602
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Highly efficient construction of multi-substituted aminopyrazoles derivatives via iodine-mediated three-components reaction as potential anticancer agents

, , , , , , , , & show all
Article: 2264324 | Received 23 May 2023, Accepted 24 Sep 2023, Published online: 04 Oct 2023

References

  • Yang, Y.; Liu, Q.; Shi, X.; Zheng, Q.; Chen, L.; Sun, Y. Advances in Plant-Derived Natural Products for Antitumor Immunotherapy. Arch. Pharm. Res. 2021, 44 (11), 987–1011.
  • Greco, G.; Catanzaro, E.; Fimognari, C. Natural Products as Inducers of Non-Canonical Cell Death: A Weapon Against Cancer. Cancers (Basel) 2021, 13 (2), 1–64.
  • Fang, Y.; Li, H.; Ji, B.; Cheng, K.; Wu, B.; Li, Z.; Zheng, C.; Hua, H.; Li, D. Renieramycin-type Alkaloids from Marine-Derived Organisms: Synthetic Chemistry, Biological Activity and Structural Modification. Eur. J. Med. Chem. 2021, 210, 113092.
  • Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R. U.S. FDA Approved Drugs from 2015-June 2020: A Perspective. J. Med. Chem. 2021, 64 (5), 2339–2381.
  • Davison, E.K.; Sperry, J. Natural Products with Heteroatom-Rich Ring Systems. J. Nat. Prod. 2017, 80 (11), 3060–3079.
  • Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs Over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75 (3), 311–35.
  • Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs Over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770–803.
  • Bailly, C. Anticancer Properties and Mechanism of Action of the Quassinoid Ailanthone. Phytother. Res. 2020, 34 (9), 2203–2213.
  • Abd El-Karim, S.S.; Mohamed, H.S.; Abdelhameed, M.F.; El-Galil, E.A.A.; Almehizia, A.A.; Nossier, E.S. Design, Synthesis and Molecular Docking of new Pyrazole-Thiazolidinones as Potent Anti-Inflammatory and Analgesic Agents with TNF-α Inhibitory Activity. Bioorg. Chem. 2021, 111, 104827.
  • Fadaly, W.A.A.; Elshaier, Y.; Hassanein, E.H.M.; Abdellatif, K.R.A. New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorg. Chem. 2020, 98, 103752.
  • Kumar, D.; Kumar, R.R.; Pathania, S.; Singh, P.K.; Kalra, S.; Kumar, B. Investigation of Indole Functionalized Pyrazoles and Oxadiazoles as Anti-Inflammatory Agents: Synthesis, in-Vivo, in-Vitro and in-Silico Analysis. Bioorg. Chem. 2021, 114, 105068.
  • Labib, M.B.; Fayez, A.M.; El-Nahass, E.S.; Awadallah, M.; Halim, P.A. Novel Tetrazole-Based Selective COX-2 Inhibitors: Design, Synthesis, Anti-Inflammatory Activity, Evaluation of PGE2, TNF-α, IL-6 and Histopathological Study. Bioorg. Chem. 2020, 104, 104308.
  • Gedawy, E.M.; Kassab, A.E.; El Kerdawy, A.M. Design, Synthesis and Biological Evaluation of Novel Pyrazole Sulfonamide Derivatives as Dual COX-2/5-LOX Inhibitors. Eur. J. Med. Chem. 2020, 189, 112066.
  • Sahoo, J.; Sahoo, C.R.; Nandini Sarangi, P.K.; Prusty, S.K.; Padhy, R.N.; Paidesetty, S.K. Molecules with Versatile Biological Activities Bearing Antipyrinyl Nucleus as Pharmacophore. Eur. J. Med. Chem. 2020, 186, 111911.
  • Turones, L.C.; Martins, A.N.; Moreira, L.; Fajemiroye, J.O.; Costa, E.A. Development of Pyrazole Derivatives in the Management of Inflammation. Fundam. Clin. Pharmacol. 2021, 35 (2), 217–234.
  • Marinescu, M. Synthesis of Antimicrobial Benzimidazole-Pyrazole Compounds and Their Biological Activities. Antibiotics (Basel) 2021, 10 (8), 1002.
  • Dorababu, A. Recent Update on Antibacterial and Antifungal Activity of Quinoline Scaffolds. Arch. Pharm. (Weinheim) 2021, 354 (3), e2000232.
