295
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of TiO2 nanoparticles using red spinach leaf extract (Amaranthus Tricolor L.) for photocatalytic of methylene blue degradation

, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2352571 | Received 16 Feb 2024, Accepted 03 May 2024, Published online: 16 May 2024

References

  • Prasetyani, D.; Abidin, A.Z.; Purusa, N.A.; Sandra, F.A. The Prospects and the Competitiveness of Textile Commodities and Indonesian Textile Product in the Global Market. Etikonomi 2020, 19, 1–18. doi:10.15408/etk.v19i1.12886
  • China Research and Intelligence. Indonesia Garment Manufacturing Industry Research Report 2023-2032, (2023) CRI Publisher. https://www.giiresearch.com/report/cri1339032-indonesia-garment-manufacturing-industry-research.html.
  • Khattab, T.A.; Abdelrahman, M.S.; Rehan, M. Textile Dyeing Industry: Environmental Impacts and Remediation. Environ Sci Pollut Res 2020, 27, 3803–3818. doi:10.1007/s11356-019-07137-z
  • Daneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological Decolorization of dye Solution Containing Malachite Green by Microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. doi:10.1016/j.biortech.2006.05.025
  • Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; Shah, T. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water. (Basel) 2022, 14, 242. doi:10.3390/w14020242
  • Utubira, Y.; Wijaya, K.; Triyono, T.; Sugiharto, E. Preparation and Characterization of TiO2;-Zeolite and its Application to Degrade Textille Wastewater by Photocatalytic Method. Ind J Chem 2006, 6, 231–237. doi:10.22146/ijc.21724
  • Saeed, M.; Muneer, M.; Haq, A.U.; Akram, N. Pesticide and Agro-Ecological Transition: Assessing the Environmental and Human Impacts of Pesticides and Limiting Their use. Environ Sci Pollut Res 2022, 29, 1–5. https://doi.org/10.1007/s11356-021-16389-7.
  • Roy, P.; Ho, L.; Periasamy, A.P.; Lin, Y.; Huang, M.; Chang, H. Graphene-ZnO-Au Nanocomposites Based Photocatalytic Oxidation of Benzoic Acid. Scijet 2015, 4, 120.
  • M. Ismael. A Review and Recent Advances in Solar-to-Hydrogen Energy Conversion Based on Photocatalytic Water Splitting Over Doped-TiO2 Nanoparticles. Sol. Energy 2020, 211, 522–546. doi:10.1016/j.solener.2020.09.073
  • Rathi, V.H.; Jeice, A.R.; Jayakumar, K. Green Synthesis of Ag/CuO and Ag/TiO2 Nanoparticles for Enhanced Photocatalytic dye Degradation, Antibacterial, and Antifungal Properties. Appl Surf Sci Adv 2023, 18, 100476. doi:10.1016/j.apsadv.2023.100476
  • Nabi, I.; Li, K.; Cheng, H.; Wang, T.; Liu, Y.; Ajmal, S.; Yang, Y.; Feng, Y.; Zhang, L. Complete Photocatalytic Mineralization of Microplastic on TiO2 Nanoparticle Film. Iscience 2020, 23, 1–12. doi:10.1016/j.isci.2020.101326
  • Nemiwal, M.; Kumar, D. TiO2 and SiO2 Encapsulated Metal Nanoparticles: Synthetic Strategies, Properties, and Photocatalytic Applications. Inorg. Chem. Commun. 2021, 128, 108602. doi:10.1016/j.inoche.2021.108602
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. doi:10.1039/c1gc15386b
  • Rajaram, P.; Jeice, A.R.; Jayakumar, K. Review of Green Synthesized TiO2 Nanoparticles for Diverse Applications. Surfaces and Interfaces 2023, 39, 102912. doi:10.1016/j.surfin.2023.102912
  • Akhtar, M.S.; Panwar, J.; Yun, T.S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS. Sustain. Chem. Eng. 2013, 1, 591–602. doi:10.1021/sc300118u
  • Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ Tech Innov 2022, 26, 102336. doi:10.1016/j.eti.2022.102336
  • Gour, A.; Jain, N.K. Advances in Green Synthesis of Nanoparticles. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 844–851. doi:10.1080/21691401.2019.1577878
  • Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ Techn Innov 2022, 26, 102336. doi:10.1016/j.eti.2022.102336
  • Ganesan, S.; Babu, I.G.; Mahendran, D.; Arulselvi, P.I.; Elangovan, N.; Geetha, N.; Venkatachalam, P. Green Engineering of Titanium Dioxide Nanoparticles Using Ageratina Altissima (L.) King & H.E. Robines. Medicinal Plant Aqueous Leaf Extracts for Enhanced Photocatalytic Activity. Ann Phyto Inter J 2016, 5, 69–75. doi:10.21276/ap.2016.5.2.8
  • Abdul Jalill, R.D.; Nuaman, R.S.; Abd, A.N. Biological Synthesis of Titanium Dioxide Nanoparticles by Curcuma Longa Plant Extract and Study its Biological Properties, World Sci. News 2016, 49, 204–222.
