1,050
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Green synthesis of gold and silver nanoparticles as antidiabetic and anticancerous agents

, , , , &
Article: 2275666 | Received 30 Jan 2023, Accepted 21 Oct 2023, Published online: 06 Nov 2023

References

  • Milojević, S. Multidisciplinary Cognitive Content of Nanoscience and Nanotechnology. J. Nanopart. Res. 2012, 14 (1), 1–28.
  • Zhu, S.; Meng, H.; Gu, Z.; Zhao, Y. Research Trend of Nanoscience and Nanotechnology–A Bibliometric Analysis of Nano Today. Nano. Today. 2021, 39, 101233.
  • Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology Approaches for Global Infectious Diseases. Nat. Nanotechnol. 2021, 16 (4), 369–384.
  • Farooq, B.; Anjum, S.; Farooq, M.; Rather, G.A.; Nazir, A.; Nayak, B.K.; Nanda, A. Role of Nanotechnology in Soil Microbiome and Agricultural Development. In Core Microbiome: Improving Crop Quality and Productivity, Wiley. 2022; pp 230–248.
  • Borm, P.J.; Kreyling, W. Toxicological Hazards of Inhaled Nanoparticles—Potential Implications for Drug Delivery. J. Nanosci. Nanotechnol. 2004, 4 (5), 521–531.
  • Najeeb, J.; Farwa, U.; Ishaque, F.; Munir, H.; Rahdar, A.; Nazar, M.F.; Zafar, M.N. Surfactant Stabilized Gold Nanomaterials for Environmental Sensing Applications–A Review. Environ. Res. 2022, 208, 112644.
  • Bharadwaj, K.K.; Rabha, B.; Pati, S.; Sarkar, T.; Choudhury, B.K.; Barman, A.; Bhattacharjya, D.; Srivastava, A.; Baishya, D.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021, 26 (21), 6389.
  • Zhao, Y.; Zhang, Z.; Pan, Z.; Liu, Y. Advanced Bioactive Nanomaterials for Biomedical Applications. Exploration. 2021, 1 (3), 0089.
  • Hammami, I.; Alabdallah, N.M. Gold Nanoparticles: Synthesis Properties and Applications. J. King Saud Univ-Sci. 2021, 33 (7), 101560.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12 (7), 908–931.
  • Kalpana, V.; Devi Rajeswari, V. A Review on Green Synthesis: Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 3569758.
  • Lou-Franco, J., Das, B.; Elliott, C.; Cao, C. Gold Nanozymes: From Concept to Biomedical Applications. Nano-micro Lett. 2021, 13 (1), 1–36.
  • Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.; Poinern, G. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8 (11), 7278–7308.
  • Ullah, S.; Shah, S.W.A.; Qureshi, M.T.; Hussain, Z.; Ullah, I.; Kalsoom, U.-e.; Rahim, F.; Rahman, S.S.u.; Sultana, N.; Khan, M.K. Antidiabetic and Hypolipidemic Potential of Green AgNPs Against Diabetic Mice. ACS Appl. Bio. Mater. 2021, 4 (4), 3433–3442.
  • Benko, A.; Truong, L. B.; Medina-Cruz, D.; Mostafavi, E.; Cholula-Díaz, J. L.; Webster, T. J. Green Nanotechnology in Cardiovascular Tissue Engineering, in Tissue Engineering. 2022; pp. 237–281.
  • Yap, J.K.; Sankaran, R.; Chew, K.W.; Halimatul Munawaroh, H.S.; Ho, S.-H.; Rajesh Banu, J.; Show, P.L. Advancement of Green Technologies: A Comprehensive Review on the Potential Application of Microalgae Biomass. Chemosphere 2021, 281, 130886.
  • Yayayürük, A.E.; Yayayürük, O. Recent Advances in Environmental Analysis Towards Green Nanomaterials. Curr. Anal. Chem. 2021, 17 (4), 449–460.
  • Zubair, M.; Azeem, M.; Mumtaz, R.; Younas, M.; Adrees, M.; Zubair, E.; Khalid, A.; Hafeez, F.; Rizwan, M.; Ali, S. Green Synthesis and Characterization of Silver Nanoparticles from Acacia nilotica and Their Anticancer, Antidiabetic and Antioxidant Efficacy. Environ. Pollut. 2022, 304, 119249.
  • Kiran, M., et al. Green Synthesis and Characterization of Gold Nanoparticles from Moringa oleifera Leaves and Assessment of Antioxidant, Antidiabetic and Anticancer Properties: 2021, 33. p. 100714.
  • Hosny, M.; Fawzy, M.; El-Fakharany, E.M.; Omer, A.M.; El-Monaem, E.M.A.; Khalifa, R.E.; Eltaweil, A.S. Biogenic Synthesis, Characterization, Antimicrobial, Antioxidant, Antidiabetic, and Catalytic Applications of Platinum Nanoparticles Synthesized from Polygonum salicifolium Leaves. J. Env. Chem. Eng. 2022, 10 (1), 106806.
  • Gulbagca, F.; Aygün, A.; Gülcan, M.; Ozdemir, S.; Gonca, S.; Şen, F. Green Synthesis of Palladium Nanoparticles: Preparation, Characterization, and Investigation of Antioxidant, Antimicrobial, Anticancer, and DNA Cleavage Activities. Appl. Organomet. Chem. 2021, 35 (8), e6272.
  • Koutavarapu, R.; Tamtam, M.R.; Rao, M.C.; Peera, S.G.; Shim, J. Recent Progress in Transition Metal Oxide/Sulfide Quantum Dots-Based Nanocomposites for the Removal of Toxic Organic Pollutants. Chemosphere 2021, 272, 129849.
  • Abdussalam-Mohammed, W. Comparison of Chemical and Biological Properties of Metal Nanoparticles (Au, Ag), with Metal Oxide Nanoparticles (ZnO-NPs) and Their Applications. Adv. J. Chem. Sect. A 2020, 3 (2), 111–236.
  • Kamel, S.; Khattab, T.A. Recent Advances in Cellulose Supported Metal Nanoparticles as Green and Sustainable Catalysis for Organic Synthesis. Cellulose 2021, 28 (8), 4545–4574.
  • Yang, S.-Z., et al. Recent Progress in the Optical Detection of Pathogenic Bacteria Based on Noble Metal Nanoparticles. Microchim. Acta 2021, 188 (8), 1–23.
  • Montes-García, V.; Squillaci, M.A.; Diez-Castellnou, M.; Ong, Q.K.; Stellacci, F.; Samorì, P. Chemical Sensing with Au and Ag Nanoparticles. Chem. Soc. Rev. 2021, 50 (2), 1269–1304.
  • Liu, M.; Anderson, R.; Lan, X.; Conti, P.S.; Chen, K. Recent Advances in the Development of Nanoparticles for Multimodality Imaging and Therapy of Cancer. Med. Res. Rev. 2020, 40 (3), 909–930.
  • Liu, L.; Jiang, H.; Wang, X. Functionalized Gold Nanomaterials as Biomimetic Nanozymes and Biosensing Actuators. TrAC, Trends Anal. Chem. 2021, 143, 116376.
  • Luan, S.; Xie, R.; Yang, Y.; Xiao, X.; Zhou, J.; Li, X.; Fang, P.; Zeng, X.; Yu, X.; Chen, M.; Gao, H.; Yuan, Y. Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. Small 2022, 18 (19), 2200115.
  • Dewanjee, S.; Chakraborty, P.; Mukherjee, B.; De Feo, V. Plant-based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int. J. Mol. Sci. 2020, 21 (6), 2217.
  • Rautray, S.; Rajananthini, A.U. Therapeutic Potential of Green, Synthesized Gold Nanoparticles. BioPharm. Int 2020, 33, 30–38.
  • Farwa, U.; Raza, M.A. Heterocyclic Compounds as a Magic Bullet for Diabetes Mellitus: A Review. RSC Adv. 2022, 12 (35), 22951–22973.
  • Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21 (17), 6275.
  • Barfield, W.D.; Warner, L. Preventing Chronic Disease in Women of Reproductive Age: Opportunities for Health Promotion and Preventive Services. Prev. Chronic Dis. 2012, 9.
  • Sivaprasad, S.; Gupta, B.; Crosby-Nwaobi, R.; Evans, J. Prevalence of Diabetic Retinopathy in Various Ethnic Groups: A Worldwide Perspective. Surv. Ophthalmol. 2012, 57 (4), 347–370.
