0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of phase change eco-composite materials from eggshell waste

, , &
Article: 2380060 | Received 23 Jan 2024, Accepted 09 Jul 2024, Published online: 17 Jul 2024

References

  • Tripathi, B.M.; Shukla, S.K.; Rathore, P.K.S. A Comprehensive Review on Solar to Thermal Energy Conversion and Storage Using Phase Change Materials. J. Energy Storage 2023, 72, 108280. doi:10.1016/j.est.2023.108280.
  • Rathore, P.K.S.; Gupta, K.K.; Patel, B.; Sharma, R.K.; Gupta, N.K. Beeswax as a Potential Replacement of Paraffin Wax as Shape Stabilized Solar Thermal Energy Storage Material: An Experimental Study. J. Energy Storage 2023, 68, 107714. doi:10.1016/j.est.2023.107714.
  • Chavan, S. Thermal Energy Storage Methods and Materials, 2023; pp 39–61. doi:10.1007/978-981-19-4502-1_3.
  • Trigui, A.; Abdelmouleh, M. Improving the Heat Transfer of Phase Change Composites for Thermal Energy Storage by Adding Copper: Preparation and Thermal Properties. Sustainability 2023, 15 (3), 1957. doi:10.3390/su15031957.
  • Moulahi, C.; Trigui, A.; Karkri, M.; Boudaya, C. Thermal Performance of Latent Heat Storage: Phase Change Material Melting in Horizontal Tube Applied to Lightweight Building Envelopes. Compos. Struct. 2016, 149, 69–78. doi:10.1016/j.compstruct.2016.04.011.
  • Gowthami, D.; Sharma, R.K.; Tyagi, V.V.; Rathore, P.K.S.; Sarı, A. Development of a Novel Form-Stable Phase Change Material Based on Alkali Activated Date Seed Biochar to Harvest Solar Thermal Energy. J. Energy Storage 2024, 83, 110699. doi:10.1016/j.est.2024.110699.
  • Kim, A.; Wert, N.A.; Gowd, E.B.; Patel, R. Recent Progress in PEG-Based Composite Phase Change Materials. Polym. Rev. 2023, 63 (4), 1078–1129. doi:10.1080/15583724.2023.2220041.
  • Soni, J.; Sahiba, N.; Sethiya, A.; Agarwal, S. Polyethylene Glycol: A Promising Approach for Sustainable Organic Synthesis. J. Mol. Liq. 2020, 315, 113766. doi:10.1016/j.molliq.2020.113766.
  • Xie, F.; Dai, X.; Zhuo, L.; Dai, Q.; He, C.; Lu, Z. Robust BNNS/ANF Aerogel Skeleton-Based PEG Composite Phase Change Materials with High Latent Heat for Efficient Thermal Management. Compos. Struct. 2023, 323, 117479. doi:10.1016/j.compstruct.2023.117479.
  • Singh, P., Sharma, R.K.; Goyal, R.; Hekimoğlu, G.; Sarı, A.; Rathore, P.K.S.; Tyagi, V.V. Development and Characterization a Novel Leakage-Proof Form Stable Composite of Graphitic Carbon Nitride and Fatty Alcohol for Thermal Energy Storage. J. Energy Storage 2022, 55, 105761. doi:10.1016/j.est.2022.105761.
  • Xu, C.; Zhang, H.; Fang, G. Review on Thermal Conductivity Improvement of Phase Change Materials with Enhanced Additives for Thermal Energy Storage. J. Energy Storage 2022, 51, 104568. doi:10.1016/j.est.2022.104568.
  • Souissi, M.; Trigui, A.; Jedidi, I.; Loukil, M.S.; Abdelmouleh, M. Bio-Based Composite as Phase Change Material Including Spent Coffee Grounds and Beeswax Paraffin. Korean J. Chem. Eng. 2023, 40 (9), 2342–2355. doi:10.1007/s11814-023-1448-5.
  • Lu, S.; Jia, Y.; Liang, B.; Wang, R.; Lin, Q.; He, Z. Optimal Design and Thermal Performance Study of a Two-Stage Latent Heat Thermal Energy Storage Technology for Heating Systems. Appl. Therm. Eng. 2023, 232, 121073. doi:10.1016/j.applthermaleng.2023.121073.
  • Kenisarin, M.; Mahkamov, K. Solar Energy Storage Using Phase Change Materials⋆. Renew. Sustain. Energy Rev. 2007, 11 (9), 1913–1965. doi:10.1016/j.rser.2006.05.005.
  • Yang, T.; Ding, Y.; Li, B.; Athienitis, A.K. A Review of Climate Adaptation of Phase Change Material Incorporated in Building Envelopes for Passive Energy Conservation. Build. Environ. 2023, 244, 110711. doi:10.1016/j.buildenv.2023.110711.
  • Simonsen, G.; Ravotti, R.; O’Neill, P.; Stamatiou, A. Biobased Phase Change Materials in Energy Storage and Thermal Management Technologies. Renew. Sustain. Energy Rev. 2023, 184, 113546. doi:10.1016/j.rser.2023.113546.