  • Ibrahim, S.A.; Fayed, E.A.; Rizk, H.F.; Desouky, S.E.; Ragab, A. Hydrazonoyl bromide precursors as DHFR inhibitors for the synthesis of bis-thiazolyl pyrazole derivatives; antimicrobial activities, antibiofilm, and drug combination studies against MRSA. Bioorg. Chem. 2021, 116, 105339.
  • Liu, H.; Chu, Z.W.; Xia, D.G.; Cao, H.Q.; Lv, X.H. Discovery of Novel Multi-Substituted Benzo-Indole Pyrazole Schiff Base Derivatives with Antibacterial Activity Targeting DNA Gyrase. Bioorg. Chem. 2020, 99, 103807.
  • Mekky, A.E.M.; Sanad, S.M.H. Novel bis(Pyrazole-Benzofuran) Hybrids Possessing Piperazine Linker: Synthesis of Potent Bacterial Biofilm and MurB Inhibitors. Bioorg. Chem. 2020, 102, 104094.
  • Verma, R.; Verma, S.K.; Rakesh, K.P.; Girish, Y.R.; Ashrafizadeh, M.; Sharath Kumar, K.S.; Rangappa, K.S. Pyrazole-based Analogs as Potential Antibacterial Agents Against Methicillin-Resistance Staphylococcus Aureus (MRSA) and its SAR Elucidation. Eur. J. Med. Chem. 2021, 212, 113134.
  • Xu, Z.; Gao, C.; Ren, Q.C.; Song, X.F.; Feng, L.S.; Lv, Z.S. Recent Advances of Pyrazole-Containing Derivatives as Anti-Tubercular Agents. Eur. J. Med. Chem. 2017, 139, 429–440.
  • Hamed, A.A.; Abdelhamid, I.A.; Saad, G.R.; Elkady, N.A.; Elsabee, M.Z. Synthesis, Characterization and Antimicrobial Activity of a Novel Chitosan Schiff Bases Based on Heterocyclic Moieties. Int. J. Biol. Macromol. 2020, 153, 492–501.
  • Beheshti, A.; Bahrani-Pour, M.; Kolahi, M.; Shakerzadeh, E.; Motamedi, H.; Mayer, P. Synthesis, Structural Characterization, and Density Functional Theory Calculations of the two new Zn (II) Complexes as Antibacterial and Anticancer Agents with a Neutral Flexible Tetradentate Pyrazole-Based Ligand. Appl. Organometallic Chem. 2021, 35 (5), e6173.
  • Gaber, A.A.; El-Morsy, A.M.; Sherbiny, F.F.; Bayoumi, A.H.; El-Gamal, K.M.; El-Adl, K.; Al-Karmalawy, A.A.; Ezz Eldin, R.R.; Saleh, M.A.; Abulkhair, H.S. Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK Inhibitors: Synthesis, Anticancer Evaluation, Pharmacokinetics, and in silico Mechanistic Studies. Arch. Pharm. (Weinheim) 2021, 31, e2100258.
  • Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of Recent Developments of Pyrazole Derivatives as an Anticancer Agent in Different Cell Line. Bioorg. Chem. 2020, 97, 103470.
  • Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Anwar, M.M.; Nossier, E.S. New Pyrimidine and Pyrazole-Based Compounds as Potential EGFR Inhibitors: Synthesis, Anticancer, Antimicrobial Evaluation and Computational Studies. Bioorg. Chem. 2021, 114, 105078.
  • Wang, G.; Liu, W.; Peng, Z.; Huang, Y.; Gong, Z.; Li, Y. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Pyrazole-Naphthalene Derivatives as Potential Anticancer Agents on MCF-7 Breast Cancer Cells by Inhibiting Tubulin Polymerization. Bioorg. Chem. 2020, 103, 104141.
  • Hu, C.H.; Neissel Valente, M.W.; Halpern, O.S.; Jusuf, S.; Khan, J.A.; Locke, G.A.; Duke, G.J.; Liu, X.; Duclos, F.J.; Wexler, R.R.; Kick, E.K.; Smallheer, J.M. Small Molecule and Macrocyclic Pyrazole Derived Inhibitors of Myeloperoxidase (MPO). Bioorg. Med. Chem. Lett. 2021, 42, 128010.