  • Cousin, E., et al. Burden of Diabetes and Hyperglycaemia in Adults in the Americas, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Diabetes Endocrinol. 2022, 10 (9), 655–667.
  • Ferreira, L.L.; Andricopulo, A.D. Cancer Estimates in Brazil Reveal Progress for the Most Lethal Malignancies. Curr. Top. Med. Chem. 2020, 20 (22), 1962–1966.
  • Saygili, A. Classification and Diagnostic Prediction of Breast Cancers via Different Classifiers. Int Sci Vocational Stud J. 2018, 2 (2), 48–56.
  • Liu, H.; Yang, D.; Chen, X.; Sun, Z.; Zou, Y.; Chen, C.; Sun, S. The Effect of Anticancer Treatment on Cancer Patients with COVID-19: A Systematic Review and Meta-Analysis. Cancer. Med. 2021, 10 (3), 1043–1056.
  • Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A Double-Edged Sword in Cancer Treatment. Cancer Immunol. Immunother. 2022, 71 (3), 507–526.
  • Aslonov, S. Modern Approaches to Oropharyngeal Cancer Therapy. Int. J. Discoveries Innov. Appl. Sci. 2021, 1 (3), 38–39.
  • Gasparri, M.L.; Gentilini, O.D.; Lueftner, D.; Kuehn, T.; Kaidar-Person, O.; Poortmans, P. Changes in Breast Cancer Management During the Corona Virus Disease 19 Pandemic: An International Survey of the European Breast Cancer Research Association of Surgical Trialists (EUBREAST). The Breast 2020, 52, 110–115.
  • Ramos-Garcia, P.; Roca-Rodriguez, M.d.M.; Aguilar-Diosdado, M.; Gonzalez-Moles, M.A. Diabetes Mellitus and Oral Cancer/Oral Potentially Malignant Disorders: A Systematic Review and Meta-Analysis. Oral Dis. 2021, 27 (3), 404–421.
  • Zheng, Z.; Liu, Y.; Yang, J.; Tan, C.; Zhou, L.; Wang, X.; Xiao, L.; Zhang, S.; Chen, Y.; Liu, X. Diabetes Mellitus Induced by Immune Checkpoint Inhibitors. Diabetes Metab. Res. Rev. 2021, 37 (1), e3366.
  • Bragagnoli, A.C.; Araujo, R.L.C.; Ferraz, M.W.; dos Santos, L.V.; Abdalla, K.C.; Comar, F.; Santos, F.A.; Oliveira, M.A.; Carvalheira, J.B.C.; Cárcano, F.M.; da Silveira Nogueira Lima, J.P. Metformin Plus Lrinotecan in Patients with Refractory Colorectal Cancer: A Phase 2 Clinical Trial. Br. J. Cancer 2021, 124 (6), 1072–1078.
  • Vieira Barbosa, J.; Lai, M. Nonalcoholic Fatty Liver Disease Screening in Type 2 Diabetes Mellitus Patients in the Primary Care Setting. Hepatol. Commun. 2021, 5 (2), 158–167.
  • Duan, Y.R.; Chen, B.; Chen, F.; Yang, S.; Zhu, C.; Ma, Y.; Li, Y.; Shi, J. LncRNA lnc-ISG20 Promotes Renal Fibrosis in Diabetic Nephropathy by Inducing AKT Phosphorylation Through miR-486-5p/NFAT5. J. Cell. Mol. Med. 2021, 25 (11), 4922–4937.
  • Dobruch, J.; Oszczudłowski, M. Bladder Cancer: Current Challenges and Future Directions. Medicina 2021, 57 (8), 749.
  • Shikata, K.; Ninomiya, T.; Kiyohara, Y. Diabetes Mellitus and Cancer Risk: Review of the Epidemiological Evidence. Cancer Sci. 2013, 104 (1), 9–14.
  • Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and Cancer: A Consensus Report. Diabetes Care 2010, 33 (7), 1674–1685.
  • Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World. J. Oncol. 2019, 10 (1), 10–27.
  • Alam, S.; Hasan, M.K.; Neaz, S.; Hussain, N.; Hossain, M.F.; Rahman, T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology 2021, 2 (2), 36–50.
  • Gram, M.; Ekström, C.; Holmqvist, B.; Carey, G.; Wang, X.; Vallius, S.; Hellström, W.; Ortenlöf, N.; Agyemang, A.A.; Smith, L.E.H.; Hellström, A.; Mangili, A.; Barton, N.; Ley, D. Insulin-Like Growth Factor 1 in the Preterm Rabbit Pup: Characterization of Cerebrovascular Maturation Following Administration of Recombinant Human Insulin-Like Growth Factor 1/Insulin-Like Growth Factor 1-Binding Protein 3. Dev. Neurosci. 2021, 43 (5), 281–295.
  • Poreba, E.; Durzynska, J. Nuclear Localization and Actions of the Insulin-Like Growth Factor 1 (IGF-1) System Components: Transcriptional Regulation and DNA Damage Response. Mutat. Res./Rev. Mutat. Res. 2020, 784, 108307.
  • Chughtai, S. The Nuclear Translocation of Insulin-Like Growth Factor Receptor and its Significance in Cancer Cell Survival. Cell Biochem. Funct. 2020, 38 (4), 347–351.
  • Shirakawa, J.; Tajima, K.; Okuyama, T.; Kyohara, M.; Togashi, Y.; De Jesus, D.F.; Basile, G.; Kin, T.; Shapiro, A.M.J.; Kulkarni, R.N.; Terauchi, Y. Luseogliflozin Increases Beta Cell Proliferation Through Humoral Factors That Activate an Insulin Receptor-and IGF-1 Receptor-Independent Pathway. Diabetologia 2020, 63 (3), 577–587.
  • Siech, C.; Rutz, J.; Maxeiner, S.; Grein, T.; Sonnenburg, M.; Tsaur, I.; Chun, F.K.-H.; Blaheta, R.A. Insulin-like Growth Factor-1 Influences Prostate Cancer Cell Growth and Invasion Through an Integrin α3, α5, αV, and β1 Dependent Mechanism. Cancers 2022, 14 (2), 363.
  • Christopoulos, P.F.; Msaouel, P.; Koutsilieris, M. The Role of the Insulin-Like Growth Factor-1 System in Breast Cancer. Mol. Cancer 2015, 14 (1), 1–14.
  • Krishnan, S.; Thirunavukarasu, A.; Jha, N.K.; Gahtori, R.; Roy, A.S.; Dholpuria, S.; Kesari, K.K.; Singh, S.K.; Dua, K.; Gupta, P.K. Nanotechnology-based Therapeutic Formulations in the Battle Against Animal Coronaviruses: An Update. J. Nanopart. Res. 2021, 23 (10), 1–16.
  • Al-Joufi, F.A.; Setia, A.; Salem-Bekhit, M.; Sahu, R.; Alqahtani, F.; Widyowati, R.; Aleanizy, F. Molecular Pathogenesis of Colorectal Cancer with an Emphasis on Recent Advances in Biomarkers, as Well as Nanotechnology-Based Diagnostic and Therapeutic Approaches. Nanomaterials 2022, 12 (1), 169.
  • Caracciolo, G.; Vali, H.; Moore, A.; Mahmoudi, M. Challenges in Molecular Diagnostic Research in Cancer Nanotechnology. Nano. Today. 2019, 27, 6–10.
  • Zhang, R.; Liu, F.; Tian, Y.; Cao; W.; Wang, R. Nanotechnology in Traditional Medicines and Natural Products. Front. Media SA. 2021, 9, 633419.
  • Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble Metals in Medicine: Latest Advances. Coord. Chem. Rev. 2015, 284, 329–350.
  • Tyrer, P., Mulder, R.; Newton-Howes, G.; Duggan, C. Galenic Syndromes: Combinations of Mental State and Personality Disorders Too Closely Entwined to be Separated. Br. J. Psychiatry 2022, 220 (6), 309–310.
  • Toczek, J.; Sadłocha, M.; Major, K.; Stojko, R. Benefit of Silver and Gold Nanoparticles in Wound Healing Process After Endometrial Cancer Protocol. Biomedicines 2022, 10 (3), 679.
  • Beers, E.H. Palliative Wound Care: Less is More. Surg. Clin. 2019, 99 (5), 899–919.