  • Haddad, B.; Mittal, A.; Mittal, J.; Paolone, A.; Villemin, D.; Debdab, M.; Mimanne, G.; Habibi, A.; Hamidi, Z.; Boumediene, M.; Belarbi, E. Synthesis and Characterization of Egg Shell (ES) and Egg Shell with Membrane (ESM) Modified by Ionic Liquids. Chem. Data Collect. 2021, 33, 100717. doi:10.1016/j.cdc.2021.100717.
  • Zhou, G.-T.; Yu, J.C.; Wang, X.-C.; Zhang, L.-Z. Sonochemical Synthesis of Aragonite-Type Calcium Carbonate with Different Morphologies. New J. Chem. 2004, 28 (8), 1027. doi:10.1039/b315198k.
  • Niju, S.; Sheriffa Begum, K.M.M.; Anantharaman, N. Preparation of Biodiesel from Waste Frying oil Using a Green and Renewable Solid Catalyst Derived from egg Shell. Environ. Prog. Sustain. Energy 2015, 34 (1), 248–254. doi:10.1002/ep.11939.
  • Pradhan, A.K.; Sahoo, P.K. Synthesis and Study of Thermal, Mechanical and Biodegradation Properties of Chitosan-g-PMMA with Chicken egg Shell (Nano-CaO) as a Novel bio-Filler. Mater. Sci. Eng. C 2017, 80, 149–155. doi:10.1016/j.msec.2017.04.076.
  • Urtekin, G.; Hazer, S.; Aytac, A. Effect of Eggshell and Intumescent Flame Retardant on the Thermal and Mechanical Properties of Plasticised PLA. Plast. Rubber Compos. 2021, 50 (3), 127–136. doi:10.1080/14658011.2020.1844522.
  • Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and Adsorption Properties of Eggshells and Eggshell Membrane. Bioresour. Technol. 2006, 97 (3), 488–493. doi:10.1016/j.biortech.2005.02.050.
  • Wu, S.; Yan, T.; Kuai, Z.; Pan, W. Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review. Energy Storage Mater. 2020, 25, 251–295. doi:10.1016/j.ensm.2019.10.010.
  • Kong, J.; Li, Y.; Bai, Y.; Li, Z.; Cao, Z.; Yu, Y.; Han, C.; Dong, L. High-performance Biodegradable Polylactide Composites Fabricated Using a Novel Plasticizer and Functionalized Eggshell Powder. Int. J. Biol. Macromol. 2018, 112, 46–53. doi:10.1016/j.ijbiomac.2018.01.153.
  • Mustapha, K.; Ayinla, R.; Ottan, A.S.; Owoseni, T.A. Mechanical Properties of Calcium Carbonate/Eggshell Particle Filled Polypropylene Composites. MRS Adv. 2020, 5 (54–55), 2783–2792. doi:10.1557/adv.2020.323.
  • Skórczewska, K.; Lewandowski, K.; Szewczykowski, P.; Wilczewski, S.; Szulc, J.; Stopa, P.; Nowakowska, P. Waste Eggshells as a Natural Filler for the Poly(Vinyl Chloride) Composites. Polymers (Basel) 2022, 14 (20), 4372. doi:10.3390/polym14204372.
  • Vandeginste, V. Food Waste Eggshell Valorization Through Development of new Composites: A Review. Sustain. Mater. Technol. 2021, 29, e00317. doi:10.1016/j.susmat.2021.e00317.
  • McGauran, T.; Dunne, N.; Smyth, B.M.; Cunningham, E. Incorporation of Poultry Eggshell and Litter ash as High Loading Polymer Fillers in Polypropylene. Compos. Part C Open Access 2020, 3, 100080. doi:10.1016/j.jcomc.2020.100080.
  • Ramli, N.F.; Ghani, S.A.; Leng, T.P.; Keat, Y.C. Effects of Poly(Vinylchloride)-Maleic Anhydride as Coupling Agent on Mechanical, Water Absorption, and Morphological Properties of Eggshell Powder Filled Recycled High Density Polyethylene/Ethylene Vinyl Acetate Composites. J. Adv. Res. Appl. Sci. Eng. Technol. 2022, 28 (1), 33–43. doi:10.37934/araset.28.1.3343.
  • Shaw, W.J. Current Understanding of Mechanically Alloyed Polymers. 1998.
  • Jehanno, C.; Alty, J.W.; Roosen, M.; De Meester, S.; Dove, A.P.; Chen, E.Y.-X.; Leibfarth, F.A.; Sardon, H. Critical Advances and Future Opportunities in Upcycling Commodity Polymers. Nature 2022, 603 (7903), 803–814. doi:10.1038/s41586-021-04350-0.
  • Chen, J.; Liu, X.; Tian, Y.; Zhu, W.; Yan, C.; Shi, Y.; Kong, L.B.; Qi, H.J.; Zhou, K. 3D-Printed Anisotropic Polymer Materials for Functional Applications. Adv. Mater. 2022, 34 (5). doi:10.1002/adma.202102877.