  • Pavithra, S.; Bessy, T.C.; Bindhu, M.R.; Venkatesan, R.; Parimaladevi, R.; Alam, M.M.; Mayandi, J.; Umadevi, M. Photocatalytic and Photovoltaic Applications of Green Synthesized Titanium Oxide (TiO2) Nanoparticles by Calotropis Gigantea Extract. J. Alloys Compd. 2023, 960, 170638. doi:10.1016/j.jallcom.2023.170638
  • Ahmed, N.K.; Abbady, A.; Elhassan, Y.A.; Said, A.H. Green Synthesized Titanium Dioxide Nanoparticle from Aloe Vera Extract as a Promising Candidate for Radiosensitization Applications. Bionanoscience. 2023, 13, 730–743. doi:10.1007/s12668-023-01085-2
  • Rajaram, P.; Jeice, A.R.; Jayakumar, K., Influences of Calcination Temperature on Titanium Dioxide Nanoparticles Synthesized Using Averrhoa Carambola Leaf Extract: In Vitro Antimicrobial Activity and UV-Light Catalyzed Degradation of Textile Wastewater. Bio Conver Bio. 2023, 1–14. doi:10.1007/s13399-023-04212-x
  • Rathi, V.H.; Jeice, A.R. Green Fabrication of Titanium Dioxide Nanoparticles and Their Applications in Photocatalytic dye Degradation and Microbial Activities. Chem Phys Imp 2023, 6, 100197. doi:10.1016/j.chphi.2023.100197
  • Paranthaman, R.; Praveen, K.P.; Kumaravel, S. GC-MS Analysis of Phytochemicals and Simultaneous Determination of Flavonoids in Amaranthus Caudatus (Sirukeerai) by RP-HPLC. J. Anal. Bioanal. Tech. 2012, 03, 1–4.
  • Permana, M.D.; Noviyanti, A.R.; Lestari, P.R.; Kumada, N.; Eddy, D.R.; Rahayu, I. Enhancing the Photocatalytic Activity of TiO2/Na2Ti6O13 Composites by Gold for the Photodegradation of Phenol. Chemengineering 2022, 6, 69. doi:10.3390/chemengineering6050069
  • Eddy, D.R.; Nursyamsiah, D.; Permana, M.D.; Solihudin; Noviyanti, A.R.; Rahayu, I., Green Production of Zero-Valent Iron (ZVI) Using tea-Leaf Extracts for Fenton Degradation of Mixed Rhodamine B and Methyl Orange Dyes, Materials. (Basel) 2022, 15, 332. doi:10.3390/ma15010332
  • Attard, E. A Rapid Microtitre Plate Folin-Ciocalteu Method for the Assessment of Polyphenols. Open Life Sciences 2013, 8, 48–53. doi:10.2478/s11535-012-0107-3
  • Converso, A.; Hartingh, T.; Garbaccio, R.M.; Tasber, E.; Rickert, K.; Fraley, M.E.; Yan, Y.; Kreatsoulas, C.; Stirdivant, S.; Drakas, B.; Walsh, E.S. Development of Thioquinazolinones, Allosteric Chk1 Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 1240–1244. doi:10.1016/j.bmcl.2008.12.076
  • Wang, H.M.; Qu, L.Q.; Ng, J.P.; Zeng, W.; Yu, L.; Song, L.L.; Wong, V.K.W.; Xia, C.L.; Law, B.Y.K. Natural Citrus Flavanone 5-Demethylnobiletin Stimulates Melanogenesis Through the Activation of cAMP/CREB Pathway in B16F10 Cells. Phytomedicine 2022, 98, 153941. doi:10.1016/j.phymed.2022.153941
  • Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity Effects on Polyphenol Content and Antioxidant Activities in Leaves of the Halophyte Cakile Maritima. Plant Physiol. Biochem. 2007, 45, 244–249. doi:10.1016/j.plaphy.2007.02.001
  • Zenkevich, I.G.; Makarov, A.A. Identification of Alkylarene Chloromethylation Products Using gas-Chromatographic Retention Indices. Russ. J. Gen. Chem. 2007, 77, 611–619. doi:10.1134/S1070363207040196
  • Babalola, I.T.; Shode, F.O. Ubiquitous Ursolic Acid: A Potential Pentacyclic Triterpene Natural Product. J. Pharmacogn. Phytochem 2013, 2, 214–222.
