296
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Toxic heavy metal ions contamination in the aqueous environment, its toxicity and methods of microbial remediation

, , &
Article: 2317824 | Received 18 Jan 2024, Accepted 08 Feb 2024, Published online: 06 Jun 2024

References

  • Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public. Health. 2020, 8. doi:10.3389/fpubh.2020.00014.
  • Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 1–14. doi:10.1155/2019/6730305.
  • Herawati, S.; Suzuki, N.; Hayashi, K.; Rivai, I.F. Cadmium, Copper, and Zinc Levels in Rice and Soil of Japan, Indonesia, and China by Soil Type. Bull. Environ. Contam. Toxicol. 2000, 64 (1), 33–39. doi:10.1007/s001289910006.
  • Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A Review of Toxicity and Mechanisms of Individual and Mixtures of Heavy Metals in the Environment. Environ. Sci. Pollut. Res. 2016, 23 (9), 8244–8259. doi:10.1007/s11356-016-6333-x.
  • Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6 (9), e04691. doi:10.1016/j.heliyon.2020.e04691.
  • Hamdzah, M.; Ujang, Z.; Nasef, M.M.; Abdullah, N.; Dahalan, F.A. Removal of Ni(II). Zn(II) and Pb(II) from Aqueous Solutions Using Cation-Exchange Resin in Fixed-Bed Column. Desalin. Water Treat. 2016, 57 (40), 18770–18781. doi:10.1080/19443994.2015.1095118.
  • Health Effects of Lead Exposure | Lead | CDC. https://www.atsdr.cdc.gov/csem/leadtoxicity/signs_and_symptoms.html
  • Olufemi, A.C.; Mji, A.; Mukhola, M.S. Potential Health Risks of Lead Exposure from Early Life Through Later Life: Implications for Public Health Education. Int. J. Environ. Res. Public Health. 2022, 19 (23), 16006. doi:10.3390/ijerph192316006.
  • Bernhoft, R.A. Cadmium Toxicity and Treatment. Scientific World J. 2013, 1–7. doi:10.1155/2013/394652.
  • Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12. doi:10.3389/fphar.2021.643972.
  • Singh Sankhla, M. Arsenic-Induced Neurotoxic & Carcinogenic Effects on Humans. Open Access J. Toxicol. 2018, 3 (4). doi:10.19080/OAJT.2018.03.555617.
  • Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. Npj Clean Water 2021, 4 (1). doi:10.1038/s41545-021-00127-0.
  • Sun, Y.; Wang, H.; Long, X.; Xi, H.; Biao, P.; Yang, W. Advance in Remediated of Heavy Metals by Soil Microbial Fuel Cells: Mechanism and Application. Front. Microbiol. 2022, 13. doi:10.3389/fmicb.2022.997732.
  • Jin, R.; Liu, Y.; Liu, G.; Tian, T.; Qiao, S.; Zhou, J. Characterization of Product and Potential Mechanism of Cr(VI) Reduction by Anaerobic Activated Sludge in a Sequencing Batch Reactor. Sci. Rep. 2017, 7 (1). doi:10.1038/s41598-017-01885-z.
  • Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere 2018, 207, 255–266. doi:10.1016/j.chemosphere.2018.05.050.
  • Ungureanu, E.L.; Mocanu, A.L.; Stroe, C.A.; Panciu, C.M.; Berca, L.; Sionel, R.M.; Mustatea, G. Agricultural Byproducts Used as Low-Cost Adsorbents for Removal of Potentially Toxic Elements from Wastewater: A Comprehensive Review. Sustainability 2023, 15 (7), 5999. doi:10.3390/su15075999.
  • Youssef, A.M.; Abdel-Aziz, M.E.; El-Sayed, E.S.A.; Abdel-Aziz, M.S.; Abd El-Hakim, A.A.; Kamel, S.; Turky, G. Morphological, Electrical & Antibacterial Properties of Trilayered Cs/PAA/PPy Bionanocomposites Hydrogel Based on Fe3O4-NPs. Carbohydr. Polym. 2018, 196, 483–493. doi:10.1016/j.carbpol.2018.05.065.
  • Singh, V.; Singh, N.; Rai, S.N.; Kumar, A.; Singh, A.K.; Singh, M.P.; Sahoo, A.; Shekhar, S.; Vamanu, E.; Mishra, V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 2023, 11 (2), 147. doi:10.3390/toxics11020147.
  • Hama Aziz, K.H.; Mustafa, F.S.; Omer, K.M.; Hama, S.; Hamarawf, R.F.; Rahman, K.O. Heavy Metal Pollution in the Aquatic Environment: Efficient and Low-Cost Removal Approaches to Eliminate Their Toxicity: A Review. RSC Adv. 2023, 13 (26), 17595–17610. doi:10.1039/D3RA00723E.
  • Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm Models for Adsorption of Heavy Metals from Water – A Review. Chemosphere 2022, 307, 135545. doi:10.1016/j.chemosphere.2022.135545.
  • Abou Seeda, M. A.; El-Sayed, A. A.; Yassen, A. A.; Zaghloul, S. M.; Khater, A.. . Heavy Metals, Sources, Chemistry, Risks and Best Applicable Approach for Remediationof Contaminated Soils: A Review. Middle East J. Appl. Sci 2019. doi:10.36632/mejas/2019.9.4.2.