  • Ojo, O.A., Olayide, I.I.; Akalabu, M.C.; Ajiboye, B.O.; Ojo, A.B.; Oyinloye, B.E.; Ramalingam, M. Nanoparticles and Their Biomedical Applications. Biointerface Res. Appl. Chem 2021, 11 (1), 8431–8445.
  • Hassanisaadi, M.; Bonjar, G.H.S.; Rahdar, A.; Pandey, S.; Hosseinipour, A.; Abdolshahi, R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. Nanomaterials 2021, 11 (8), 2033.
  • Huq, M.A. Green Synthesis of Silver Nanoparticles Using Pseudoduganella eburnea MAHUQ-39 and Their Antimicrobial Mechanisms Investigation Against Drug Resistant Human Pathogens. Int. J. Mol. Sci. 2020, 21 (4), 1510.
  • Clarance, P.; Luvankar, B.; Sales, J.; Khusro, A.; Agastian, P.; Tack, J.-C.; Al Khulaifi, M.M.; AL-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; Kim, H.-J. Green Synthesis and Characterization of Gold Nanoparticles Using Endophytic Fungi Fusarium solani and its in-Vitro Anticancer and Biomedical Applications. Saudi J. Biol. Sci. 2020, 27 (2), 706–712.
  • Alqahtani, M.A.; Al Othman, M.R.; Mohammed, A.E. Bio Fabrication of Silver Nanoparticles with Antibacterial and Cytotoxic Abilities Using Lichens. Sci. Rep. 2020, 10 (1), 1–17.
  • Kaithavelikkakath Francis, P.; Sivadasan, S.; Avarachan, A.; Gopinath, A. A Novel Green Synthesis of Gold Nanoparticles Using Seaweed Lobophora variegata and its Potential Application in the Reduction of Nitrophenols. Part. Sci. Technol. 2020, 38 (3), 365–370.
  • El-Sheekh, M.M.; Hassan, L.H.; Morsi, H.H. Evaluation of Antimicrobial Activities of Blue-Green Algae-Mediated Silver and Gold Nanoparticles. Rendiconti Lincei. Scienze Fisiche e Naturali 2021, 32 (4), 747–759.
  • Wahab, S.; Khan, T.; Adil, M.; Khan, A. Mechanistic Aspects of Plant-Based Silver Nanoparticles Against Multi-Drug Resistant Bacteria. Heliyon 2021, 7 (7), e07448.
  • Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857.
  • Lade, B.D.; Shanware, A.S., Phytonanofabrication: Methodology and Factors Affecting Biosynthesis of Nanoparticles, in Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. 2020, IntechOpen.
  • Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19 (1), 355–374.
  • Lyalina, T.; Lunkov, A.; Varlamov, V. Obtaining of Metal Nanoparticles Using Reducing Agents and Chitosan. Appl. Biochem. Microbiol. 2022, 58 (2), 97–104.
  • Sikiru, S., Abiodun, O. A.; Sanusi, Y. K.; Sikiru, Y. A.; Soleimani, H.; Yekeen, N.; Haslija, A. A. A Comprehensive Review on Nanotechnology Application in Wastewater Treatment a Case Study of Metal-Based Using Green Synthesis. J. Env. Chem. Eng. 2022, 10 (4), 108065.
  • Mehta, K.; Balaraman, R.; Amin, A.H.; Bafna, P.A.; Gulati, O.D. Effect of Fruits of Moringa oleifera on the Lipid Profile of Normal and Hypercholesterolaemic Rabbits. J. Ethnopharmacol. 2003, 86 (2-3), 191–195.
  • Singh, R.K.; Behera, S.S.; Singh, K.R.; Mishra, S.; Panigrahi, B.; Sahoo, T.R.; Parhi, P.K.; Mandal, D. Biosynthesized Gold Nanoparticles as Photocatalysts for Selective Degradation of Cationic dye and Their Antimicrobial Activity. J. Photochem. Photobiol., A 2020, 400, 112704.
  • Albeladi, S.S.R.; Malik, M.A.; Al-thabaiti, S.A. Facile Biofabrication of Silver Nanoparticles Using Salvia Officinalis Leaf Extract and its Catalytic Activity Towards Congo red dye Degradation. J. Mater. Res. Technol. 2020, 9 (5), 10031–10044.
  • Santos, T.S.; Silva, T.M.; Cardoso, J.C.; Albuquerque-Júnior, R.L.C.d.; Zielinska, A.; Souto, E.B.; Severino, P.; Mendonça, M.d.C. Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics 2021, 10 (7), 852.
  • Kumari, S.; Selvakumar, V.; Padma, P.N.; Anuradha, K. Optimization Studies on Green Synthesis of Silver Nanoparticles from Different Plant Extracts Using Taguchi Design. Indian J. Sci. Technol 2021, 14, 2888–2898.
  • Khan, S.H. Green Nanotechnology for the Environment and Sustainable Development, in Green Materials for Wastewater Treatment; Springer: 2020. p. 13–46.
  • Sivakumar, T. A Modern Review of Silver Nanoparticles Mediated Plant Extracts and its Potential Bioapplications. Int. J. Bot. Stud 2021, 6 (3), 170–175.
  • Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials 2020, 10 (9), 1763.
  • Zhuang, W.; Liu, X.; Chen, L.; Liu, P.; Wen, H.; Zhou, Y.; Wang, J. One-pot Hydrothermal Synthesis of Ultrafine Pd Clusters Within Beta Zeolite for Selective Oxidation of Alcohols. Green Chem. 2020, 22 (13), 4199–4209.
  • Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular Imprinting: Green Perspectives and Strategies. Adv. Mater. 2021, 33 (30), 2100543.
  • Wibowo, A.; Tajalla, G.U.N.; Marsudi, M.A.; Cooper, G.; Asri, L.A.T.W.; Liu, F.; Ardy, H.; Bartolo, P.J.D.S. Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds. Molecules 2021, 26 (7), 2042.
  • Parmar, M.; Sanyal, M. Extensive Study on Plant Mediated Green Synthesis of Metal Nanoparticles and Their Application for Degradation of Cationic and Anionic Dyes. Env. Nanotechnol. Monitor Manage. 2022, 17, 100624.
  • Ma, X.; Chen, Z.; Wang, L.; Wang, G.; Wang, Z.; Dong, X.; Wen, B.; Zhang, Z. The Pathogenesis of Diabetes Mellitus by Oxidative Stress and Inflammation: Its Inhibition by Berberine. Front. Pharmacol. 2018, 9, 782.
  • Osakabe, N.; Yamagishi, M.; Natsume, M.; Yasuda, A.; Osawa, T. Ingestion of Proanthocyanidins Derived from Cacao Inhibits Diabetes-Induced Cataract Formation in Rats. Exp. Biol. Med. 2004, 229 (1), 33–39.
  • Han, L.; Song, J.; Yan, C.; Wang, C.; Wang, L.; Li, W.; Du, Y.; Li, Q.; Liang, T. Inhibitory Activity and Mechanism of Calycosin and Calycosin-7-O-β-D-Glucoside on α-Glucosidase: Spectroscopic and Molecular Docking Analyses. Process Biochem. 2022, 118, 227–235.
  • Veeramani, S.; Narayanan, A.P.; Yuvaraj, K.; Sivaramakrishnan, R.; Pugazhendhi, A.; Rishivarathan, I.; Jose, S.P.; Ilangovan, R. Nigella sativa Flavonoids Surface Coated Gold NPs (Au-NPs) Enhancing Antioxidant and Anti-Diabetic Activity. Process Biochem. 2022, 114, 193–202.
  • Butt, A.S.; Nisar, N.; Mughal, T. A Review: Therapeutics Potentials of Phytochemical Drugs and Their Loading in pH Specific Degradable Nano-Drug Carrier Targeting Colorectal Cancer. J. Pak. Med. Assoc. 2018, 68 (4), 607–614.
  • Gaikwad, B.; Switi, G.; Mohan, K.; Sandhya Rani, M. Phytochemicals for Diabetes Management. Pharmaceutical Crops 2014, 5 (1), 11–28.
  • Suhitha, S.; Devi, S.; Gunasekaran, K.; Pakyntein, H.; Bhattacharjee, A.; Velmurugan, D. Phytochemical Analyses and Activity of Herbal Medicinal Plants of North-East India for Anti-Diabetic, Anti-Cancer and Anti-Tuberculosis and Their Docking Studies. Curr. Top. Med. Chem. 2015, 15 (1), 21–36.