  • Haribabu, J.; Balachandran, C.; Tamizh, M.M.; Arun, Y.; Bhuvanesh, N.S.P.; Aoki, S.; Karvembu, R. Unprecedented Formation of Palladium(II)-Pyrazole Based Thiourea from Chromone Thiosemicarbazone and [PdCl2(PPh3)2]: Interaction with Biomolecules and Apoptosis Through Mitochondrial Signaling Pathway. J. Inorg. Biochem. 2020, 205, 110988.
  • Singh, N.K.; Kumbhar, A.A.; Pokharel, Y.R.; Yadav, P.N. Anticancer Potency of Copper(II) Complexes of Thiosemicarbazones. J. Inorg. Biochem. 2020, 210, 111134.
  • Li, X.; Yu, Y.; Tu, Z. Pyrazole Scaffold Synthesis, Functionalization, and Applications in Alzheimer's Disease and Parkinson's Disease Treatment (2011–2020). Molecules 2021, 26, 1202.
  • Blair, L.M.; Sperry, J. Natural Products Containing a Nitrogen-Nitrogen Bond. J. Nat. Prod. 2013, 76 (4), 794–812.
  • Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance. Eur. J. Med. Chem. 2013, 69, 735–53.
  • Santos, N.E.; Carreira, A.R.F.; Silva, V.L.M.; Braga, S.S. Natural and Biomimetic Antitumor Pyrazoles, a Perspective. Molecules 2020, 25 (6), 1364.
  • Wang, S.; Zhang, B.; Chen, J.; Zheng, Y.; Feng, N.; Ma, A.; Xu, X.; Abdullah, M.A. Recent Advances in Ni-Catalyzed Allylic Substitution Reactions. Chin. J. Org. Chem. 2019, 39 (1), 15–27.
  • Michon, V.; du Penhoat, C.H.; Tombret, F.; Gillardin, J.M.; Lepage, F.; Berthon, L. Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-Aminopyrazole N-Benzoyl Derivatives. Eur. J. Med. Chem. 1995, 30 (2), 147–155.
  • Hameed, P.S.; Manjrekar, P.; Chinnapattu, M.; Humnabadkar, V.; Shanbhag, G.; Kedari, C.; Mudugal, N.V.; Ambady, A.; de Jonge, B.L.; Sadler, C.; Paul, B.; Sriram, S.; Kaur, P.; Guptha, S.; Raichurkar, A.; Fleming, P.; Eyermann, C.J.; McKinney, D.C.; Sambandamurthy, V.K.; Panda, M.; Ravishankar, S. Pyrazolopyrimidines Establish MurC as a Vulnerable Target in Pseudomonas Aeruginosa and Escherichia Coli. ACS Chem. Biol. 2014, 9 (10), 2274–82.
  • Brawn, R.A.; Cook, A.; Omoto, K.; Ke, J.; Karr, C.; Colombo, F.; Virrankoski, M.; Prajapati, S.; Reynolds, D.; Bolduc, D.M.; Nguyen, T.V.; Gee, P.; Borrelli, D.; Caleb, B.; Yao, S.; Irwin, S.; Larsen, N.A.; Selvaraj, A.; Zhao, X.; Ioannidis, S. Discovery of Aminopyrazole Derivatives as Potent Inhibitors of Wild-Type and Gatekeeper Mutant FGFR2 and 3. ACS. Med. Chem. Lett. 2021, 12 (1), 93–98.
  • Fekri, A.; Keshk, E.M.; Khalil, A.M.; Taha, I. Synthesis of Novel Antioxidant and Antitumor 5-Aminopyrazole Derivatives, 2D/3D QSAR, and Molecular Docking. Mol. Divers. 2022, 26, 781–800.
  • King, H.M.; Rana, S.; Kubica, S.P.; Mallareddy, J.R.; Kizhake, S.; Ezell, E.L.; Zahid, M.; Naldrett, M.J.; Alvarez, S.; Law, H.C.; Woods, N.T.; Natarajan, A. Aminopyrazole Based CDK9 PROTAC Sensitizes Pancreatic Cancer Cells to Venetoclax. Bioorg. Med. Chem. Lett. 2021, 43, 128061.
  • Pilakowski, J.; Baumann, G.; Shih, Y.H.; Meckel, T.; Schmidt, B. Design, Synthesis and Biological Evaluation of Novel Aminopyrazole- and 7-Azaindole-Based Nek1 Inhibitors and Their Effects on Zebrafish Kidney Development. Bioorg. Med. Chem. Lett. 2021, 53, 128418.