  • Ghugare, G.S.; Katkar, P.S. Heavy Metals in the Coal Mines Environment, Their Toxicity and Remediation. Int. J. Res.Biosci. Agric. Technol 2022. doi:10.29369/ijrbat.2022.010.3.0017.
  • Yi, Y.; Yang, Z.; Zhang, S. Ecological Risk Assessment of Heavy Metals in Sediment and Human Health Risk Assessment of Heavy Metals in Fishes in the Middle and Lower Reaches of the Yangtze River Basin. Environ. Pollut. 2011, 159 (10), 2575–2585. doi:10.1016/j.envpol.2011.06.011.
  • Tijani, M.N.; Jinno, K.; Hiroshiro, Y. Environmental Impact of Heavy Metals Distribution in Water and Sediments of Ogunpa River, Ibadan Area, Southwestern Nigeria. J. Min. Geol 2004, 40. doi:10.4314/jmg.v40i1.18811.
  • Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9 (3), 42. doi:10.3390/toxics9030042.
  • Yan, X.; Liu, M.; Zhong, J.; Guo, J.; Wu, W. How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China. Sustainability 2018, 10 (2), 338. doi:10.3390/su10020338.
  • Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7 (2), 60–72. doi:10.2478/intox-2014-0009.
  • Jan, A.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. Heavy Metals and Human Health: Mechanistic Insight Into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. doi:10.3390/ijms161226183.
  • Li, L.; Zhang, Y.; Ippolito, J.A.; Xing, W.; Qiu, K.; Yang, H. Lead Smelting Effects Heavy Metal Concentrations in Soils, Wheat, and Potentially Humans. Environ. Pollut. 2020, 257, 113641. doi:10.1016/j.envpol.2019.113641.
  • Wise, J. P. Jr.; Young, J. L.; Cai, J.; Cai, L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ. Int. 2022, 158 (1), 106877. doi:10.1016/j.envint.2021.106877.
  • Honeycutt, M.E. Hexavalent Chromium in Texas Drinking Water. Toxicol. Sci. 2011, 119 (2), 423–424. doi:10.1093/toxsci/kfq347.
  • Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans – A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43–56.
  • Toxicological Profile for Nickel. https://www.atsdr.cdc.gov/toxprofiles/tp15.pdf. (Accessed on August 27, 2023).
  • ATSDR Toxicological Profile for Copper. https://www.atsdr.cdc.gov/toxprofiles/tp132.pdf.
  • Haynes, W. M.. Book Listing of CRC Handbook of Chemistry and Physics, 92nd ed., 2011–2012. J. Am. Chem. Soc. 2011, 133 (34), 13766. doi:10.1021/ja2071225.
  • Singh, V.; Singh, M.P.; Mishra, V. Bioremediation of Toxic Metal Ions from Coal Washery Effluent. Desalin. Water Treat. 2020, 197, 300–318. doi:10.5004/dwt.2020.25996.
  • Mason, L. H.; Harp, J. P.; Han, D. Y.. Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity. BioMed Res. Int. 2014, 840547. doi:10.1155/2014/840547.
  • ATSDR Toxicological Profile for Lead. (2020) https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
  • Valko, M.; Morris, H.; Cronin, M. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12 (10), 1161–1208. doi:10.2174/0929867053764635.
  • Kumari, S.; Sharma, S.; Advani, D.; Khosla, A.; Kumar, P.; Ambasta, R.K. Unboxing the Molecular Modalities of Mutagens in Cancer. Environ. Sci. Poll. Res 2022, 29 (41), 62111–62159. doi:10.1007/s11356-021-16726-w.
  • Koedrith, P.; Seo, Y.R. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers. Int. J. Mol. Sci. 2011, 12, 9576–9595. doi:10.3390/ijms12129576.
  • Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2 (2), 48–78. doi:10.3390/oxygen2020006.
  • Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front. Bioeng. Biotechnol. 2018, 6. doi:10.3389/fbioe.2018.00157.
  • Deng, X.; Yi, X.E.; Liu, G. Cadmium Removal from Aqueous Solution by Gene-Modified Escherichia Coli JM109. J. Hazard. Mater. 2007, 139 (2), 340–344. doi:10.1016/j.jhazmat.2006.06.043.
  • Zhang, H.; Tan, X.; Qiu, T.; Zhou, L.; Li, R.; Deng, Z. A Novel and Biocompatible Fe3O4 Loaded Chitosan Polyelectrolyte Nanoparticles for the Removal of Cd2+ Ion. Int. J. Biol. Macromol. 2019, 141, 1165–1174. doi:10.1016/j.ijbiomac.2019.09.040.
  • Timková, I.; Sedláková-Kaduková, J.; Pristaš, P. Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites. Separations 2018, 5 (4), 54. doi:10.3390/separations5040054.
  • Arishi, A.; Mashhour, I. Microbial Mechanisms for Remediation of Hexavalent Chromium and Their Large-Scale Applications; Current Research and Future Directions. J Pure Appl. Microbiol 2021, 15 (1), 53–67. doi:10.22207/JPAM.15.1.32.
  • Yilmazer, P.; Saracoglu, N. Bioaccumulation and Biosorption of Copper(II) and Chromium(III) from Aqueous Solutions byPichia Stipitisyeast. J. Chem. Technol. Biotechnol. 2009, 84 (4), 604–610. doi:10.1002/jctb.2088.
  • Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological Approaches to Tackle Heavy Metal Pollution: A Survey of Literature. J. Environ. Manag. 2018, 217, 56–70. doi:10.1016/j.jenvman.2018.03.077.
  • El-Naggar, N.E.-A.; El-khateeb, A.Y.; Ghoniem, A.A.; El-Hersh, M.S.; Saber, W.I.A. Innovative low-Cost Biosorption Process of Cr6+ by Pseudomonas Alcaliphila NEWG-2. Sci. Rep. 2020, 10 (1). doi:10.1038/s41598-020-70473-5.
  • Tekerlekopoulou, A.G.; Tsiflikiotou, M.; Akritidou, L.; Viennas, A.; Tsiamis, G.; Pavlou, S.; Bourtzis, K.; Vayenas, D.V. Modelling of Biological Cr(VI) Removal in Draw-Fill Reactors Using Microorganisms in Suspended and Attached Growth Systems. Water Res. 2013, 47 (2), 623–636. doi:10.1016/j.watres.2012.10.034.
  • Humphries, A.C.; Nott, K.P.; Hall, L.D.; Macaskie, L.E. Reduction of Cr(VI) by Immobilized Cells of Desulfovibrio Vulgaris NCIMB 8303 and Microbacterium Sp. NCIMB 13776. Biotechnol. Bioeng. 2005, 90 (5), 589–596. doi:10.1002/bit.20450.
  • Li, R.; Hu, D.; Hu, K.; Deng, H.; Zhang, M.; Wang, A.; Qiu, R.; Yan, K. Coupling Adsorption-Photocatalytic Reduction of Cr(VI) by Metal-Free N-Doped Carbon. Sci. Total Environ. 2020, 704, 135284. doi:10.1016/j.scitotenv.2019.135284.
  • Ibrahim, A.S.S.; El-Tayeb, M.A.; Elbadawi, Y.B.; Al-Salamah, A.A.; Antranikian, G. Hexavalent Chromate Reduction by Alkaliphilic Amphibacillus Sp. KSUCr3 Is Mediated by Copper-Dependent Membrane-Associated Cr(VI) Reductase. Extremophiles 2012, 16 (4), 659–668. doi:10.1007/s00792-012-0464-x.
  • Liu, Z.; Wu, Y.; Lei, C.; Liu, P.; Gao, M. Chromate Reduction by a Chromate-Resistant Bacterium, Microbacterium Sp. World J. Microbiol. Biotechnol. 2012, 28 (4), 1585–1592. doi:10.1007/s11274-011-0962-5.
  • Henson, M.W.; Santo Domingo, J.W.; Kourtev, P.S.; Jensen, R.V.; Dunn, J.A.; Learman, D.R. Metabolic and Genomic Analysis Elucidates Strain-Level Variation inMicrobacterium Spp.Isolated from Chromate Contaminated Sediment. PeerJ. 2015, 3, e1395. doi:10.7717/peerj.1395.
  • Pattanapipitpaisal, P.; Brown, N.; Macaskie, L. Chromate Reduction and 16S rRNA Identification of Bacteria Isolated from a Cr(VI)-Contaminated Site. Appl. Microbiol. Biotechnol. 2001, 57 (1–2), 257–261. doi:10.1007/s002530100758.
  • Ahemad, M. Enhancing Phytoremediation of Chromium-Stressed Soils Through Plant-Growth-Promoting Bacteria. J. Genet. Eng. Biotechnol. 2015, 13 (1), 51–58. doi:10.1016/j.jgeb.2015.02.001.
  • Kubrak, O.I.; Lushchak, O.V.; Lushchak, J.V.; Torous, I.M.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Chromium Effects on Free Radical Processes in Goldfish Tissues: Comparison of Cr(III) and Cr(VI) Exposures on Oxidative Stress Markers, Glutathione Status and Antioxidant Enzymes. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2010, 152 (3), 360–370. doi:10.1016/j.cbpc.2010.06.003.
  • Kumar, M.S.; Praveenkumar, R.; Ilavarasi, A.; Rajeshwari, K.; Thajuddin, N. Biochemical Changes of Fresh Water Cyanobacteria Dolichospermum Flos-Aquae NTMS07 to Chromium-Induced Stress with Special Reference to Antioxidant Enzymes and Cellular Fatty Acids. Bull. Environ. Contam. Toxicol. 2013, 90 (6), 730–735. doi:10.1007/s00128-013-0984-9.
  • Tahri Joutey, N.; Bahafid, W.; Sayel, H.; Maâtaoui, H.; Errachidi, F.; El Ghachtouli, N. Use of Experimental Factorial Design for Optimization of Hexavalent Chromium Removal by a Bacterial Consortium: Soil Microcosm Bioremediation. Soil Sediment Contam.: Int. J 2015, 24 (2), 129–142. doi:10.1080/15320383.2014.922931.
  • Mary Mangaiyarkarasi, M.S.; Vincent, S.; Janarthanan, S.; Subba Rao, T.; Tata, B.V.R. Bioreduction of Cr(VI) by Alkaliphilic Bacillus Subtilis and Interaction of the Membrane Groups. Saudi J. Biol. Sci. 2011, 18 (2), 157–167. doi:10.1016/j.sjbs.2010.12.003.
  • Karthik, C.; Barathi, S.; Pugazhendhi, A.; Ramkumar, V.S.; Thi, N.B.D.; Arulselvi, P.I. Evaluation of Cr(VI) Reduction Mechanism and Removal by Cellulosimicrobium Funkei Strain AR8, a Novel Haloalkaliphilic Bacterium. J. Hazard. Mater. 2017, 333, 42–53. doi:10.1016/j.jhazmat.2017.03.037.