  • Nankar, R.; Prabhakar, P.; Doble, M. Hybrid Drug Combination: Combination of Ferulic Acid and Metformin as Anti-Diabetic Therapy. Phytomedicine 2017, 37, 10–13.
  • Maddisetty, P.P.; Doss, VA. HPLC and GC-MS: Identification and Quantification of Strychnine and Brucine in Strychnos nux-vomica Leaves. Pak. J. Pharm. Sci. 2017, 30 (6 (Supplementary)), 2369–2373.
  • Jeevanandam, J.; Madhumitha, R.; Saraswathi, N. Identification of Potential Phytochemical Lead Against Diabetic Cataract: An Insilico Approach. J. Mol. Struct. 2021, 1226, 129428.
  • Lee, G.Y.; Jang, D.S.; Lee, Y.M.; Kim, J.M.; Kim, J.S. Naphthopyrone Glucosides from the Seeds of Cassia tora with Inhibitory Activity on Advanced Glycation end Products (AGEs) Formation. Arch. Pharmacal Res. 2006, 29 (7), 587–590.
  • Mousavi, L.; Salleh, R.M.; Murugaiyah, V. Phytochemical and Bioactive Compounds Identification of Ocimum Tenuiflorum Leaves of Methanol Extract and its Fraction with an Anti-Diabetic Potential. Int. J. Food Prop. 2018, 21 (1), 2390–2399.
  • Shukla, R.; Kashaw, S.K.; Jain, A.P.; Lodhi, S. Fabrication of Apigenin Loaded Gellan gum–Chitosan Hydrogels (GGCH-HGs) for Effective Diabetic Wound Healing. Int. J. Biol. Macromol. 2016, 91, 1110–1119.
  • Mohammad Nabavi, S., et al. Apigenin and Breast Cancers: From Chemistry to Medicine. Anti-Cancer Agents Med. Chem 2015, 15 (6), 728–735.
  • Rajabalian, S. Methanolic Extract of Teucrium polium L Potentiates the Cytotoxic and Apoptotic Effects of Anticancer Drugs of Vincristine, Vinblastine and Doxorubicin Against a Panel of Cancerous Cell Lines. Exp. Oncol. 2008.
  • Mishra, S.; Verma, S.S.; Rai, V.; Awasthee, N.; Chava, S.; Hui, K.M.; Kumar, A.P.; Challagundla, K.B.; Sethi, G.; Gupta, S.C. Long non-Coding RNAs are Emerging Targets of Phytochemicals for Cancer and Other Chronic Diseases. Cell. Mol. Life Sci. 2019, 76 (10), 1947–1966.
  • Kusari, S.; Zühlke, S.; Spiteller, M. Chemometric Evaluation of the Anti-Cancer pro-Drug Podophyllotoxin and Potential Therapeutic Analogues in Juniperus and Podophyllum Species. Phytochem. Anal. 2011, 22 (2), 128–143.
  • Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2020, 10, 1614.
  • Ramirez-Erosa, I.; Huang, Y.; Hickie, R.A.; Sutherland, R.G.; Barl, B. Xanthatin and Xanthinosin from the Burs of Xanthium strumarium L. as Potential Anticancer Agents. Can. J. Physiol. Pharmacol. 2007, 85 (11), 1160–1172.
  • Gaonkar, R.; Singh, J.; Chauhan, A.; Avti, P.K.; Hegde, G. Geraniol and Citral as Potential Therapeutic Agents Targeting the HSP90 Activity: An in Silico and Experimental Approach. Phytochemistry 2022, 195, 113058.
  • Barati, N.; Momtazi-Borojeni, A.A.; Majeed, M.; Sahebkar, A. Potential Therapeutic Effects of Curcumin in Gastric Cancer. J. Cell. Physiol. 2019, 234 (3), 2317–2328.
  • Zheng, Z.; Zhang, L.; Hou, X. Potential Roles and Molecular Mechanisms of Phytochemicals Against Cancer. Food Funct. 2022, 13 (18), 9208–9225.
  • Huang, M.; He, J.-X.; Hu, H.-X.; Zhang, K.; Wang, X.-N.; Zhao, B.-B.; Lou, H.-X.; Ren, D.-M.; Shen, T. Withanolides from the Genus Physalis: A Review on Their Phytochemical and Pharmacological Aspects. J. Pharm. Pharmacol. 2020, 72 (5), 649–669.
  • Averett, C., Arora, S.; Zubair, H.; Singh, S.; Bhardwaj A.; Singh A.P. Molecular Targets of Honokiol: A Promising Phytochemical for Effective Cancer Management, in The Enzymes. 2014; pp. 175–193.
  • Li, Y., et al. Anticancer Effects of Natural Phytochemicals in Anaplastic Thyroid Cancer. Oncol. Rep. 2022, 48 (3), 1–13.
  • Tavana, E.; Mollazadeh, H.; Mohtashami, E.; Modaresi, S.M.S.; Hosseini, A.; Sabri, H.; Soltani, A.; Javid, H.; Afshari, A.R.; Sahebkar, A. Quercetin: A Promising Phytochemical for the Treatment of Glioblastoma Multiforme. BioFactors 2020, 46 (3), 356–366.
  • Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; Aref, A.R.; Ashrafizadeh, M.; Zarrabi, A.; Sethi, G. Caffeic Acid and its Derivatives as Potential Modulators of Oncogenic Molecular Pathways: New Hope in the Fight Against Cancer. Pharmacol. Res. 2021, 171, 105759.
  • Ramakrishnan, P.; Loh, W.M.; Gopinath, S.C.B.; Bonam, S.R.; Fareez, I.M.; Mac Guad, R.; Sim, M.S.; Wu, Y.S. Selective Phytochemicals Targeting Pancreatic Stellate Cells as new Anti-Fibrotic Agents for Chronic Pancreatitis and Pancreatic Cancer. Acta Pharm. Sin. B 2020, 10 (3), 399–413.
  • Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Rout, L., Jena, M.; Efferth, T.; Bhutia S.K.. Chemotherapeutic Efficacy of Curcumin and Resveratrol Against Cancer: Chemoprevention, Chemoprotection, Drug Synergism and Clinical Pharmacokinetics. in Seminars in Cancer Biology. 2021. Elsevier.
  • Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X.; Wu, Z. A Review on Anti-Cancer Effect of Green tea Catechins. J. Funct. Foods 2020, 74, 104172.
  • Adetuyi, B.O., et al. Preventive Phytochemicals of Cancer as Speed Breakers in Inflammatory Signaling. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2022, 8 (1), 30–61.
  • Javed, B.; Ikram, M.; Farooq, F.; Sultana, T.; Mashwani, Z.-u.-R.; Raja, N.I. Biogenesis of Silver Nanoparticles to Treat Cancer, Diabetes, and Microbial Infections: A Mechanistic Overview. Appl. Microbiol. Biotechnol. 2021, 105, 2261–2275.
  • Gorelick, J.; Bernstein, N. Elicitation: An Underutilized Tool in the Development of Medicinal Plants as a Source of Therapeutic Secondary Metabolites. Adv. Agron. 2014, 124, 201–230.
  • Alavi, M.; Hamblin, M.R.; Kennedy, J.F. Antimicrobial Applications of Lichens: Secondary Metabolites and Green Synthesis of Silver Nanoparticles: A Review. Nano Micro Biosystems 2022, 1 (1), 15–21.
  • Antonio, A.; Wiedemann, L.; Junior, V.V. The Genus Capsicum: A Phytochemical Review of Bioactive Secondary Metabolites. RSC Adv. 2018, 8 (45), 25767–25784.
  • Oyenihi, A.; Smith, C. Are Polyphenol Antioxidants at the Root of Medicinal Plant Anti-Cancer Success? J. Ethnopharmacol. 2019, 229, 54–72.
  • Javid, H.; Ahmadi, S.; Mohamadian, E. Therapeutic Applications of Apigenin and its Derivatives: Micro and Nano Aspects. Micro. Nano. Bio. Aspects 2023, 2 (1), 30–38.
  • Verma, K.; Paliwal, S.; Sharma, S. Therapeutic Potential of Reserpine in Metabolic Syndrome: An Evidence Based Study. Pharmacol. Res. 2022, 186, 106531.
  • Rana, A.; Yadav, K.; Jagadevan, S. A Comprehensive Review on Green Synthesis of Nature-Inspired Metal Nanoparticles: Mechanism, Application and Toxicity. J. Cleaner Prod. 2020, 272, 122880.
