210
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Removal of basic yellow 28 and tartrazine dyes from water pollution using treated avocado seed: mechanisms, equilibrium, kinetics, and thermodynamics

, , , , , , , , , & show all
Article: 2357215 | Received 07 Nov 2023, Accepted 14 May 2024, Published online: 31 May 2024

References

  • Hemashenpagam, N.; Selvajeyanthi, S. Textile Dyes and Their Effect on Human Beings. In Nanohybrid Materials for Treatment of Textiles Dyes; Ahmad, A., Jawaid, M., Mohamad Ibrahim, M.N., Yaqoob, A.A., Alshammari, M.B., Eds.; Springer Nature Singapore: Singapore, 2023; pp 41–60. doi:10.1007/978-981-99-3901-5_3.
  • Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021, 9 (2), 105012. doi:10.1016/j.jece.2020.105012.
  • Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N., Uddin, M.A.;, Inayat, A.; Mahlia , T. M.I.; Ong, H.C.; Chia, W.Y.; Show, P.L. Recent Developments in Physical, Biological, Chemical, and Hybrid Treatment Techniques for Removing Emerging Contaminants from Wastewater. J. Hazard. Mater. 2021, 416, 125912. doi:10.1016/j.jhazmat.2021.125912.
  • Valli Nachiyar, C.; Rakshi, A.D.; Sandhya, S.; Britlin Deva Jebasta, N.; Nellore, J. Developments in Treatment Technologies of dye-Containing Effluent: A Review. Case Stud. Chem. Environ. Eng. 2023, 7, 100339. doi:10.1016/j.cscee.2023.100339.
  • Sun, Z.; Qu, K.; Cheng, Y.; You, Y.; Huang, Z.; Umar, A.; Ibrahim, Y.S.A.; Algadi, H.; Castañeda, L.; Colorado, H. A.; Guo, Z. Corncob-derived Activated Carbon for Efficiently Adsorption Dye in Sewage. ES Food Agrofor. 2021. https://doi.org/10.30919/esfaf473.
  • Mandal, S.; Muralidharan, C.; Mandal, A.B. Water Pollution Remediation Techniques with Special Focus on Adsorption. In Advanced Research in Nanosciences for Water Technology: Prasad, R., Karchiyappan, T., Eds.; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, 2019; pp 40–63. doi:10.1007/978-3-030-02381-2.
  • Vojnović, B.; Cetina, M.; Franjković, P.; Sutlović, A. Influence of Initial pH Value on the Adsorption of Reactive Black 5 Dye on Powdered Activated Carbon: Kinetics, Mechanisms, and Thermodynamics. Molecules 2022, 27 (4), 1349. doi:10.3390/molecules27041349.
  • Cruz-Lopes, L.P.; Macena, M.; Esteves, B.; Guiné, R.P.F. Ideal pH for the Adsorption of Metal Ions Cr 6+, Ni 2+, Pb 2+ in Aqueous Solution with Different Adsorbent Materials. Open Agric. 2021, 6 (1), 115–123. doi:10.1515/opag-2021-0225.
  • Ait Ahsaine, H.; Zbair, M.; Anfar, Z.; Naciri, Y.; El haouti, R., El Alem, N.;, Ezahri, M. Cationic Dyes Adsorption Onto High Surface Area ‘Almond Shell’ Activated Carbon: Kinetics, Equilibrium Isotherms and Surface Statistical Modeling. Mater. Today Chem. 2018, 8, 121–132. doi:10.1016/j.mtchem.2018.03.004.
  • Zbair, M.; Bottlinger, M.; Ainassaari, K.; Ojala, S.; Stein, O., Keiski, R.L., Bensitel, M.; Brahmi, R. Hydrothermal Carbonization of Argan Nut Shell: Functional Mesoporous Carbon with Excellent Performance in the Adsorption of Bisphenol A and Diuron. Waste. Biomass. Valorization. 2018, 11, 1565–1584. doi:10.1007/s12649-018-00554-0.
  • El Messaoudi, N.; El Khomri, M.; Goodarzvand Chegini, Z.; Chlif, N.; Dbik, A.; Bentahar, S.; Iqbal, M.; Jada, A.; Lacherai, A. Desorption Study and Reusability of raw and H2SO4 Modified Jujube Shells (Zizyphus Lotus) for the Methylene Blue Adsorption. Int. J. Environ. Anal. Chem. 2023, 103 (16), 3762–3778. doi:10.1080/03067319.2021.1912338.