  • Ishida, T. Mechanical Alloying of Polytetrafluoroethylene with Polyethylene. J. Mater. Sci. Lett. 1994, 13 (9), 623–628. doi:10.1007/BF00271215.
  • Farrell, M.P.; Kander, R.G.; Aning, A.O. Polymer Blends Formed by Solid-State Mechanical Alloying. J. Mater. Synth. Process. 1996, 4, 151–161.
  • Castricum, H.L.; Yang, H.; Bakker, H.; Van Deursen, J.H. A Study of Milling of Pure Polymers and a Structural Transformation of Polyethylene. Mater. Sci. Forum 1997, 235–238, 211–216.
  • Gabriel, M.C.; Mendes, L.B.; de Melo Carvalho, B.; Pinheiro, L.A.; Capochi, J.D.T.; Kubaski, E.T.; Cintho, O.M. High-Energy Mechanical Milling of Ultra-High Molecular Weight Polyethylene (UHMWPE). Mater. Sci. Forum 2010, 660–661, 325–328. doi:10.4028/www.scientific.net/MSF.660-661.325.
  • Xiong, M.; Wu, L.; Zhou, S.; You, B. Preparation and Characterization of Acrylic Latex/Nano-SiO 2 Composites. Polym. Int. 2002, 51 (8), 693–698. doi:10.1002/pi.968.
  • Namboodri, S.L.; Zhou, H.; Aning, A.; Kander, R.G. Formation of Polymer/Ceramic Composite Grain Boundary Capacitors by Mechanical Alloying. Polymer (Guildf) 1994, 35 (19), 4088–4091. doi:10.1016/0032-3861(94)90580-0.
  • Cavalieri, F.; Padella, F.; Bourbonneux, S. High-energy Mechanical Alloying of Thermoplastic Polymers in Carbon Dioxide. Polymer (Guildf) 2002, 43 (4), 1155–1161. doi:10.1016/S0032-3861(01)00721-2.
  • Manoli, F.; Dalas, E. Spontaneous Precipitation of Calcium Carbonate in the Presence of Ethanol, Isopropanol and Diethylene Glycol. J. Cryst. Growth 2000, 218 (2–4), 359–364. doi:10.1016/S0022-0248(00)00560-1.
  • Busca, G.; Resini, C. Vibrational Spectroscopy for the Analysis of Geological and Inorganic Materials. In Encyclopedia of Analytical Chemistry; Wiley, 2000. doi:10.1002/9780470027318.a5612m.
  • Wang, C.; Feng, L.; Li, W.; Zheng, J.; Tian, W.; Li, X. Shape-stabilized Phase Change Materials Based on Polyethylene Glycol/Porous Carbon Composite: The Influence of the Pore Structure of the Carbon Materials. Sol. Energy Mater. Sol. Cells 2012, 105, 21–26. doi:10.1016/j.solmat.2012.05.031.
  • Molina-Boisseau, S.; Le Bolay, N. Characterisation of the Physicochemical Properties of Polymers Ground in a Vibrated Bead Mill. Powder Technol. 2002, 128 (2–3), 99–106. doi:10.1016/S0032-5910(02)00180-8.
  • Moore, D.M.; Reynolds Jr., R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press: Oxford, 1989; pp 179–201.
  • Mardiana, L.; Ardiansah, B.; Bakri, R.; Cahyana, A. H.; Anita, Y.; Aziza, N. P. Utilization of Eggshell-Derived Material as a Solid Base Catalyst for Efficient Synthesis of Substituted Chalcones. J. Teknol. 2017, 79 (5). doi:10.11113/jt.v79.10220.
  • Baláž, M. Ball Milling of Eggshell Waste as a Green and Sustainable Approach: A Review. Adv. Colloid Interface Sci. 2018, 256, 256–275. doi:10.1016/j.cis.2018.04.001.
  • Trigui, A.; Aribia, W.B.; Akrouti, A.; Znaidia, S.; AlShammari, N.K.; Abdelmouleh, M. Latent heat storage bio-composites from egg-shell/PE/PEG as feasible eco-friendly building materials. Polym. Compos. May 2024. doi: 10.1002/pc.28575.
  • Trong On, D.; Kapoor, M.P.; Thibault, E.; Gallot, J.E.; Lemay, G.; Kaliaguine, S. Influence of High-Energy Ball Milling on the Physico-Chemical and Catalytic Properties of Titanium Silicalite TS-1. Microporous Mesoporous Mater. 1998, 20 (1–3), 107–118. doi:10.1016/S1387-1811(97)00002-4.
  • Nye, J.F. Physical Properties of Crystals, Oxford University Press: New York, 1985.
  • Šimáková, P.; Gautier, J.; Procházka, M.; Hervé-Aubert, K.; Chourpa, I. Polyethylene-Glycol-Stabilized Ag Nanoparticles for Surface-Enhanced Raman Scattering Spectroscopy: Ag Surface Accessibility Studied Using Metalation of Free-Base Porphyrins. J. Phys. Chem. C 2014, 118 (14), 7690–7697. doi:10.1021/jp5005709.
  • Shkilnyy, A.; Soucé, M.; Dubois, P.; Warmont, F.; