subaie, A.; Al-Ohali, A.; Mahmoud, N. Investigation of the Antimicrobial Activity and Hematological Pattern of Nano-Chitosan and its Nano-Copper Composite. Sci. Rep. 2021, 11. doi:10.1038/s41598-021-88907-z.
  • Ahmed, S.B.; Mahmoud, N.M.R.; Manda, A.A.; Refaat, H.M. Study of the Optimization and Mechanism for the Remediation Process of Malachite Green Dye Via Hybrid-Based Magnetite-Date’s Stones: Study of the Optimization and Mechanism for the Remediation Process. Alexandria Eng. J. 2022, 61 (12), 9879–9889. doi:10.1016/j.aej.2022.02.065.
  • Kolahalam, L.A.; Prasad, K.R.S.; Krishna, P.M.; Supraja, N.; Shanmugan, S. The Exploration of bio-Inspired Copper Oxide Nanoparticles: Synthesis, Characterization and in-Vitro Biological Investigations. Heliyon 2022, 8 (6), e09726. doi:10.1016/j.heliyon.2022.e09726.
  • Alhalili, Z. Green Synthesis of Copper Oxide Nanoparticles CuO NPs from Eucalyptus Globoulus Leaf Extract: Adsorption and Design of Experiments. Arab. J. Chem. 2022, 15 (5), 103739. doi:10.1016/j.arabjc.2022.103739.
  • Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon 2020, 6 (7), e04508. doi:10.1016/j.heliyon.2020.e04508.
  • Dashrath Bansod, S. Synthesis and Evaluation of Antimicrobial Potential of Copper Nanoparticle Against Agriculturally Important Phytopathogens Production of Biofertilizer amd Micronutrients. View Project. Int. J. Biol. Res. 2016, 1, 41–47. https://www.researchgate.net/publication/309703772.
  • Altikatoglu, M.; Attar, A.; Erci, F.; Cristache, C.; Isildak, I. Green Synthesis of Copper Oxide Nanoparticles Using Ocimum Basilicum Extract and Their Antibacterial Activity. Fresenius Environ. Bull. 2017, 26, 7832–7837.
  • Ssekatawa, K.; Byarugaba, D., Angwe, M., et al. Phyto-Mediated Copper Oxide Nanoparticles for Antibacterial, Antioxidant and Photocatalytic Performances. Front. Bioeng. Biotechnol. 2022, 10, 1–17. doi:10.3389/fbioe.2022.820218.
  • Amin F, Fozia, Khattak B, et al. Green Synthesis of Copper Oxide Nanoparticles Using Aerva javanica Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities. Evidence-Based Complement Altern. Med.. 2021:5589703. doi:10.1155/2021/5589703.
  • Dulta K, Ağçeli G, Chauhan P, Jasrotia R, Chandan G, Chauhan P. Multifunctional CuO Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. 2021. doi:10.21203/rs.3.rs-346220/v1.
  • Ijaz, F.; Shahid, S.; Khan, S.; Ahmad, W.; Zaman, S. Green Synthesis of Copper Oxide Nanoparticles Using Abutilon indicum Leaf Extract: Antimicrobial, Antioxidant and Photocatalytic Dye Degradation Activitie. Trop. J. Pharm. Res. 2017, 16, 743–753. doi:10.4314/tjpr.v16i4.2.
  • El-Sherbiny, G.M.; Kalaba, M.H., Sharaf, M.H., et al. Biogenic synthesis of CuO-NPs as nanotherapeutics approaches to overcome multidrug-resistant Staphylococcus aureus (MDRSA). Artif. Cells Nanomed. Biotechnol. 2022, 50 (1), 260–274. doi:10.1080/21691401.2022.2126492.
  • Bagchi, B.; Dey, S., Bhandary, S., et al. Antimicrobial Efficacy and Biocompatibility Study of Copper Nanoparticle Adsorbed Mullite Aggregates. Mater. Sci. Eng. C 2012, 32 (7), 1897–1905. doi:10.1016/j.msec.2012.05.011.
  • Singh, R.; Smitha, M.S.; Singh, S.P. The Role of Nanotechnology in Combating Multi-Drug Resistant Bacteria. J. Nanosci. Nanotechnol. 2014, 14 (7), 4745–4756. doi:10.1166/jnn.2014.9527.
  • Padi, V.V.T.; Cernik, M. Green Synthesis of Copper Oxide Nanoparticles Using gum Karaya as a Biotemplate and Their Antibacterial Application. Int. J. Nanomed. 2013, 8, 889–898. doi:10.2147/IJN.S40599.
  • Kessler, A.; Hedberg, J.; Blomberg, E.; Odnevall, I. Reactive Oxygen Species Formed by Metal and Metal Oxide Nanoparticles in Physiological Media—A Review of Reactions of Importance to Nanotoxicity and Proposal for Categorization. Nanomaterials 2022, 12 (11), 1922. doi:10.3390/nano12111922.
  • Held, P. An Introduction to Reactive Oxygen Species Measurement of ROS in Cells. BioTek Instruments 2012, 1–14. http://www.biotek.com/resources/articles/reactive-oxygen-species.html.
  • Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles Against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003–6009. doi:10.2147/IJN.S35347.