  • Pevarello, P.; Brasca, M.G.; Amici, R.; Orsini, P.; Traquandi, G.; Corti, L.; Piutti, C.; Sansonna, P.; Villa, M.; Pierce, B.S.; Pulici, M.; Giordano, P.; Martina, K.; Fritzen, E.L.; Nugent, R.A.; Casale, E.; Cameron, A.; Ciomei, M.; Roletto, F.; Isacchi, A.; Fogliatto, G.; Pesenti, E.; Pastori, W.; Marsiglio, A.; Leach, K.L.; Clare, P.M.; Fiorentini, F.; Varasi, M.; Vulpetti, A.; Warpehoski, M.A. 3-Aminopyrazole Inhibitors of CDK2/Cyclin A as Antitumor Agents. 1. Lead Finding. J. Med. Chem. 2004, 47 (13), 3367–80.
  • Rana, S.; Sonawane, Y.A.; Taylor, M.A.; Kizhake, S.; Zahid, M.; Natarajan, A. Synthesis of Aminopyrazole Analogs and Their Evaluation as CDK Inhibitors for Cancer Therapy. Bioorg. Med. Chem. Lett. 2018, 28 (23-24), 3736–3740.
  • Almehmadi, S.J.; Alsaedi, A.M.R.; Harras, M.F.; Farghaly, T.A. Synthesis of a New Series of Pyrazolo[1,5-a]Pyrimidines as CDK2 Inhibitors and Anti-Leukemia. Bioorg. Chem. 2021, 117, 105431.
  • Dalinger, I.L.; Vatsadse, I.A.; Shkineva, T.K.; Popova, G.P.; Ugrak, B.I.; Shevelev, S.A. Nitropyrazoles. Russ. Chem. Bull. 2010, 59 (8), 1631–1638.
  • Ravi, P.; Tewari, S.P. Facile and Environmentally Friendly Synthesis of Nitropyrazoles Using Montmorillonite K-10 Impregnated with Bismuth Nitrate. Catal. Commun. 2012, 19, 37–41.
  • Ravi, P.; Gore, G.M.; Tewari, S.P.; Sikder, A.K. A Simple and Environmentally Benign Nitration of Pyrazoles by Impregnated Bismuth Nitrate. J. Heterocyclic. Chem. 2013, 50 (6), 1322–1327.
  • Tairov, M.A.; Levchenko, V.; Stadniy, I.A.; Dmytriv, Y.V.; Dehtiarov, S.O.; Kibalnyi, M.O.; Melnyk, A.V.; Veselovych, S.Y.; Borodulin, Y.V.; Kolotilov, S.V.; Ryabukhin, S.V.; Volochnyuk, D.M. Practical Synthetic Method for Functionalized 1-Methyl-3/5-(Trifluoromethyl)−1H-Pyrazoles. Org. Proc. Res. Devel. 2020, 24 (11), 2619–2632.
  • Mercuri, G.; Moroni, M.; Domasevitch, K.V.; Di Nicola, C.; Campitelli, P.; Pettinari, C.; Giambastiani, G.; Galli, S.; Rossin, A. Carbon Dioxide Capture and Utilization with Isomeric Forms of bis(Amino)-Tagged Zinc Bipyrazolate Metal-Organic Frameworks. Chemistry 2021, 27 (14), 4746–4754.
  • Quinn, J.F.; Bryant, C.E.; Golden, K.C.; Gregg, B.T. Rapid Reduction of Heteroaromatic Nitro Groups Using Catalytic Transfer Hydrogenation with Microwave Heating. Tetrahedron Lett. 2010, 51 (5), 786–789.
  • Lohou, E.; Collot, V.; Lohou, E.; Stiebing, S.; Rault, S. Direct Access to 3-Aminoindazoles by Buchwald-Hartwig C-N Coupling Reaction. Synthesis 2011, 2011 (16), 2651–2663.
  • Su, M.; Hoshiya, N.; Buchwald, S.L. Palladium-catalyzed Amination of Unprotected Five-Membered Heterocyclic Bromides. Org. Lett. 2014, 16 (3), 832–5.
  • Wood, S.D.; Grant, W.; Adrados, I.; Choi, J.Y.; Alburger, J.M.; Duckett, D.R.; Roush, W.R. In Silico HTS and Structure Based Optimization of Indazole-derived ULK1 Inhibitors. ACS. Med. Chem. Lett. 2017, 8 (12), 1258–1263.
  • Bollenbach, M.; Lugnier, C.; Kremer, M.; Salvat, E.; Megat, S.; Bihel, F.; Bourguignon, J.J.; Barrot, M.; Schmitt, M. Design and Synthesis of 3-Aminophthalazine Derivatives and Structural Analogues as PDE5 Inhibitors: Anti-Allodynic Effect Against Neuropathic Pain in a Mouse Model. Eur. J. Med. Chem. 2019, 177, 269–290.
  • Thalji, R.K.; Raha, K.; Andreotti, D.; Checchia, A.; Cui, H.; Meneghelli, G.; Profeta, R.; Tonelli, F.; Tommasi, S.; Bakshi, T.; Donovan, B.T.; Howells, A.; Jain, S.; Nixon, C.; Quinque, G.; McCloskey, L.; Bax, B.D.; Neu, M.; Chan, P.F.; Stavenger, R.A. Structure-guided Design of Antibacterials That Allosterically Inhibit DNA Gyrase. Bioorg. Med. Chem. Lett. 2019, 29 (11), 1407–1412.
  • Wang, X.R.; Wang, S.; Li, W.B.; Xu, K.Y.; Qiao, X.P.; Jing, X.L.; Wang, Z.X.; Yang, C.J.; Chen, S.W. Design, Synthesis and Biological Evaluation of Novel 2-(4-(1H-Indazol-6-yl)-1H-Pyrazol-1-yl)Acetamide Derivatives as Potent VEGFR-2 Inhibitors. Eur. J. Med. Chem. 2021, 213, 113192.
  • Abunada, N.; Hassaneen, H.; Kandile, N.; Miqdad, O. Synthesis and Antimicrobial Activity of Some New Pyrazole, Fused Pyrazolo[3,4-d]-pyrimidine and Pyrazolo[4,3-e][1,2,4]-triazolo[1,5-c]pyrimidine Derivatives. Molecules 2008, 13 (7), 1501–1517.
  • Zhdankin, V.V.; Anwar, H.F.; Elnagdi, M.H. Recent Developments in Aminopyrazole Chemistry. Arkivoc 2009, 2009 (1), 198–250.
  • Moy, F.J.; Lee, A.; Gavrin, L.K.; Xu, Z.B.; Sievers, A.; Kieras, E.; Stochaj, W.; Mosyak, L.; McKew, J.; Tsao, D.H. Novel Synthesis and Structural Characterization of a High-Affinity Paramagnetic Kinase Probe for the Identification of non-ATP Site Binders by Nuclear Magnetic Resonance. J. Med. Chem. 2010, 53 (3), 1238–49.
  • Labroli, M.A.; Dwyer, M.P.; Poker, C.; Keertikar, K.M.; Rossman, R.; Guzi, T.J. A Convergent Preparation of the CHK1 Inhibitor MK-8776 (SCH 900776). Tetrahedron Lett. 2016, 57 (24), 2601–2603.
  • Guillard, J.; Goujon, F.; Badol, P.; Poullain, D. New Synthetic Route to Diaminonitropyrazoles as Precursors of Energetic Materials. Tetrahedron Lett. 2003, 44 (31), 5943–5945.
  • Langer, P.; Pfeiffer, W.-D.; Dilk, E.; Roßberg, H. Synthesis and Reactivity of 3,4-dimethyl-4H-1,3,4-thiadiazines. Synlett. 2003, 15, 2392–2394.
  • Wangngae, S.; Pattarawarapan, M.; Phakhodee, W. Ph3P/I2-Mediated Synthesis of N,N′,N″-substituted Guanidines and 2-iminoimidazolin-4-ones from Aryl Isothiocyanates. J. Org. Chem. 2017, 82 (19), 10331–10340.
  • Li, J.-S.; Xie, X.-Y.; Jiang, S.; Yang, P.-P.; Li, Z.-W.; Lu, C.-H.; Liu, W.-D. Reagent-free Aerobic Oxidative Synthesis of Amides from Aldehydes and Isothiocyanates. Org. Chem. Front. 2021, 8 (4), 697–701.
  • Yang, J.; Chen, L.; Dong, Y.; Zhang, J.; Wu, Y. Di-tert-butyl Peroxide (DTBP)-Mediated Synthesis of Symmetrical N,N′-Disubstituted Urea/Thiourea Motifs from Isothiocyanates in Water. Synth. Commun. 2021, 52 (1), 63–78.