  • Zahoor, A.; Rehman, A. Isolation of Cr(VI) Reducing Bacteria from Industrial Effluents and Their Potential Use in Bioremediation of Chromium Containing Wastewater. J. Environ. Sci. 2009, 21, 814–820. doi:10.1016/S1001-0742(08)62346-3.
  • Basu, S.; Dasgupta, M.; Chakraborty, B. Removal of Chromium (VI) by Bacillus Subtilis Isolated from East Calcutta Wetlands, West Bengal, India. Int. J. Biosci. Biochem. Bioinf 2014, 7–10. doi:10.7763/IJBBB.2014.V4.300.
  • Srivastava, S.; Thakur, I.S. Evaluation of Biosorption Potency of Acinetobacter Sp. for Removal of Hexavalent Chromium from Tannery Effluent. Biodegradation 2007, 18 (5), 637–646. doi:10.1007/s10532-006-9096-0.
  • Zhang, K.; Xue, Y.; Xu, H.; Yao, Y. Lead Removal by Phosphate Solubilizing Bacteria Isolated from Soil Through Biomineralization. Chemosphere 2019, 224, 272–279. doi:10.1016/j.chemosphere.2019.02.140.
  • Bahavar, A.; Monavari, S.H.R.; Keyvani, H.; Esghaei, M.; Ghorbani, S.; Ataei-Pirkooh, A. Sero-Prevalence of Herpes Simplex and Epstein Barr Viruses in HIV Positive Patients in Tehran. Iran. J. Virol 2015, 9 (4), 29–34. doi:10.21859/isv.9.4.29.
  • Cephidian, A.; Makhdoumi, A.; Mashreghi, M.; Mahmudy Gharaie, M.H. Removal of Anthropogenic Lead Pollutions by a Potent Bacillus Species AS2 Isolated from Geogenic Contaminated Site. Int. J. Environ. Sci. Technol. 2016, 13 (9), 2135–2142. doi:10.1007/s13762-016-1023-2.
  • Ogbo, E.M.; Okhuoya, J.A. Bio-Absorption of Some Heavy Metals by Pleurotus Tuber-Regium Fr. Singer (An Edible Mushroom) from Crude Oil Polluted Soils Amended with Fertilizers and Cellulosic Wastes. Int. J. Soil Sci. 2010, 6 (1), 34–48. doi:10.3923/ijss.2011.34.48.
  • Albert, Q.; Leleyter, L.; Lemoine, M.; Heutte, N.; Rioult, J.-P.; Sage, L.; Baraud, F.; Garon, D. Comparison of Tolerance and Biosorption of Three Trace Metals (Cd, Cu, Pb) by the Soil Fungus Absidia Cylindrospora. Chemosphere 2018, 196, 386–392. doi:10.1016/j.chemosphere.2017.12.156.
  • Vaseem, H.; Singh, V.K.; Singh, M.P. Heavy Metal Pollution Due to Coal Washery Effluent and Its Decontamination Using a Macrofungus, Pleurotus Ostreatus. Ecotoxicol. Environ. Saf. 2017, 145, 42–49. doi:10.1016/j.ecoenv.2017.07.001.
  • Shanab, S.; Essa, A.; Shalaby, E. Bioremoval Capacity of Three Heavy Metals by Some Microalgae Species (Egyptian Isolates). Plant. Signal. Behav. 2012, 7 (3), 392–399. doi:10.4161/psb.19173.
  • Ye, J.; Xiao, H.; Xiao, B.; Xu, W.; Gao, L.; Lin, G. Bioremediation of Heavy Metal Contaminated Aqueous Solution by Using Red Algae Porphyra Leucosticta. Water Sci. Technol. 2015, 72 (9), 1662–1666. doi:10.2166/wst.2015.386.
  • wang, Y.; Wang, B.; Peng, Q.; Chen, X.; Huang, Y. Adsorption of Cr(VI) by Iron Loaded Porous Carbon with High Cycling Properties. Mater. Lett. 2020, 274, 127988. doi:10.1016/j.matlet.2020.127988.
  • Heidari, P.; Panico, A. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus Sp. Int. J. Environ. Res. Public Health 2020, 17 (11), 4059. doi:10.3390/ijerph17114059.
  • Chen, H.; Zhong, C.; Berkhouse, H.; Zhang, Y.; Lv, Y.; Lu, W.; Yang, Y.; Zhou, J. Removal of Cadmium by Bioflocculant Produced by Stenotrophomonas Maltophilia Using Phenol-Containing Wastewater. Chemosphere 2016, 155, 163–169. doi:10.1016/j.chemosphere.2016.04.044.
  • Choińska-Pulit, A.; Sobolczyk-Bednarek, J.; Łaba, W. Optimization of Copper, Lead and Cadmium Biosorption Onto Newly Isolated Bacterium Using a Box-Behnken Design. Ecotoxicol. Environ. Saf. 2018, 149, 275–283. doi:10.1016/j.ecoenv.2017.12.008.
  • Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Lalung, J. Isolation, Identification, Characterization, and Evaluation of Cadmium Removal Capacity ofEnterobacterspecies. J. Basic Microbiol. 2014, 54 (12), 1279–1287. doi:10.1002/jobm.201400157.