  • Slimani, R.; El Ouahabi, I.; Abidi, F.; El Haddad, M.; Regti, A., Laamari, M.R., El Antri, S.; Lazar, S. Calcined Eggshells as a new Biosorbent to Remove Basic dye from Aqueous Solutions: Thermodynamics, Kinetics, Isotherms and Error Analysis. J. Taiwan Inst. Chem. Eng. 2014, 45 (4), 1578–1587. doi:10.1016/j.jtice.2013.10.009.
  • Zhou, X.; Shi, L.; Moghaddam, T.B.; Chen, M.; Wu, S.; Yuan, X. Adsorption Mechanism of Polycyclic Aromatic Hydrocarbons Using Wood Waste-Derived Biochar. J. Hazard. Mater. 2022, 425, 128003. doi:10.1016/j.jhazmat.2021.128003.
  • Tomul, F.; Arslan, Y.; Kabak, B.; Trak, D.; Kendüzler, E., Lima, E.C., Tran, H.N. Peanut Shells-Derived Biochars Prepared from Different Carbonization Processes: Comparison of Characterization and Mechanism of Naproxen Adsorption in Water. Sci. Total Environ. 2020, 726, 137828. doi:10.1016/j.scitotenv.2020.137828.
  • Hiwot, T. Determination of oil and Biodiesel Content, Physicochemical Properties of the oil Extracted from Avocado Seed (Persea Americana) Grown in Wonago and Dilla (Gedeo Zone), Southern Ethiopia. Chem. Int. 2017, 3 (3), 311–319. doi:10.31221/osf.io/247t8.
  • Sahnoun, S.; Boutahala, M.; Tiar, C.; Kahoul, A. Adsorption of Tartrazine from an Aqueous Solution by Octadecyltrimethylammonium Bromide-Modified Bentonite: Kinetics and Isotherm Modeling. C. R. Chim. 2018, 21 (3–4), 391–398. doi:10.1016/j.crci.2018.01.008.
  • Muhammad, S.; Hussain, S.T.; Waseem, M.; Naeem, A.; Hussain, J.; Jan, M.T. Surface Charge Properties of Zirconium Dioxide. Iran. J. Sci. Technol. 2012, 481–486. doi:10.22099/IJSTS.2012.2110.
  • Samimi, M.; Shahriari-Moghadam, M. Isolation and Identification of Delftia Lacustris Strain-MS3 as a Novel and Efficient Adsorbent for Lead Biosorption: Kinetics and Thermodynamic Studies, Optimization of Operating Variables. Biochem. Eng. J. 2021, 173, 108091. doi:10.1016/j.bej.2021.108091.
  • Lagergren, S. Handlingar. Band 1898, 24 (4), 1–39.
  • Ho, Y.S.; Mckay, G. The Kinetics of Sorption of Divalent Metal Ions Onto Sphagnum Moss Peat. Wat. Res 2000, 34 (3), 735–742. doi:https://doi.org/10.1016/S0043-1354(99)00232-8.
  • Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89 (2), 31–59. doi:10.1061/JSEDAI.0000430
  • Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation, Solving Methods and Applications. Chemosphere 2022, 309, 136732. doi:10.1016/j.chemosphere.2022.136732.
  • Fatima, S.S.; Borhan, A.; Ayoub, M.; Ghani, N.A. Modeling of CO2 Adsorption on Surface-Functionalized Rubber-Seed Shell Activated Carbon: Isotherm and Kinetic Analysis. Processes 2023, 11 (10), 2833. doi:10.3390/pr11102833.
  • Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. doi:10.1016/j.jhazmat.2020.122383.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40 (9), 1361–1403. doi:10.1021/ja02242a004.
  • Alafnan, S.; Awotunde, A.; Glatz, G.; Adjei, S.; Alrumaih, I.; Gowida, A. Langmuir Adsorption Isotherm in Unconventional Resources: Applicability and Limitations. J. Petrol. Sci. Eng. 2021, 207, 109172. doi:10.1016/j.petrol.2021.109172.
  • Temkin, M.J.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. Acta Physicochim. URSS 1940, 12, 217–222.
  • Rajahmundry, G.K.; Garlapati, C.; Kumar, P.S.; Alwi, R.S.; Vo,D.-V.N. Statistical Analysis of Adsorption Isotherm Models and its Appropriate Selection. Chemosphere 2021, 276, 130176. doi:10.1016/j.chemosphere.2021.130176.