  • Sani, H.A.; Rahmat, A.; Ismail, M.; Rosli, R.; Endrini, S. Potential Anticancer Effect of red Spinach (Amaranthus Gangeticus) Extract. Asia Pac. J. Clin. Nutr 2004, 13, 396–400.
  • Fatimah, I.; Aftrid, Z.H.V.I. Characteristics and Antibacterial Activity of Green Synthesized Silver Nanoparticles Using red Spinach (Amaranthus Tricolor L.) Leaf Extract. Green Chemistry Letters and Reviews 2019, 12, 25–30. doi:10.1080/17518253.2019.1569729
  • Eddy, D.R.; Sheha, G.A.N.; Permana, M.D.; Saito, N.; Takei, T.; Kumada, N.; Rahayu, I.; Abe, I.; Sekine, Y.; Oyumi, T.; Izumi, Y. Study on Triphase of Polymorphs TiO2 (Anatase/Rutile/Brookite) for Boosting Photocatalytic Activity of Metformin Degradation. Chemosphere 2024, 351, 141206. doi:10.1016/j.chemosphere.2024.141206
  • González-Manteiga, W.; R.M. Crujeiras. An Updated Review of Goodness-of-Fit Tests for Regression Models. Test 2013, 22, 361–411. doi:10.1007/s11749-013-0327-5
  • Singh, S.; Maurya, I.C.; Srivastava, P.; Bahadur, L. Synthesis of Nanosized TiO2 Using Different Molecular Weight Polyethylene Glycol (PEG) as Capping Agent and Their Performance as Photoanode in dye-Sensitized Solar Cells. J. Solid State Electrochem. 2020, 24, 2395–2403. doi:10.1007/s10008-020-04768-y
  • Jha, A.K.; Prasad, K.; Kulkarni, A.R. Synthesis of TiO2 Nanoparticles Using Microorganisms. Colloids Surf., B 2009, 71, 226–229. doi:10.1016/j.colsurfb.2009.02.007
  • Catauro, M.; Tranquillo, E.; Dal Poggetto, G.; Pasquali, M.; Dell’Era, A.; Ciprioti, S.V. Influence of the Heat Treatment on the Particles Size and on the Crystalline Phase of TiO2 Synthesized by the sol-gel Method. Materials. (Basel) 2018, 11, 2364. doi:10.3390/ma11122364
  • Dong, H.; Zhao, F.; He, Q.; Xie, Y.; Zeng, Y.; Zhang, L.; Tang, L.; Zeng, G. Physicochemical Transformation of Carboxymethyl Cellulose-Coated Zero-Valent Iron Nanoparticles (nZVI) in Simulated Groundwater Under Anaerobic Conditions. Sep. Purif. Technol. 2017, 175, 376–383. doi:10.1016/j.seppur.2016.11.053
  • Ying, L.; Hon, L.S.; White, T.; Withers, R.; Hai, L.B. Controlled Nanophase Development in Photocatalytic Titania. Mater. Trans. 2003, 44, 1328–1332. doi:10.2320/matertrans.44.1328
  • Goyal, A.; Rumaiz, A.K.; Miao, Y.; Hazra, S.; Ni, C.; Shah, S.I. Synthesis and Characterization of TiO2–Ge Nanocomposites. J Vac Sci Tech B: Microelect Nanomet Struct Process, Measure Pheno 2008, 26, 1315–1320. doi:10.1116/1.2939262
  • Waghmode, M.S.; Gunjal, A.B.; Mulla, J.A.; Patil, N.N.; Nawani, N.N. Studies on the Titanium Dioxide Nanoparticles: Biosynthesis, Applications and Remediation. SN Applied Sciences 2019, 1, 310. doi:10.1007/s42452-019-0337-3
  • Arularasu, M.V. Effect of Organic Capping Agents on the Optical and Photocatalytic Activity of Mesoporous TiO2 Nanoparticles by sol–gel Method. SN Applied Sciences 2019, 1, 393. doi:10.1007/s42452-019-0424-5
  • Kumari, Y.; Jangir, L.K.; Kumar, A.; Kumar, M.; Awasthi, K. Investigation of Thermal Stability of TiO2 Nanoparticles Using 1-Thioglycerol as Capping Agent. Solid State Commun. 2017, 263, 1–5. doi:10.1016/j.ssc.2017.07.001
  • Khatoon, N.; Mazumder, J.A.; Sardar, M. Biotechnological Applications of Green Synthesized Silver Nanoparticles. J Nanosci: Curr Res 2017, 02, 2572–0813. doi:10.4172/2572-0813.1000107