  • Mitra, S.; Pramanik, K.; Sarkar, A.; Ghosh, P.K.; Soren, T.; Maiti, T.K. Bioaccumulation of Cadmium by Enterobacter Sp. and Enhancement of Rice Seedling Growth Under Cadmium Stress. Ecotoxicol. Environ. Saf. 2018, 156, 183–196. doi:10.1016/j.ecoenv.2018.03.001.
  • El-Gendy, M.M.A.A.; Ten, N.M.; Ibrahim, H.A.E.-H.; Abd El-Baky, D.H. Heavy Metals Biosorption from Aqueous Solution by Endophytic Drechslera Hawaiiensis of Morus Alba L. Derived from Heavy Metals Habitats. Mycobiology 2017, 45 (2), 73–83. doi:10.5941/myco.2017.45.2.73.
  • García, M.; Alonso, J.; Melgar, M. Agaricus Macrosporusas a Potential Bioremediation Agent for Substrates Contaminated with Heavy Metals. J. Chem. Technol. Biotechnol. 2005, 80 (3), 325–330. doi:10.1002/jctb.1203.
  • Dey, U.; Chatterjee, S.; Mondal, N.K. Isolation and Characterization of Arsenic-Resistant Bacteria and Possible Application in Bioremediation. Biotechnol. Rep. 2016, 10, 1–7. doi:10.1016/j.btre.2016.02.002.
  • Pandey, N.; Manjunath, K.; Sahu, K. Screening of Plant Growth Promoting Attributes and Arsenic Remediation Efficacy of Bacteria Isolated from Agricultural Soils of Chhattisgarh. Arch. Microbiol. 2020, 202 (3), 567–578. doi:10.1007/s00203-019-01773-2.
  • Kepel, B.; Bodhi, W.; Tallei, T.E. Isolation and Identification of Arsenic-Resistant Bacteria for Possible Application in Arsenic Bioremediation. Pak. J. Biol. Sci. 2019, 23 (1), 63–67. doi:10.3923/pjbs.2020.63.67.
  • Ghodsi, H. Investigation of Bioremediation of Arsenic by Bacteria Isolated from Contaminated Soil. Afr. J. Microbiol. Res. 2011, 5. doi:10.5897/ajmr11.837.
  • Acioly, L.M.; Cavalcanti, D.; Luna, M.C.; Júnior, J.C.; Andrade, R.F.; e Silva, T.A.D.L.; La Rotta, C.E.; Campos-Takaki, G.M. Cadmium Removal from Aqueous Solutions by Strain of Pantoea Agglomerans UCP1320 Isolated from Laundry Effluent. Open. Microbiol. J. 2018, 12 (1), 297–307. doi:10.2174/1874285801812010297.
  • Archana; Jaitly, A.K. Analysis of Trace Metals in Underground Drinking Water of Bareilly. Invertis J. Renewable Energy 2016, 6 (2), 106. doi:10.5958/2454-7611.2016.00014.x.
  • Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative Bioremediation of Heavy Metals and Petroleum Hydrocarbons Co-Contaminated Soil by Natural Attenuation, Phytoremediation, Bioaugmentation and Bioaugmentation-Assisted Phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. doi:10.1016/j.scitotenv.2015.10.061.
  • Zheng, C.; Zheng, H.; Sun, Y.; Xu, B.; Wang, Y.; Zheng, X.; Wang, Y. Simultaneous Adsorption and Reduction of Hexavalent Chromium on the Poly(4-Vinyl Pyridine) Decorated Magnetic Chitosan Biopolymer in Aqueous Solution. Bioresour. Technol. 2019, 293, 122038. doi:10.1016/j.biortech.2019.122038.
  • Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Kováříková, E.; Čopíková, J. Glucans from Fruit Bodies of Cultivated Mushrooms Pleurotus Ostreatus and Pleurotus Eryngii: Structure and Potential Prebiotic Activity. Carbohydr. Polym. 2009, 76 (4), 548–556. doi:10.1016/j.carbpol.2008.11.021.
  • Barros, L.; Baptista, P.; Estevinho, L.; Ferreira, I. Bioactive Properties of the Medicinal Mushroom Leucopaxillus Giganteus Mycelium Obtained in the Presence of Different Nitrogen Sources. Food Chem. 2007, 105 (1), 179–186. doi:10.1016/j.foodchem.2007.03.063.
  • Gadd, G.M. Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation. Mycol. Res. 2007, 111 (1), 3–49. doi:10.1016/j.mycres.2006.12.001.
  • Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020, 25 (12), 2811. doi:10.3390/molecules25122811.
  • Kumar, A.; Chandra, R. Ligninolytic Enzymes and Its Mechanisms for Degradation of Lignocellulosic Waste in Environment. Heliyon 2020, 6 (2), e03170. doi:10.1016/j.heliyon.2020.e03170.
  • Hestbjerg, H.; Willumsen, P.A.; Christensen, M.; Andersen, O.; Jacobsen, C.S. Bioaugmentation of Tar-Contaminated Soils under Field Conditions using Pleurotus Ostreatusrefuse from Commercial Mushroom Production. Environ. Toxicol. Chem. 2003, 22 (4), 692–698. doi:10.1002/etc.5620220402.
  • Kapahi, M.; Sachdeva, S. Mycoremediation Potential of Pleurotus Species for Heavy Metals: A Review. Bioresources Bioprocess. 2017, 4 (1). doi:10.1186/s40643-017-0162-8.
  • Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of Heavy Metals: Mechanisms, Methods and Enhancements. Environ. Chem. Lett. 2018, 16 (4), 1339–1359. doi:10.1007/s10311-018-0762-3.
  • Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants Through Phytoremediation. Int. J. Chem. Eng. 2011, 1–31. doi:10.1155/2011/939161.
  • Awalla, C. Phytoremediation of Sewage Sludge in Soils Contaminated with Heavy Metals. Global J. Environ. Sci. 2015, 12 (1), 13. doi:10.4314/gjes.v12i1.2.
  • Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of Heavy Metals by Four Aquatic Macrophytes and Their Potential Use as Contamination Indicators: A Comparative Assessment. Environ. Sci. Poll. Res. 2020, 27 (11), 12138–12151. doi:10.1007/s11356-020-07839-9.
  • Costa, W.D.; da Silva Bento, A.M.; de Araújo, J.A.S.; Menezes, J.M.C.; da Costa, J.G.M.; da Cunha, F.A.B.; Coutinho, H.D.M.; de Paula Filho, F.J.; Pereira Teixeira, R.N. Removal of Copper(II) Ions and Lead(II) from Aqueous Solutions Using Seeds of Azadirachta Indica A. Juss as Bioadsorvent. Environ. Res. 2020, 183, 109213. doi:10.1016/j.envres.2020.109213.
  • Parashar, D.; Satyanarayana, T. An Insight Into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases from Acidophiles. Front. Bioeng. Biotechnol. 2018, 6, 125.
  • Wang, Y.S.; Pan, Z.Y.; Lang, J.M.; Xu, J.M.; Zheng, Y.G. Bioleaching of Chromium from Tannery Sludge by Indigenous Acidithiobacillus Thiooxidans. J. Hazard. Mater. 2007, 147 (1–2), 319–324.
  • Branca, T.A.; Colla, V.; Algermissen, D.; Granbom, H.; Martini, U.; Morillon, A.; Pietruck, R.; Rosendahl, S. Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe. Metals. (Basel) 2020, 10, 345.
  • Álvarez, M.L.; Fidalgo, J.M.; Gascó, G.; Méndez, A. Hydrometallurgical Recovery of Cu and Zn from a Complex Sulfide Mineral by Fe3+/H2SO4 Leaching in the Presence of Carbon-Based Materials. Metals. (Basel) 2021, 11, 286.
  • Sarkodie, E.K.; Jiang, L.; Li, K.; Yang, J.; Guo, Z.; Shi, J.; Deng, Y.; Liu, H.; Jiang, H.; Liang, Y.; Yin, H.; Liu, X. A Review on the Bioleaching of Toxic Metal(Loid)s from Contaminated Soil: Insight Into the Mechanism of Action and the Role of Influencing Factors. Front. Microbiol. 2022, 13, 1049277.
  • Ummalyma, S.B.; Sahoo, D.; Pandey, A. Resource Recovery Through Bioremediation of Wastewaters and Waste Carbon by Microalgae: A Circular Bioeconomy Approach. Environ. Sci. Pollut. Res. Int. 2021, 28, 58837–58856.
  • Dickerhof, N.; Isles, V.; Pattemore, P.; Hampton, M.B.; Kettle, A.J. Exposure of Pseudomonas Aeruginosa to Bactericidal Hypochlorous Acid During Neutrophil Phagocytosis is Compromised in Cystic Fibrosis. J. Biol. Chem. 2019, 294, 13502–13514.
  • Cha, M.; Lee, N.; Kim, M.; Kim, M.; Lee, S. Heterologous Production of Pseudomonas Aeruginosa EMS1 Biosurfactant in Pseudomonas Putida. Bioresour. Technol. 2008, 99, 2192–9.
  • Bayramoglu, G.; Arica, M.Y. Preparation of a Composite Biosorbent Using Scenedesmus Quadricauda Biomass and Alginate/Polyvinyl Alcohol for Removal of Cu(II) and Cd(II) Ions: Isotherms, Kinetics, and Thermodynamic Studies. Water Air Soil Pollut. 2011, 221, 391–403.
  • Shanu-Wilson, J.; Evans, L.; Wrigley, S.; Steele, J.; Atherton, J.; Boer, J. Biotransformation: Impact and Application of Metabolism in Drug Discovery. ACS. Med. Chem. Lett. 2020, 11, 2087–2107.
  • Igiri, B.E.; Okoduwa, S.I.R.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 1–16. doi:10.1155/2018/2568038.
  • Smitha, M.S.; Singh, S.; Singh, R. Microbial bio Transformation: A Process for Chemical Alterations. J Bacteriol Mycol Open Access 2017, 4, 47–51.
  • Irawati, W.; Parhusip, A.J.N.; Sopiah, N.; Tnunay, J.A. The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation Using Eichhornia Crasippes [(Mart.) Solms]. KnE Life Sciences 2017, 3, 208–220.
  • Viti, C.; Marchi, E.; Decorosi, F.; Giovannetti, L. Molecular Mechanisms of Cr(VI) Resistance in Bacteria and Fungi. FEMS Microbiol. Rev. 2014, 38, 633–659.
  • Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and Microbial Remediation of Hexavalent Chromium from Contaminated Soil and Mining/Metallurgical Solid Waste: A Review. J. Hazard. Mater. 2013, 250-251, 272–291.