  • Ahmad, T.; Bustam, M.A.; Irfan, M.; Moniruzzaman, M.; Asghar, H.M.A.; Bhattacharjee, S. Mechanistic Investigation of Phytochemicals Involved in Green Synthesis of Gold Nanoparticles Using Aqueous Elaeis guineensis Leaves Extract: Role of Phenolic Compounds and Flavonoids. Biotechnol. Appl. Biochem. 2019, 66 (4), 698–708.
  • Yuliarto, B.; Septiani, N.L.W.; Kaneti, Y.V.; Iqbal, M.; Gumilar, G.; Kim, M.; Na, J.; Wu, K.C.-W.; Yamauchi, Y. Green Synthesis of Metal Oxide Nanostructures Using Naturally Occurring Compounds for Energy, Environmental, and bio-Related Applications. New J. Chem. 2019, 43 (40), 15846–15856.
  • Restrepo, C.V.; Villa, C.C. Synthesis of Silver Nanoparticles, Influence of Capping Agents, and Dependence on Size and Shape: A Review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428.
  • Gebre, S.H. Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The key Role of Phytochemicals. J. Cluster Sci. 2023, 34 (2), 665–704.
  • Preety, R.; Anitha, R.; Rajeshkumar, S.; Lakshmi, T. Anti-diabetic Activity of Silver Nanoparticles Prepared from Cumin Oil Using Alpha Amylase Inhibitory Assay. 2020.
  • Oladipo, I.; Lateef, A; Azeez, M.A.; Asafa, T.B.; Yakeen, T.A.; Ogunsona, S.B.; Irshad, H.M.; Abbas S.H. Antidiabetic Properties of Phytosynthesized Gold Nanoparticles (AuNPs) from Datura Stramonium Seed. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.
  • Abdel-Halim, A.H., Fyiad, A.A.A.; Aboulthana, W.M.; El-Sammad, N.M.; Youssef, A.M., Ali, M.M. Assessment of the Anti-Diabetic Effect of Bauhinia variegata Gold Nano-Extract Against Streptozotocin Induced Diabetes Mellitus in Rats. J. Appl. Pharm. Sci. 2020, 10 (05), 077–091.
  • Vijayakumar, S.; Vinayagam, R.; Anand, M.A.V.; Venkatachalam, K.; Saravanakumar, K.; Wang, M.-H.; Gothandam, K.M.; David, E. Green Synthesis of Gold Nanoparticle Using Eclipta alba and its Antidiabetic Activities Through Regulation of Bcl-2 Expression in Pancreatic Cell Line. J. Drug. Deliv. Sci. Technol. 2020, 58, 101786.
  • Badeggi, U.M.; Ismail, E.; Adeloye, A.; Botha, S.; Badmus, J.; Marnewick, J.; Cupido, C.; Hussein, A. Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules 2020, 10 (3), 452.
  • Mukundan, D.; Mohankumar, R.; Vasanthakumari, R. Comparative Study of Synthesized Silver and Gold Nanoparticles Using Leaves Extract of Bauhinia tomentosa Linn and Their Anticancer Efficacy. Bull. Mater. Sci. 2017, 40 (2), 335–344.
  • Gupta, S.; Hemlata, H.; Tejavath, K. Synthesis, Characterization and Comparative Anticancer Potential of Phytosynthesized Mono and Bimetallic Nanoparticles Using Moringa oleifera Aqueous Leaf Extract. Beilstein Arch 2020, 1, 95.
  • Sun, B.; Hu, N.; Han, L.; Pi, Y.; Gao, Y.; Chen, K. Anticancer Activity of Green Synthesised Gold Nanoparticles from Marsdenia tenacissima Inhibits A549 Cell Proliferation Through the Apoptotic Pathway. Artif. Cells. Nanomed. Biotechnol. 2019, 47 (1), 4012–4019.
  • Mollick, M.M.R.; Bhowmick, B.; Mondal, D.; Maity, D.; Rana, D.; Dash, S.K.; Chattopadhyay, S.; Roy, S.; Sarkar, J.; Acharya, K.; Chakraborty, M.; Chattopadhyay, D. Anticancer (in Vitro) and Antimicrobial Effect of Gold Nanoparticles Synthesized Using Abelmoschus esculentus (L.) Pulp Extract via a Green Route. RSC Adv. 2014, 4 (71), 37838–37848.
  • Kajani, A.A.; Bordbar, A.-K.; Zarkesh Esfahani, S.H.; Razmjou, A. Gold Nanoparticles as Potent Anticancer Agent: Green Synthesis, Characterization, and in Vitro Study. RSC Adv. 2016, 6 (68), 63973–63983.
  • Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govindaraju, K.; Sadiq, M.; Singaravelu, G. Green Synthesis of Gold Nanoparticles and Their Anticancer Activity. Cancer. Nanotechnol. 2013, 4 (4), 91–98.
  • Wang, C.; Wang, C.; Mathiyalagan, R.; Aceituno, V.C.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid Green Synthesis of Silver and Gold Nanoparticles Using Dendropanax morbifera Leaf Extract and Their Anticancer Activities. Int. J. Nanomed. 2016, 11, 3691–3701.
  • Zhang, P.; Wang, P.; Yan, L.; Liu, L. Synthesis of Gold Nanoparticles with Solanum xanthocarpum Extract and Their in Vitro Anticancer Potential on Nasopharyngeal Carcinoma Cells. Int. J. Nanomed. 2018, 13, 7047.
  • Tabassam, Q.; Mehmood, T.; Raza, A.R.; Ullah, A.; Saeed, F.; Anjum, F.M. Synthesis, Characterization and Anti-Cancer Therapeutic Potential of Withanolide-A with 20 nm sAuNPs Conjugates Against SKBR3 Breast Cancer Cell Line. Int. J. Nanomed. 2020, 15, 6649.
  • Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria Leaf Extract Mediated Green Synthesis of Silver and Gold Nanoparticles and Assessment of Their Anticancer, Antimicrobial, Antioxidant and Catalytic Properties. Artif. Cells. Nanomed. Biotechnol. 2018, 46 (4), 861–871.
  • Vimalraj, S.; Ashokkumar, T.; Saravanan, S. Biogenic Gold Nanoparticles Synthesis Mediated by Mangifera indica Seed Aqueous Extracts Exhibits Antibacterial, Anticancer and Anti-Angiogenic Properties. Biomed. Pharmacother. 2018, 105, 440–448.
  • Laksee, S.; Puthong, S.; Kongkavitoon, P.; Palaga, T.; Muangsin, N. Facile and Green Synthesis of Pullulan Derivative-Stabilized Au Nanoparticles as Drug Carriers for Enhancing Anticancer Activity. Carbohydr. Polym. 2018, 198, 495–508.
  • Elemike, E.E.; Onwudiwe, D.C.; Nundkumar, N.; Singh, M. CuO and Au-CuO Nanoparticles Mediated by Stigmaphyllon ovatum Leaf Extract and Their Anticancer Potential. Inorg. Chem. Commun. 2019, 104, 93–97.
  • Hoshyar, R.; Khayati, G.R.; Poorgholami, M.; Kaykhaii, M. A Novel Green one-Step Synthesis of Gold Nanoparticles Using Crocin and Their Anti-Cancer Activities. J. Photochem. Photobiol., B 2016, 159, 237–242.
  • Valsalam, S.; Agastian, P.; Esmail, G.A.; Ghilan, A.-K.M.; Al-Dhabi, N.A.; Arasu, M.V. Biosynthesis of Silver and Gold Nanoparticles Using Musa Acuminata colla Flower and its Pharmaceutical Activity Against Bacteria and Anticancer Efficacy. J. Photochem. Photobiol., B 2019, 201, 111670.
  • Vijayakumar, S. Eco-friendly Synthesis of Gold Nanoparticles Using Fruit Extracts and in Vitro Anticancer Studies. J. Saudi Chem. Soc. 2019, 23 (6), 753–761.
  • Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural Characterization, Antioxidant and Anticancer Properties of Gold Nanoparticles Synthesized from Leaf Extract (Decoction) of Antigonon leptopus Hook. & Arn. J. Trace Elem. Med. Biol. 2015, 30, 83–89.
  • Elemike, E.E.; Onwudiwe, D.C.; Nundkumar, N.; Singh, M.; Iyekowa, O. Green Synthesis of Ag, Au and Ag-Au Bimetallic Nanoparticles Using Stigmaphyllon ovatum Leaf Extract and Their in Vitro Anticancer Potential. Mater. Lett. 2019, 243, 148–152.