  • Malik, A.Q.; Mir, T.U.G.; Kumar, D.; Mir, I.A.; Rashid, A.; Ayoub, M.; Shukla, S., A Review on the Green Synthesis of Nanoparticles, Their Biological Applications, and Photocatalytic Efficiency Against Environmental Toxins. Environ Sci Pollut Res. 2023, 30, 69796–69823. doi:10.1007/s11356-023-27437-9
  • Begum, R.; Najeeb, J.; Sattar, A.; Naseem, K.; Irfan, A.; Al-Sehemi, A.G.; Farooqi, Z.H. Chemical Reduction of Methylene Blue in the Presence of Nanocatalysts: A Critical Review. Rev. Chem. Eng. 2020, 36, 749–770. doi:10.1515/revce-2018-0047
  • Kaur, H.; Kaur, S.; Singh, J.; Rawat, M.; Kumar, S. Expanding Horizon: Green Synthesis of TiO2 Nanoparticles Using Carica Papaya Leaves for Photocatalysis Application. Mater. Res. Express 2019, 6, 095034. doi:10.1088/2053-1591/ab2ec5
  • Srujana, S.; Anjamma, M.; Alimuddin; Singh, B.; Dhakar, R.C.; Natarajan, S.; Hechhu, R. A Comprehensive Study on the Synthesis and Characterization of TiO2 Nanoparticles Using Aloe Vera Plant Extract and Their Photocatalytic Activity Against MB Dye. Adsorpt. Sci. Technol. 2022, 2022, 7244006.
  • Al-hamoud, K.; Shaik, M.R.; Khan, M.; Alkhathlan, H.Z.; Adil, S.F.; Kuniyil, M.; Khan, M. Pulicaria Undulata Extract-Mediated Eco-Friendly Preparation of TiO2 Nanoparticles for Photocatalytic Degradation of Methylene Blue and Methyl Orange. ACS Omega 2022, 7, 4812–4820. doi:10.1021/acsomega.1c05090
  • Shimi, A.K.; Ahmed, H.M.; Wahab, M.; Katheria, S.; Wabaidur, S.M.; Eldesoky, S.M.; Rane, K.P., Synthesis and Applications of Green Synthesized TiO2 Nanoparticles for Photocatalytic dye Degradation and Antibacterial Activity. J. Nanomater. 2022, 2022, 7060388.
  • Nabi, G.; Ain, Q.-U.; Tahir, M.B.; Nadeem Riaz, K.; Iqbal, T.; Rafique, M.; Rizwan, M. Green Synthesis of TiO2 Nanoparticles Using Lemon Peel Extract: Their Optical and Photocatalytic Properties. Int. J. Environ. Anal. Chem. 2022, 102, 434–442. doi:10.1080/03067319.2020.1722816
  • Rosman, N.; Salleh, W.N.W.; Mohamed, M.A.; Harun, Z.; Ismail, A.F.; Aziz, F. Constructing a Compact Heterojunction Structure of Ag2CO3/Ag2O in-Situ Intermediate Phase Transformation Decorated on ZnO with Superior Photocatalytic Degradation of Ibuprofen. Sep. Purif. Technol. 2020, 251, 117391. doi:10.1016/j.seppur.2020.117391
  • Muniandy, S.S.; Kaus, N.H.M.; Jiang, Z.T.; Altarawneh, M.; Lee, H.L. Green Synthesis of Mesoporous Anatase TiO2 Nanoparticles and Their Photocatalytic Activities. RSC Adv. 2017, 7, 48083–48094. doi:10.1039/C7RA08187A
  • Alvaro, M.; Aprile, C.; Benitez, M.; Carbonell, E.; García, H. Photocatalytic Activity of Structured Mesoporous TiO2 Materials. J. Phys. Chem. B 2006, 110, 6661–6665. doi:10.1021/jp0573240
  • Neethu, N.; Choudhury, T. Treatment of Methylene Blue and Methyl Orange Dyes in Wastewater by Grafted Titania Pillared Clay Membranes, Recent Pat. Nanotechnol 2018, 12, 200–207.
  • Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The Effect of Surface Charge on Photocatalytic Degradation of Methylene Blue dye Using Chargeable Titania Nanoparticles. Sci. Rep. 2018, 8, 7104. doi:10.1038/s41598-018-25673-5