  • Joutey, N.T.; Sayel, H.; Bahafid, W.; El-hachtouli, N. Mechanisms of Hexavalent Chromium Resistance and Removal by Microorganisms. Rev. Environ. Contam. Toxicol. 2015, 233, 45–69.
  • Miransari, M. Hyperaccumulators, Arbuscular Mycorrhizal Fungi and Stress of Heavy Metals. Biotechnol. Adv. 2011, 29, 645–653.
  • Li, F.; Li, Y.X.; Sun, L.M.; Chen, X.L.; An, X.J.; Yin, C.J.; Cao, Y.X.; Wu, H.; Song, H. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella Oneidensis MR-1. ACS. Synth. Biol. 2018, 7, 885–895.
  • Nagvenkar, G.S.; Ramaiah, N. Arsenite Tolerance and Biotransformation Potential in Estuarine Bacteria. Ecotoxicology 2010, 19 (4), 604–613. doi:10.1007/s10646-009-0429-8.
  • Correa-García, S.; Pande, P.; Séguin, A.; St-Arnaud, M.; Yergeau, E. Rhizoremediation of Petroleum Hydrocarbons: A Model System for Plant Microbiome Manipulation. Microb. Biotechnol. 2018, 11, 819–832.
  • Dixit, R.; Wasiullah, X.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212.
  • Singh, H.; Pant, G. Phytoremediation: Low Input-Based Ecological Approach for Sustainable Environment. Appl. Water. Sci. 2023, 13, 85.
  • Ojuederie, O.B.; Babalola, O.O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14 (12), 1504. doi:10.3390/ijerph14121504.
  • Skuza, L.; Szućko-Kociuba, I.; Filip, E.; Bożek, I. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance Towards Heavy Metals. Int. J. Mol. Sci. 2022, 23, 9335.
  • Zhou, B.; Zhang, T.; Wang, F. Microbial-Based Heavy Metal Bioremediation: Toxicity and Eco-Friendly Approaches to Heavy Metal Decontamination. Appl. Sci 2023, 13, 8439. doi:10.3390/app13148439.
  • Bian, F.; Zhong, Z.; Wu, S.; Zhang, X.; Yang, C.; Xiong, X. Comparison of Heavy Metal Phytoremediation in Monoculture and Intercropping Systems of Phyllostachys Praecox and Sedum Plumbizincicola in Polluted Soil. Int. J. Phytoremediation 2018, 20, 490–498.
  • Verma, P.; Rawat, S. Rhizoremediation of Heavy Metal- and Xenobiotic-Contaminated Soil: An Eco-Friendly Approach. In Removal of Emerging Contaminants Through Microbial Processes: Shah, M.P., Eds.; Springer, Singapore, 2021.
  • Poria, V.; Dębiec-Andrzejewska, K.; Fiodor, A.; Lyzohub, M.; Ajijah, N.; Singh, S.; Pranaw, K. Plant Growth-Promoting Bacteria (PGPB) Integrated Phytotechnology: A Sustainable Approach for Remediation of Marginal Lands. Front. Plant Sci. 2022, 13, 999866.
  • Ilias, M.; Rafiqullah, I.M.; Debnath, B.C.; Mannan, K.S.; Mozammel Hoq, M. Isolation and Characterization of Chromium(VI)-Reducing Bacteria from Tannery Effluents. Indian J. Microbiol. 2011, 51, 76–81.
  • Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Front. Microbiol. 2022, 13. doi:10.3389/fmicb.2022.824084.
  • Medfu Tarekegn, M.; Zewdu Salilih, F.; Ishetu, A.I. Microbes Used as a Tool for Bioremediation of Heavy Metal from the Environment. Cogent Food & Agriculture 2020, 6 (1), 1783174. doi:10.1080/23311932.2020.1783174.
  • Bhati, A.; Anand, S.R.; Saini, D.; Gunture; Sonkar, S.K. Sunlight-Induced Photoreduction of Cr(VI) to Cr(III) in Wastewater by Nitrogen-Phosphorus-Doped Carbon Dots. Npj Clean Water 2019, 2 (12), 1–8. doi:10.1038/s41545-019-0036-z.
  • Teitzel, G.M.; Parsek, M.R. Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas Aeruginosa. Appl. Environ. Microbiol. 2003, 69 (4), 2313–2320. doi:10.1128/AEM.69.4.2313-2320.2003.
  • Grujić, S.; Vasić, S.; Čomić, L.; Ostojić, A.; Radojević, I. Heavy Metal Tolerance and Removal Potential in Mixed-Species Biofilm. Water Sci. Technol. 2017, 76 (4), 806–812. doi:10.2166/wst.2017.248.
  • Rasulov, O.; Schwarz, M.; Horváth, A.; Zoirov, F.; Fayz, N. Analysis of Soil Contamination with Heavy Metals in (the Three) Highly Contaminated Industrial Zones. SN Applied Sciences 2020, 2 (12). doi:10.1007/s42452-020-03813-9.
  • Pfennig, N.; Biebl, H. Desulfuromonas Acetoxidans Gen. Nov. and Sp. Nov., a New Anaerobic, Sulfur-Reducing. Acetate-Oxidizing Bacterium. Arch. Microbiol. 1976, 110 (1), 3–12. doi:10.1007/BF00416962.