  • Dubinin, M.M. The Equation of the Characteristic Curve of Activated Charcoal. Dokl. Akad. Nauk. SSSR 1947, 55, 327–329.
  • Ragadhita, R.; Nandiyanto, A.B.D. Curcumin Adsorption on Zinc Imidazole Framework-8 Particles: Isotherm Adsorption Using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich Models. J. Eng. Sci. Technol. 2022, 17.
  • Pang, Y.L.; Tan, J.H.; Lim, S.; Chong, W.C. A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies, Kinetics, Isotherms and Thermodynamics. Polymers 2021, 13 (17), 3009. doi:10.3390/polym13173009.
  • Kubo, S.; Kadla, J.F. Hydrogen Bonding in Lignin: A Fourier Transform Infrared Model Compound Study. Biomacromolecules 2005, 6 (5), 2815–2821. doi:10.1021/bm050288q.
  • Li, X.; Wei, Y.; Xu, J.; Xu, N.; He, Y. Quantitative Visualization of Lignocellulose Components in Transverse Sections of Moso Bamboo Based on FTIR Macro- and Micro-Spectroscopy Coupled with Chemometrics. Biotechnol. Biofuels 2018, 11 (1), 1–16. doi:10.1186/s13068-018-1251-4.
  • Bazzo, A.; Adebayo, M.A.; Dias, S.L.P.; Lima, E.C.; Vaghetti, J.C.P.; De Oliveira, E.R.; Anderson J.B.L.; Pavan, F. A. Avocado Seed Powder: Characterization and its Application for Crystal Violet dye Removal from Aqueous Solutions. Desalin. Water Treat. 2016, 57 (34), 15873–15888. doi:10.1080/19443994.2015.1074621.
  • Sills, D.L.; Gossett, J.M. Using FTIR to Predict Saccharification from Enzymatic Hydrolysis of Alkali-Pretreated Biomasses. Biotechnol. Bioeng. 2012, 109 (2), 353–362. doi:https://doi.org/10.1002/bit.23314.
  • Alencar, W.S.; Acayanka, E.; Lima, E.C.; Royer, B.; de Souza, F.E., Lameira, J., Alves, C.N. Application of Mangifera Indica (Mango) Seeds as a Biosorbent for Removal of Victazol Orange 3R dye from Aqueous Solution and Study of the Biosorption Mechanism. Chem. Eng. J. 2012, 209, 577–588. doi:10.1016/j.cej.2012.08.053.
  • Da Silva, F.M.; Santana, S.A.A.; Bezerra, C.W.B.; Silva, H.A.d.S. adsorption of Textile dye Blue Remazol r by Banana (Musa sp) Pseudostem. Cadernos de Pesquisa 2011, 17 (3), 71–79.
  • Klett, C.; Barry, A.; Balti, I.; Lelli, P.; Schoenstein, F.; Jouini, N. Nickel Doped Zinc Oxide as a Potential Sorbent for Decolorization of Specific Dyes, Methylorange and Tartrazine by Adsorption Process. J. Environ. Chem. Eng. 2014, 2 (2), 914–926. doi:10.1016/j.jece.2014.03.001.
  • Honorine, A.T.; Daouda, A.; T, D.; Richard, D.; Guy Bertrand, N. Efficient Adsorption of Tartrazine from an Aqueous Solution Using a low-Cost Orange Peel Powder. J. Water Health 2023, 21 (8), 1017–1031. doi:10.2166/wh.2023.033.
  • Yadav, B.S.; Dasgupta, S. Effect of Time, pH, and Temperature on Kinetics for Adsorption of Methyl Orange dye Into the Modified Nitrate Intercalated MgAl LDH Adsorbent. Inorg. Chem. Commun. 2022, 137, 109203. doi:10.1016/j.inoche.2022.109203.
  • Benkaddour, S.; El ouahabi, I.; Hiyane, H.; Essoufy, M.; Driouich, A., El antri, S.; El Hajjaji, S.; Slimani, R.; Lazar, S. Removal of Basic Yellow 28 by Biosorption Onto Watermelon Seeds, Part I: The Principal Factors Influencing by Plackett-Burman Screening Design. Surf. Interfaces 2020, 21, 100732. doi:10.1016/j.surfin.2020.100732.
  • Aranda-García, E.; Chávez-Camarillo, G.Ma.; Cristiani-Urbina, E. Effect of Ionic Strength and Coexisting Ions on the Biosorption of Divalent Nickel by the Acorn Shell of the Oak Quercus Crassipes Humb. & Bonpl. Processes 2020, 8 (10), 1229. doi:10.3390/pr8101229.