  • Fantinati, A.; Morciano, G.; Turrin, G.; Pedriali, G.; Pacifico, S.; Preti, D.; Albanese, V.; Illuminati, D.; Cristofori, V.; Giorgi, C.; Tremoli, E.; Pinton, P.; Trapella, C. Identification of Small-Molecule Urea Derivatives as PTPC Modulators Targeting the c Subunit of F1/Fo-ATP Synthase. Bioorg. Med. Chem. Lett. 2022, 72, 128822.
  • Yang, C.L.; Gao, X.J.; Jiang, X.Y.; Shi, Z.; Hao, E.J.; Dong, Z.B. Synthesis of Unsymmetric Thiosulfonates Starting from N-Substituted O-Thiocarbamates: Easy Access to the S-SO2 Bond. J. Org. Chem. 2022, 87 (17), 11656–11668.
  • Bolli, M.H.; Abele, S.; Binkert, C.; Bravo, R.; Buchmann, S.; Bur, D.; Gatfield, J.; Hess, P.; Kohl, C.; Mangold, C.; Mathys, B.; Menyhart, K.; Muller, C.; Nayler, O.; Scherz, M.; Schmidt, G.; Sippel, V.; Steiner, B.; Strasser, D.; Treiber, A.; Weller, T. 2-Imino-thiazolidin-4-one Derivatives as Potent, Orally Active S1P1 Receptor Agonists. J. Med. Chem. 2010, 53 (10), 4198–211.
  • Rostamizadeh, S.; Aryan, R.; Reza Ghaieni, H.; Mohammad Amani, A. Efficient Synthesis of 1,3,4-Thiadiazoles Using Hydrogen Bond Donor (Thio)Urea Derivatives as Organocatalysts. J. Heterocyclic. Chem. 2010, 47, 616.
  • Yella, R.; Khatun, N.; Rout, S.K.; Patel, B.K. Tandem Regioselective Synthesis of Tetrazoles and Related Heterocycles Using Iodine. Org. Biomol. Chem. 2011, 9 (9), 3235–3245.
  • Guin, S.; Rout, S.K.; Gogoi, A.; Nandi, S.; Ghara, K.K.; Patel, B.K. Desulfurization Strategy in the Construction of Azoles Possessing Additional Nitrogen, Oxygen or Sulfur Using a Copper(I) Catalyst. Adv. Synth. Catal. 2012, 354 (14-15), 2757–2770.
  • Polucci, P.; Magnaghi, P.; Angiolini, M.; Asa, D.; Avanzi, N.; Badari, A.; Bertrand, J.; Casale, E.; Cauteruccio, S.; Cirla, A.; Cozzi, L.; Galvani, A.; Jackson, P.K.; Liu, Y.; Magnuson, S.; Malgesini, B.; Nuvoloni, S.; Orrenius, C.; Sirtori, F.R.; Riceputi, L.; Rizzi, S.; Trucchi, B.; O’Brien, T.; Isacchi, A.; Donati, D.; D’Alessio, R. Alkylsulfanyl-1,2,4-triazoles, a New Class of Allosteric Valosine Containing Protein Inhibitors. Synthesis and Structure–Activity Relationships. J. Med. Chem. 2013, 56 (2), 437–450.
  • Chandrasekhar, A.; Ramkumar, V.; Sankararaman, S. Palladium Catalyzed Carbonylative Annulation of the C(sp2)-H Bond of N,1-diaryl-1H-tetrazol-5-amines and N,4-diaryl-4H-triazol-3-amines to Quinazolinones. Org. Biomol. Chem. 2018, 16 (44), 8629–8638.
  • Prevost, J.R.C.; Kozlova, A.; Es Saadi, B.; Yildiz, E.; Modaffari, S.; Lambert, D.M.; Pochet, L.; Wouters, J.; Dolušić, E.; Frédérick, R. Convenient One-pot Formation of Highly Functionalized 5-Bromo-2-Aminothiazoles, Potential Endocannabinoid Hydrolase MAGL Inhibitors. Tetrahedron Lett. 2018, 59 (49), 4315–4319.