  • Esser, J.; Brunnert, H. Isolation and Partial Purification of Cadmium-Binding Components from Fruiting Bodies of Agaricus Bisporus. Environ. Poll. Ser. A, Ecol. Biol. 1986, 41 (3), 263–275. doi:10.1016/0143-1471(86)90074-7.
  • Lopes-Lima, M.; Burlakova, L.E.; Karatayev, A.Y.; Mehler, K.; Seddon, M.; Sousa, R. Conservation of Freshwater Bivalves at the Global Scale: Diversity, Threats and Research Needs. Hydrobiologia 2018, 810 (1), 1–14. doi:10.1007/s10750-017-3486-7.
  • Remenár, M.; Kamlárová, A.; Harichová, J.; Zámocký, M.; Ferianc, P. The Heavy-Metal Resistance Determinant of Newly Isolated Bacterium from a Nickel-Contaminated Soil in Southwest Slovakia. Pol. J. Microbiol. 2018, 67 (2), 191–201. doi:10.21307/pjm-2018-022.
  • Zammit, C.M.; Weiland, F.; Brugger, J.; Wade, B.; Winderbaum, L.J.; Nies, D.H.; Southam, G.; Hoffmann, P.; Reith, F. Proteomic Responses to Gold(Iii)-Toxicity in the Bacterium Cupriavidus Metallidurans CH34. Metallomics 2016, 8 (11), 1204–1216. doi:10.1039/C6MT00142D.
  • Liu, S.-H.; Zeng, G.-M.; Niu, Q.-Y.; Liu, Y.; Zhou, L.; Jiang, L.-H.; Tan, X.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation Mechanisms of Combined Pollution of PAHs and Heavy Metals by Bacteria and Fungi. A Mini Rev. Bioresour. Technol. 2017, 224, 25–33. doi:10.1016/j.biortech.2016.11.095.
  • Giovanella, P.; Cabral, L.; Bento, F.M.; Gianello, C.; Camargo, F.A.O. Mercury (II) Removal by Resistant Bacterial Isolates and Mercuric (II) Reductase Activity in a New Strain of Pseudomonas Sp. B50A. New Biotechnol. 2016, 33 (1), 216–223. doi:10.1016/j.nbt.2015.05.006.
  • Manikandan, P.; Moopantakath, J.; Imchen, M.; Kumavath, R.; SenthilKumar, P.K. Identification of Multi-Potent Protein Subtilisin A from Halophilic Bacterium Bacillus Firmus VE2. Microb. Pathog. 2021, 157, 105007. doi:10.1016/j.micpath.2021.105007.
  • Zhang, W.; Chen, L.; Liu, D. Characterization of a Marine-Isolated Mercury-Resistant Pseudomonas Putida Strain SP1 and Its Potential Application in Marine Mercury Reduction. Appl. Microbiol. Biotechnol. 2012, 93 (3), 1305–1314. doi:10.1007/s00253-011-3454-5.
  • Njoku, K.L.; Akinyede, O.R.; Obidi, O.F. Microbial Remediation of Heavy Metals Contaminated Media by Bacillus Megaterium and Rhizopus Stolonifer. Scientific African 2020, 10, e00545. doi:10.1016/j.sciaf.2020.e00545.
  • Jin, Y.; Luan, Y.; Ning, Y.; Wang, L. Effects and Mechanisms of Microbial Remediation of Heavy Metals in Soil: A Critical Review. Appl. Sci. 2018, 8 (8), 1336. doi:10.3390/app8081336.
  • Ariffin, N.; Abdullah, M.M.A.B.; Mohd Arif Zainol, M.R.R.; Murshed, M.F.; Hariz-Zain; Faris, M.A.; Bayuaji, R. Review on Adsorption of Heavy Metal in Wastewater by Using Geopolymer. MATEC Web Conferences 2017, 97, 01023. doi:10.1051/matecconf/20179701023.
  • Al-Enezi, G.; Hamoda, M.F.; Fawzi, N. Ion Exchange Extraction of Heavy Metals from Wastewater Sludges. J. Enviro. Sci. Health Part A 2004, 39 (2), 455–464. doi:10.1081/ESE-120027536.
  • Djedidi, Z.; Bouda, M.; Souissi, M.A.; Cheikh, R.B.; Mercier, G.; Tyagi, R.D.; Blais, J.-F. Metals Removal from Soil, Fly Ash and Sewage Sludge Leachates by Precipitation and Dewatering Properties of the Generated Sludge. J. Hazard. Mater. 2009, 172 (2–3), 1372–1382. doi:10.1016/j.jhazmat.2009.07.144.
  • Perumal, S.; Atchudan, R.; Thirukumaran, P.; Yoon, D.H.; Lee, Y.R.; Cheong, I.W. Simultaneous Removal of Heavy Metal Ions Using Carbon Dots-Doped Hydrogel Particles. Chemosphere 2022, 286, 131760. doi:10.1016/j.chemosphere.2021.131760.
  • Blöcher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N.K.; Matis, K.A. Hybrid Flotation—Membrane Filtration Process for the Removal of Heavy Metal Ions from Wastewater. Water Res. 2003, 37 (16), 4018–4026. doi:10.1016/S0043-1354(03)00314-2.
  • Verma, N.; Sharma, R. Bioremediation of Toxic Heavy Metals: A Patent Review. Recent Pat. Biotechnol. 2017, 11 (3). doi:10.2174/1872208311666170111111631.