  • Kumar, B.; Smita, K.; Cumbal, L.; Camacho, J.; Hernández-Gallegos, E.; de Guadalupe Chávez-López, M.; Grijalva, M.; Andrade, K. One pot Phytosynthesis of Gold Nanoparticles Using Genipa americana Fruit Extract and its Biological Applications. Mater. Sci. Eng: C 2016, 62, 725–731.
  • Vijayakumar, R.; Devi, V.; Adavallan, K.; Saranya, D. Green Synthesis and Characterization of Gold Nanoparticles Using Extract of Anti-Tumor Potent Crocus sativus. Physica E 2011, 44 (3), 665–671.
  • Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy Fruit Mediated Greener Synthesis of Silver and Gold Nanoparticles. Process Biochem. 2010, 45 (7), 1065–1071.
  • Muthukumar, T.; Sudhakumari; Sambandam, B.; Aravinthan, A.; Sastry, T.P.; Kim, J.-H. Green Synthesis of Gold Nanoparticles and Their Enhanced Synergistic Antitumor Activity Using HepG2 and MCF7 Cells and its Antibacterial Effects. Process Biochem. 2016, 51 (3), 384–391.
  • Sunderam, V.; Thiyagarajan, D.; Lawrence, A.V.; Mohammed, S.S.S.; Selvaraj, A. In-vitro Antimicrobial and Anticancer Properties of Green Synthesized Gold Nanoparticles Using Anacardium Occidentale Leaves Extract. Saudi J. Biol. Sci. 2019, 26 (3), 455–459.
  • Dorosti, N.; Jamshidi, F. Plant-mediated Gold Nanoparticles by Dracocephalum kotschyi as Anticholinesterase Agent: Synthesis, Characterization, and Evaluation of Anticancer and Antibacterial Activity. J. Appl. Biomed. 2016, 14 (3), 235–245.
  • Kyzioł, A.; Łukasiewicz, S.; Sebastian, V.; Kuśtrowski, P.; Kozieł, M.; Majda, D.; Cierniak, A. Towards Plant-Mediated Chemistry–Au Nanoparticles Obtained Using Aqueous Extract of Rosa damascena and Their Biological Activity in Vitro. J. Inorg. Biochem. 2021, 214, 111300.
  • Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly Synthesis of Silver and Gold Nanoparticles by Euphrasia officinalis Leaf Extract and its Biomedical Applications. Artif. Cells. Nanomed. Biotechnol. 2018, 46 (6), 1163–1170.
  • Barai, A.C.; Paul, K.; Dey, A.; Manna, S.; Roy, S.; Bag, B.G.; Mukhopadhyay, C. Green Synthesis of Nerium oleander-Conjugated Gold Nanoparticles and Study of its in Vitro Anticancer Activity on MCF-7 Cell Lines and Catalytic Activity. Nano Convergence 2018, 5 (1), 1–9.
  • Ayyoub, S.; Al-Trad, B.; Aljabali, A.A.A.; Alshaer, W.; Al Zoubi, M.; Omari, S.; Fayyad, D.; Tambuwala, M.M. Biosynthesis of Gold Nanoparticles Using Leaf Extract of Dittrichia viscosa and in Vivo Assessment of its Anti-Diabetic Efficacy. Drug. Deliv. Transl. Res. 2022, 12 (12), 2993–2999.
  • Guo, Y.; Jiang, N.; Zhang, L.; Yin, M. Green Synthesis of Gold Nanoparticles from Fritillaria cirrhosa and its Anti-Diabetic Activity on Streptozotocin Induced Rats. Arab. J. Chem 2020, 13 (4), 5096–5106.
  • Mahmoudi, F.; Mahmoudi, F.; Gollo, K.H.; Amini, M. M. Novel Gold Nanoparticles: Green Synthesis with Eryngium thyrsoideum Boiss Extract, Characterization, and in Vivo Investigations on Inflammatory Gene Expression and Biochemical Parameters in Type 2 Diabetic Rats. Biol. Trace Elem. Res. 2021, 1–10.
  • Oves, M.; Aslam, M.; Rauf, M.A.; Qayyum, S.; Qari, H.A.; Khan, M.S.; Alam, M.Z.; Tabrez, S.; Pugazhendhi, A.; Ismail, I.M.I. Antimicrobial and Anticancer Activities of Silver Nanoparticles Synthesized from the Root Hair Extract of Phoenix Dactylifera. Mater. Sci. Eng: C 2018, 89, 429–443.
  • Hosny, M.; Eltaweil, A.S.; Mostafa, M.; El-Badry, Y.A.; Hussein, E.E.; Omer, A.M.; Fawzy, M. Facile Synthesis of Gold Nanoparticles for Anticancer, Antioxidant Applications, and Photocatalytic Degradation of Toxic Organic Pollutants. ACS Omega 2022, 7 (3), 3121–3133.
  • Narchin, F.; Larijani, K.; Rustaiyan, A.; Nejad Ebrahimi, S.; Tafvizi, F. Phytochemical Synthesis of Silver Nanoparticles by two Techniques Using Saturaja Rechengri Jamzad Extract: Identifying and Comparing in Vitro Anti-Proliferative Activities. Adv. Pharm. Bull. 2018, 8 (2), 235.
  • Jini, D.; Sharmila, S. Green Synthesis of Silver Nanoparticles from Allium Cepa and its in Vitro Antidiabetic Activity. Mater. Today: Proc. 2020, 22, 432–438.
  • Bhuvaneswari, R.; Xavier, R.J.; Arumugam, M. Facile Synthesis of Multifunctional Silver Nanoparticles Using Mangrove Plant Excoecaria agallocha L. for its Antibacterial, Antioxidant and Cytotoxic Effects. J. Parasit. Dis. 2017, 41 (1), 180–187.
  • Suresh, U.; Murugan, K.; Benelli, G.; Nicoletti, M.; Barnard, D.R.; Panneerselvam, C.; Kumar, P.M.; Subramaniam, J.; Dinesh, D.; Chandramohan, B. Tackling the Growing Threat of Dengue: Phyllanthus Niruri-Mediated Synthesis of Silver Nanoparticles and Their Mosquitocidal Properties Against the Dengue Vector Aedes Aegypti (Diptera: Culicidae). Parasitol. Res. 2015, 114, 1551–1562.
  • Balan, K.; Qing, W.; Wang, Y.; Liu, X.; Palvannan, T.; Wang, Y.; Ma, F.; Zhang, Y. Antidiabetic Activity of Silver Nanoparticles from Green Synthesis Using Lonicera japonica Leaf Extract. RSC Adv. 2016, 6 (46), 40162–40168.
  • Sasidharan, J.; Meenakshi, R.; Sureshkumar, P. Green Synthesis, Characterization and Evaluation of in-Vitro Antioxidant & Anti-Diabetic Activity of Nanoparticles from a Polyherbal Formulation-Mehani. J. Environ. Nanotechnol 2018, 7 (3), 51–59.
  • Dhas, T.S.; Kumar, V.G.; Karthick, V.; Vasanth, K.; Singaravelu, G.; Govindaraju, K. Effect of Biosynthesized Gold Nanoparticles by Sargassum swartzii in Alloxan Induced Diabetic Rats. Enzyme Microb. Technol. 2016, 95, 100–106.
  • Mohammed, S.S.S.; Lawrance, A.V.; Sampath, S.; Sunderam, V.; Madhavan, Y. Facile Green Synthesis of Silver Nanoparticles from Sprouted Zingiberaceae Species: Spectral Characterisation and its Potential Biological Applications. Mater. Technol. 2022, 37 (8), 533–546.
  • Bagyalakshmi, J.; Haritha, H. Green Synthesis and Characterization of Silver Nanoparticles Using Pterocarpus marsupium and Assessment of its in Vitro Antidiabetic Activity. American Journal of Advanced Drug Delivery ISSN 2017.
  • Kong, Y.; Paray, B.A.; Al-Sadoon, M.K.; Fahad Albeshr, M. Novel Green Synthesis, Chemical Characterization, Toxicity, Colorectal Carcinoma, Antioxidant, Anti-Diabetic, and Anticholinergic Properties of Silver Nanoparticles: A Chemopharmacological Study. Arab. J. Chem 2021, 14 (6), 103193.