  • Patil, M.; Mhaldar, P.; Mahadik, V.; Pore, D.M. Novel, Green and Sustainable Route for Synthesis of 5-aryl-4-phenyl-1,2,4-triazolidine-3-thiones. Tetrahedron Lett. 2020, 61 (25), 152015.
  • Fouad, S.A.; El-Gendey, M.S.; Ahmed, E.M.; Hessein, S.A.; Ammar, Y.A.; Zaki, Y.H. Convenient Synthesis of Some New Thiophene, Pyrazole, and Thiazole Derivatives Bearing Biologically Active Sulfonyl Guanidine Moiety. Polycycl. Aromat. Comp. 2021, 42 (9), 6628–6646.
  • Kadagathur, M.; Sigalapalli, D.K.; Patra, S.; Tangellamudi, N.D. Microwave-assisted Hydrogen Peroxide-Mediated Synthesis of Benzoxazoles and Related Heterocycles via Cyclodesulfurization. Synth. Commun. 2021, 51 (14), 2213–2224.
  • Tantawy, A.H.; El-Behairy, M.F.; Abd-Allah, W.H.; Jiang, H.; Wang, M.Q.; Marzouk, A.A. Design, Synthesis, Biological Evaluation, and Computational Studies of Novel Fluorinated Candidates as PI3 K Inhibitors: Targeting Fluorophilic Binding Sites. J. Med. Chem. 2021, 64 (23), 17468–17485.
  • Xu, Y.; Li, F.; Zhao, N.; Su, J.; Wang, C.; Wang, C.; Li, Z.; Wang, L. Environment-friendly and Efficient Synthesis of 2-Aminobenzo-Xazoles and 2-Aminobenzothiazoles Catalyzed by Vitreoscilla Hemoglobin Incorporating a Cobalt Porphyrin Cofactor. Green Chem. 2021, 23 (20), 8047–8052.
  • Han, L.; Gan, L.; Hu, X.; Li, W.; Zhu, D.; Zheng, J.; Wu, Y.; Yu, Y.; Gan, Z. Cu(OAc)2 Mediated Mild Synthesis of 2-aminobenzimidazoles and 2-aminobenzoxazoles. Synth. Commun. 2022, 52 (7), 1050–1058.
  • Hu, Y.; Chen, L.; Zou, C.; He, J.; Feng, L.; Wu, J.Q.; Chen, W.H.; Hu, J. Access to 3-amino-[1,2,4]-triazolo Pyridines and Related Heterocycles Via Electrochemically Induced Desulfurative Cyclization. Org. Lett. 2022, 24 (28), 5137–5142.
  • Klug, T.; Cronin, A.; O'Brien, E.; Schioldager, R.; Johnson, H.; Gleason, C.; Schmid, C.; Soderberg, N.; Manjunath, A.; Liyanage, D.; Lazaro, H.; Kimball, J.J.; Eagon, S. Microwave Mediated Synthesis of 2-Aminooxazoles. Tetrahedron Lett. 2022, 88, 153555.
  • Lim, J.H.; Baek, S.E.; Lad, B.S.; Kim, J. Synthesis of 2-Imino-1,3,4-Oxadiazolines from Acylhydrazides and Isothiocyanates via Aerobic Oxidation and a DMAP-Mediated Annulation Sequence. ACS Omega 2022, 7 (32), 28148–28159.
  • Reda Aouad, M.; Almehmadi, M.A.; Faleh Albelwi, F.; Teleb, M.; Tageldin, G.N.; Abu-Serie, M.M.; Hagar, M.; Rezki, N. Targeting the Interplay Between MMP-2, CA II and VEGFR-2 via New Sulfonamide-Tethered Isomeric Triazole Hybrids; Microwave-Assisted Synthesis, Computational Studies and Evaluation. Bioorg. Chem. 2022, 124, 105816.
  • Bhagat, S.; Chakraborti, A.K. An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik−Fields Reaction) for the Synthesis of α-Aminophosphonates Catalyzed by Magnesium Perchlorate. J. Org. Chem. 2007, 72 (4), 1263–1270.
  • Bhagat, S.; Chakraborti, A.K. Zirconium(IV) Compounds As Efficient Catalysts for Synthesis of α-Aminophosphonates. J. Org. Chem. 2008, 73 (15), 6029–6032.
  • Bhagat, S.; Shah, P.; Garg, S.K.; Mishra, S.; Kamal Kaur, P.; Singh, S.; Chakraborti, A.K. α-Aminophosphonates as Novel Anti-Leishmanial Chemotypes: Synthesis, Biological Evaluation, and CoMFA Studies. Med. Chem. Commun. 2014, 5 (5), 665–670.