  • Balarak, D.; Zafariyan, M.; Igwegbe, C.A.; Onyechi, K.K.; Ighalo, J.O. Adsorption of Acid Blue 92 Dye from Aqueous Solutions by Single-Walled Carbon Nanotubes: Isothermal, Kinetic, and Thermodynamic Studies. Environ. Processes 2021, 8 (2), 869–888. doi:10.1007/s40710-021-00505-3.
  • Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76 (4), 332–340. doi:10.1205/095758298529696.
  • Bai, C.; Wang, L.; Zhu, Z. Adsorption of Cr(III) and Pb(II) by Graphene Oxide/Alginate Hydrogel Membrane: Characterization, Adsorption Kinetics, Isotherm and Thermodynamics Studies. Int. J. Biol. Macromol. 2020, 147, 898–910. doi:10.1016/j.ijbiomac.2019.09.249.
  • Lacin, O.; Haghighatnia, A.; Sevim, F. Adsorption Characteristics and Behaviors of Natural Red Clay for Removal of BY28 from Aqueous Solutions. Int. J. Trend Sci. Res. Dev. 2019, 3 (2), 1037–1047. doi:10.31142/ijtsrd21544.
  • Balarak, D.; Al-Musawi, T.J.; Mohammed, I.A.; Abasizadeh, H. The Eradication of Reactive Black 5 dye Liquid Wastes Using Azolla Filiculoides Aquatic Fern as a Good and an Economical Biosorption Agent. SN Appl. Sci. 2020, 2 (6), 1–11. doi:10.1007/s42452-020-2841-x.
  • El Ouahabi, I.; Slimani, R.; Benkaddour, S.; Hiyane, H.; Rhallabi, N.; Cagnon, B.; El Haddad, M.; El Antri, S.; Lazar, S.. Adsorption of Textile dye from Aqueous Solution Onto a low Cost Conch Shells. J. Mater. Environ. Sci. 2018, 9 (7), 1987–1998.
  • Aragaw, T.A.; Angerasa, F.T. Synthesis and Characterization of Ethiopian Kaolin for the Removal of Basic Yellow (BY 28) Dye from Aqueous Solution as a Potential Adsorbent. Heliyon 2020, 6 (9), e04975. doi:10.1016/j.heliyon.2020.e04975.
  • El Kassimi, A.; Boutouil, A.; El Himri, M.; Rachid Laamari, M.; El Haddad, M. Selective and Competitive Removal of Three Basic Dyes from Single, Binary and Ternary Systems in Aqueous Solutions: A Combined Experimental and Theoretical Study. J. Saudi Chem. Soc. 2020, 24 (7), 527–544. doi:10.1016/j.jscs.2020.05.005.
  • Banerjee, S.; Chattopadhyaya, M.C. Adsorption Characteristics for the Removal of a Toxic dye, Tartrazine from Aqueous Solutions by a low Cost Agricultural by-Product. Arab. J. Chem. 2017, 10, S1629–S1638. doi:10.1016/j.arabjc.2013.06.005.
  • Zhang, L.; Sellaoui, L.; Franco, D.; Dotto, G.L.; Bajahzar, A., Belmabrouk, H., Bonilla-Petriciolet, A.; Oliveira, M.L.S.; Li, Z. Adsorption of Dyes Brilliant Blue, Sunset Yellow and Tartrazine from Aqueous Solution on Chitosan: Analytical Interpretation via Multilayer Statistical Physics Model. Chem. Eng. J. 2020, 382, 122952. doi:10.1016/j.cej.2019.122952.
  • Cuba, R.M.F.; Paula, B.M.d.; Vale, G.B.d.; Braga, T.C.; Terán, F.J.C. Biocarvão ativado produzido a partir de lodo anaeróbio de estação de tratamento de efluentes para remoção do corante tartrazina. Matéria (Rio de Janeiro) 2022, 26, e13109. doi:10.1590/S1517-707620210004.1309.
  • Ortega Toro, R.; Tejada Tovar, C.; Villabona-Ortíz, A.; Aguilar-Bermúdez, F.; Pájaro-Moreno, Y. Effective Adsorption of Tartrazine by Modified Biomaterial from Wheat Residues. Ingeniería y Competitividad 2021, 24 (1). doi:10.25100/iyc.v24i1.11139.