  • Ponnanikajamideen, M.; Rajeshkumar, S.; Vanaja, M.; Annadurai, G. In Vivo Type 2 Diabetes and Wound-Healing Effects of Antioxidant Gold Nanoparticles Synthesized Using the Insulin Plant Chamaecostus cuspidatus in Albino Rats. Can. J. Diabetes. 2019, 43 (2), 82–89. e6.
  • Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green Synthesis of Silver Nanoparticles Using Leaf Extract of Holoptelea integrifolia and Preliminary Investigation of its Antioxidant, Anti-Inflammatory, Antidiabetic and Antibacterial Activities. J. Environ. Chem. Eng. 2019, 7 (3), 103094.
  • Nagaraja, S.; Ahmed, S.S.; Bharathi, D.R.; Goudanavar, P.; Rupesh Kumar, M.; Fattepur, S.; Meravanige, G.; Shariff, A.; Shiroorkar, P.N.; Habeebuddin, M.; Telsang, M. Green Synthesis and Characterization of Silver Nanoparticles of Psidium guajava Leaf Extract and Evaluation for Its Antidiabetic Activity. Molecules 2022, 27 (14), 4336.
  • Ul Haq, M.N.; Shah, G.M.; Gul, A.; Foudah, A.I.; Alqarni, M.H.; Yusufoglu, H.S.; Hussain, M.; Alkreathy, H.M.; Ullah, I.; Khan, A.M.; Jamil, S.; Ahmed, M.; Khan, R.A. Biogenic Synthesis of Silver Nanoparticles Using Phagnalon niveum and Its In Vivo Anti-Diabetic Effect Against Alloxan-Induced Diabetic Wistar Rats. Nanomaterials 2022, 12 (5), 830.
  • Virk, P. Antidiabetic Activity of Green Gold-Silver Nanocomposite with Trigonella foenum graecum L. Seeds Extract on Streptozotocin-Induced Diabetic Rats. Pak. J. Zool. 2018, 50 (2.
  • Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.-S. Grape Pomace Extracted Tannin for Green Synthesis of Silver Nanoparticles: Assessment of Their Antidiabetic, Antioxidant Potential and Antimicrobial Activity. Polymers 2021, 13 (24), 4355.
  • Das, S.K.; Behera, S.; Patra, J.K.; Thatoi, H. Green Synthesis of Sliver Nanoparticles Using Avicennia officinalis and Xylocarpus granatum Extracts and in Vitro Evaluation of Antioxidant, Antidiabetic and Anti-Inflammatory Activities. J. Cluster Sci. 2019, 30 (4), 1103–1113.
  • Omolaja, A.A.; Pearce, B.; Omoruyi, S.I.; Badmus, J.A.; Ismail, E.; Marnewick, J.; Botha, S.; Benjeddou, M.; Ekpo, O.E.; Hussein, A.A. The Potential of Chalcone-Capped Gold Nanoparticles for the Management of Diabetes Mellitus. Surf. Interfaces 2021, 25, 101251.
  • Yarrappagaari, S.; Gutha, R.; Narayanaswamy, L.; Thopireddy, L.; Benne, L.; Mohiyuddin, S.S.; Vijayakumar, V.; Saddala, R.R. Eco-Friendly Synthesis of Silver Nanoparticles from the Whole Plant of Cleome viscosa and Evaluation of Their Characterization, Antibacterial, Antioxidant and Antidiabetic Properties. Saudi J. Biol. Sci. 2020, 27 (12), 3601–3614.
  • babu Maddinedi, S.; Mandal, B.K.; Maddili, S.K. Biofabrication of Size Controllable Silver Nanoparticles–a Green Approach. J. Photochem. Photobiol., B 2017, 167, 236–241.
  • Mahmoudi, F.; Mahmoudi, F.; Gollo, K.H.; Amini, M.M. Biosynthesis of Novel Silver Nanoparticles Using Eryngium thyrsoideum Boiss Extract and Comparison of Their Antidiabetic Activity with Chemical Synthesized Silver Nanoparticles in Diabetic Rats. Biol. Trace Elem. Res. 2021, 199 (5), 1967–1978.
  • Govindappa, M.; Hemashekhar, B.; Arthikala, M.-K.; Ravishankar Rai, V.; Ramachandra, Y.L. Characterization, Antibacterial, Antioxidant, Antidiabetic, Anti-Inflammatory and Antityrosinase Activity of Green Synthesized Silver Nanoparticles Using Calophyllum tomentosum Leaves Extract. Results Phys. 2018, 9, 400–408.
  • Majeed, S., et al. In Vitro Evaluation of Antibacterial, Antioxidant, and Antidiabetic Activities and Glucose Uptake Through 2-NBDG by Hep-2 Liver Cancer Cells Treated with Green Synthesized Silver Nanoparticles. Oxid. Med. Cell. Longevity 2022, 2022.
  • Ansari, S.; Bari, A.; Ullah, R.; Mathanmohun, M.; Veeraraghavan, V.P.; Sun, Z. Gold Nanoparticles Synthesized with Smilax glabra Rhizome Modulates the Anti-Obesity Parameters in High-fat Diet and Streptozotocin Induced Obese Diabetes rat Model. J. Photochem. Photobiol., B 2019, 201, 111643.
  • Abd El-Moaty, H.I.; Soliman, N.A.; Hamad, R.S.; Ismail, E.H.; Sabry, D.Y.; Khalil, M.M.H. Comparative Therapeutic Effects of Pituranthos tortuosus Aqueous Extract and Phyto-Synthesized Gold Nanoparticles on Helicobacter Pylori, Diabetic and Cancer Proliferation. S. Afr. J. Bot. 2021, 139, 167–174.
  • Senthilkumar, P., et al. Potent α-Glucosidase Inhibitory Activity of Green Synthesized Gold Nanoparticles from the Brown Seaweed Padina boergesenii. Int. J. Adv. Multidiscip. Res 2015, 2 (11), 0917–0923.
  • Malapermal, V.; Botha, I.; Krishna, S.B.N.; Mbatha, J.N. Enhancing Antidiabetic and Antimicrobial Performance of Ocimum basilicum, and Ocimum sanctum (L.) Using Silver Nanoparticles. Saudi J. Biol. Sci. 2017, 24 (6), 1294–1305.
  • Ghasemian Lemraski, E.; Valadbeigi, T. Evaluation of in Vitro Antimicrobial, Antidiabetic and Antioxidant Potential of Alyssum Homalocarpum and Green Synthesis of the Silver Nanoparticles. J. Med. Plants By-prod 2018, 7 (1), 1–8.
  • Vijayashree, I.; Niranjana, P.; Prabhu, G.; Sureshbabu, V.V.; Manjanna, J. Conjugation of Au Nanoparticles with Chlorambucil for Improved Anticancer Activity. J. Cluster Sci. 2017, 28 (1), 133–148.
  • Zhang, Y.; Liu, B.; Wu, H.; Li, B.; Xu, J.; Duan, L.; Jiang, C.; Zhao, X.; Yuan, Y.; Zhang, G.; Zeng, X. Anti-tumor Activity of Verbascoside Loaded Gold Nanoparticles. J. Biomed. Nanotechnol. 2014, 10 (12), 3638–3646.
  • Rabha, B.; Bharadwaj, K.K.; Baishya, D.; Sarkar, T.; Edinur, H.A.; Pati, S. Synthesis and Characterization of Diosgenin Encapsulated Poly-ϵ-Caprolactone-Pluronic Nanoparticles and its Effect on Brain Cancer Cells. Polymers 2021, 13 (8), 1322.
  • Gomathi, A.; Xavier Rajarathinam, S.R.; Mohammed Sadiq, A.; Rajeshkumar, S. Anticancer Activity of Silver Nanoparticles Synthesized Using Aqueous Fruit Shell Extract of Tamarindus indica on MCF-7 Human Breast Cancer Cell Line. J. Drug. Deliv. Sci. Technol. 2020, 55, 101376.
  • Abdoli, M.; Arkan, E.; Shekarbeygi, Z.; Khaledian, S. Green Synthesis of Gold Nanoparticles Using Centaurea behen Leaf Aqueous Extract and Investigating Their Antioxidant and Cytotoxic Effects on Acute Leukemia Cancer Cell Line (THP-1). Inorg. Chem. Commun. 2021, 129, 108649.