  • Bhagat, S.; Supriya, M.; Pathak, S.; Sriram, D.; Chakraborti, A.K. α-Sulfonamidophosphonates as new Anti-Mycobacterial Chemotypes: Design, Development of Synthetic Methodology, and Biological Evaluation. Bioorg. Chem. 2019, 82, 246–252.
  • Kumar, D.; Kommi, D.N.; Chopra, P.; Ansari, M.I.; Chakraborti, A.K. L-Proline-catalyzed Activation of Methyl ketones or Active Methylene Compounds and DMF-DMA for Syntheses of (2E)-3-dimethylamino-2-propen-1-ones. Eur. J. Org. Chem. 2012, 2012 (32), 6407–6413.
  • Sarkar, A.; Raha Roy, S.; Kumar, D.; Madaan, C.; Rudrawar, S.; Chakraborti, A.K. Lack of Correlation Between Catalytic Efficiency and Basicity of Amines During the Reaction of Aryl Methyl Ketones with DMF-DMA: An Unprecedented Supramolecular Domino Catalysis. Org. Biomol. Chem. 2012, 10 (2), 281–286.
  • Chakraborti, A.; Parikh, N.; Roy, S.; Seth, K.; Kumar, A. ‘On-Water’ Multicomponent Reaction for the Diastereoselective Synthesis of Functionalized Tetrahydropyridines and Mechanistic Insight. Synthesis 2016, 48 (04), 547–556.
  • Chakraborti, A.; Roy, S.; Jadhavar, P.; Seth, K.; Sharma, K. Organocatalytic Application of Ionic Liquids: [bmim][MeSO4] as a Recyclable Organocatalyst in the Multicomponent Reaction for the Preparation of Dihydropyrimidinones and -Thiones. Synthesis 2011, 2011 (14), 2261–2267.
  • Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, Biological Evaluation and Structure-Activity Relationship of 2-Styrylquinazolones as Anti-Tubercular Agents. Bioorg. Med. Chem. Lett. 2016, 26 (11), 2663–2669.
  • Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia, S.; Chakraborti, A.K. Convenient Synthesis of 2,3-Disubstituted Quinazolin-4(3H)-Ones and 2-Styryl-3-Substituted Quinazolin-4(3H)-Ones: Applications Towards the Synthesis of Drugs. RSC Adv. 2015, 5 (39), 30819–30825.
  • Kumar, D.; Kommi, D.N.; Bollineni, N.; Patel, A.R.; Chakraborti, A.K. Catalytic Procedures for Multicomponent Synthesis of Imidazoles: Selectivity Control During the Competitive Formation of tri- and Tetrasubstituted Imidazoles. Green Chem. 2012, 14 (7), 2038–2049.
  • Kumar, D.; Kumar, A.; Qadri, M.M.; Ansari, M.I.; Gautam, A.; Chakraborti, A.K. In(OTf)3-catalyzed Synthesis of 2-styryl Quinolines: Scope and Limitations of Metal Lewis Acids for Tandem Friedländer Annulation–Knoevenagel Condensation. RSC Adv. 2015, 5 (4), 2920–2927.
  • Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K. Supported Protic Acid-Catalyzed Synthesis of 2,3-Disubstituted Thiazolidin-4-Ones: Enhancement of the Catalytic Potential of Protic Acid by Adsorption on Solid Supports. Green Chem. 2013, 15 (10), 2872–2884.
  • Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16 Rev. B.01; Wallingford, CT, 2016.
  • Lu, T.; Chen, Q. Shermo: A General Code for Calculating Molecular Thermochemistry Properties. Comput. Theor. Chem. 2021, 1200, 113249.
  • Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61 (8), 3891–3898.
  • Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51 (10), 2778–2786.
  • Schrödinger, L.; DeLano, W. PyMOL, 2020.
  • Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33 (5), 580–592.
  • Lu, T.; Chen, Q. A Simple Method of Identifying π Orbitals for non-Planar Systems and a Protocol of Studying π Electronic Structure. Theor. Chem. Acc. 2020, 139 (2), 25.
  • Sanner, M.F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17 (1), 57–61.
  • Momma, K.; Izumi, F. VESTA 3 for Three-dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44 (6), 1272–1276.