  • Kaplan, Ö; Gökşen Tosun, N.; Özgür, A.; Erden Tayhan, S.; Bilgin, S.; Türkekul, İ.; Gökce, İ. Microwave-assisted Green Synthesis of Silver Nanoparticles Using Crude Extracts of Boletus edulis and Coriolus Versicolor: Characterization, Anticancer, Antimicrobial and Wound Healing Activities. J. Drug. Deliv. Sci. Technol. 2021, 64, 102641.
  • Al-Radadi, N.S. Green Biosynthesis of Flaxseed Gold Nanoparticles (Au-NPs) as Potent Anti-Cancer Agent Against Breast Cancer Cells. J. Saudi Chem. Soc. 2021, 25 (6), 101243.
  • Hashemi, Z.; Mohammadyan, M.; Naderi, S.; Fakhar, M.; Biparva, P.; Akhtari, J.; Ebrahimzadeh, M.A. Green Synthesis of Silver Nanoparticles Using Ferula persica Extract (Fp-NPs): Characterization, Antibacterial, Antileishmanial, and in Vitro Anticancer Activities. Mater. Today Commun 2021, 27, 102264.
  • Pallavi, S.; Rudayni, H.A.; Bepari, A.; Niazi, S.K.; Nayaka, S. Green Synthesis of Silver Nanoparticles Using Streptomyces hirsutus Strain SNPGA-8 and Their Characterization, Antimicrobial Activity, and Anticancer Activity Against Human Lung Carcinoma Cell Line A549. Saudi J. Biol. Sci. 2022, 29 (1), 228–238.
  • Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green Synthesis of Gold Nanoparticles from Scutellaria barbata and its Anticancer Activity in Pancreatic Cancer Cell (PANC-1). Artif. Cells. Nanomed. Biotechnol. 2019, 47 (1), 1617–1627.
  • Zhang, X.; Tan, Z.; Jia, K.; Zhang, W.; Dang, M. Rabdosia rubescens Linn: Green Synthesis of Gold Nanoparticles and Their Anticancer Effects Against Human Lung Cancer Cells A549. Artif. Cells. Nanomed. Biotechnol. 2019, 47 (1), 2171–2178.
  • Sibuyi, N.R.S., Thipe, V.C., Panjtan-Amiri, K., Meyer, M., Katti, K. V. Green Synthesis of Gold Nanoparticles Using Acai Berry and Elderberry Extracts and Investigation of Their Effect on Prostate and Pancreatic Cancer Cells. Nanobiomedicine. (Rij) 2021, 8, 1849543521995310.
  • Rajeshkumar, S.; Lakshmi, T.; Tharani, M.; Sivaperumal, P. Green Synthesis of Gold Nanoparticles Using Pomegranate Peel Extract and its Antioxidant and Anticancer Activity Against Liver Cancer Cell Line. Alinteri J. Agric. Sci 2020, 35 (2), 164–169.
  • Reyes-Becerril, M.; Ruvalcaba, F.; Sanchez, V.; López, M.G.; Silva-Jara, J.; Hernandez-Adame, L.; Angulo, C. Green Synthesis of Gold Nanoparticles Using Turnera diffusa Willd Enhanced Antimicrobial Properties and Immune Response in Longfin Yellowtail Leukocytes. Aquac. Res. 2021, 52 (7), 3391–3402.
  • El-Borady, O.M.; Ayat, M.S.; Shabrawy, M.A.; Millet, P. Green Synthesis of Gold Nanoparticles Using Parsley Leaves Extract and Their Applications as an Alternative Catalytic, Antioxidant, Anticancer, and Antibacterial Agents. Adv. Powder Technol. 2020, 31 (10), 4390–4400.
  • Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A.; Amiri, O.; Goli, H.R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile Green Synthesis and Characterization of Crataegus microphylla Extract-Capped Silver Nanoparticles (CME@ Ag-NPs) and its Potential Antibacterial and Anticancer Activities Against AGS and MCF-7 Human Cancer Cells. J. Alloys Compd. 2020, 820, 153186.
  • Chokkalingam, M.; Singh, P.; Huo, Y.; Soshnikova, V.; Ahn, S.; Kang, J.; Mathiyalagan, R.; Kim, Y.J.; Yang, D.C. Facile Synthesis of Au and Ag Nanoparticles Using Fruit Extract of Lycium chinense and Their Anticancer Activity. J. Drug. Deliv. Sci. Technol. 2019, 49, 308–315.
  • Balasubramanian, S.; Kala, S.M.J.; Pushparaj, T.L. Biogenic Synthesis of Gold Nanoparticles Using Jasminum auriculatum Leaf Extract and Their Catalytic, Antimicrobial and Anticancer Activities. J. Drug. Deliv. Sci. Technol. 2020, 57, 101620.
  • Hashemi, S.F.; Tasharrofi, N.; Saber, M.M. Green Synthesis of Silver Nanoparticles Using Teucrium polium Leaf Extract and Assessment of Their Antitumor Effects Against MNK45 Human Gastric Cancer Cell Line. J. Mol. Struct. 2020, 1208, 127889.
  • Vallinayagam, S.; Rajendran, K.; Sekar, V. Green Synthesis and Characterization of Silver Nanoparticles Using Naringi crenulate Leaf Extract: Key Challenges for Anticancer Activities. J. Mol. Struct. 2021, 1243, 130829.
  • Satpathy, S.; Patra, A.; Ahirwar, B.; Hussain, M.D. Process Optimization for Green Synthesis of Gold Nanoparticles Mediated by Extract of Hygrophila spinosa T. Anders and Their Biological Applications. Physica E 2020, 121, 113830.
  • Alghuthaymi, M.A., et al. Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract. Plants 2021, 10 (11), 2370.
  • Anandan, M.; Poorani, G.; Boomi, P.; Varunkumar, K.; Anand, K.; Chuturgoon, A.A.; Saravanan, M.; Gurumallesh Prabu, H. Green Synthesis of Anisotropic Silver Nanoparticles from the Aqueous Leaf Extract of Dodonaea viscosa with Their Antibacterial and Anticancer Activities. Process Biochem. 2019, 80, 80–88.
  • Vera-Nuñez, L.D.C.; Cornejo-Ruiz, J.O.; Arenas-Chávez, C.A.; de Hollanda, L.M.; Alvarez-Risco, A.; Del-Aguila-Arcentales, S.; Davies, N.M.; Yáñez, J.A.; Vera-Gonzales, C. Green Synthesis of a Novel Silver Nanoparticle Conjugated with Thelypteris glandulosolanosa (Raqui-Raqui): Preliminary Characterization and Anticancer Activity. Processes 2022, 10 (7), 1308.
  • Hosny, M.; Fawzy, M.; Abdelfatah, A.M.; Fawzy, E.E.; Eltaweil, A.S. Comparative Study on the Potentialities of two Halophytic Species in the Green Synthesis of Gold Nanoparticles and Their Anticancer, Antioxidant and Catalytic Efficiencies. Adv. Powder Technol. 2021, 32 (9), 3220–3233.
  • Austin, L.A.; Kang, B.; Yen, C.-W.; El-Sayed, M.A. Plasmonic Imaging of Human Oral Cancer Cell Communities During Programmed Cell Death by Nuclear-Targeting Silver Nanoparticles. J. Am. Chem. Soc. 2011, 133 (44), 17594–17597.
  • Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.-H. Comparative Assessment of the Apoptotic Potential of Silver Nanoparticles Synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 Human Breast Cancer Cells: Targeting p53 for Anticancer Therapy. Int. J. Nanomed. 2015, 4203–4223.
  • Ullah, I., et al. Green-synthesized Silver Nanoparticles Induced Apoptotic Cell Death in MCF-7 Breast Cancer Cells by Generating Reactive Oxygen Species and Activating Caspase 3 and 9 Enzyme Activities. Oxid. Med. Cell. Longevity 2020, 2020.
  • Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. J. Adv. Res. 2018, 9, 1–16.
  • Jin, J.; Ovais, M.; Chen, C. Stimulus-responsive Gold Nanotheranostic Platforms for Targeting the Tumor Microenvironment. Nano. Today. 2018, 22, 83–99.
  • Alavi, M.; Kowalski, R.; Capasso, R.; Douglas Melo Coutinho, H.; Rose Alencar De Menezes, I. Various Novel Strategies for Functionalization of Gold and Silver Nanoparticles to Hinder Drug-Resistant Bacteria and Cancer Cells. Micro. Nano. Bio. Aspects 2022, 1 (1), 38–48.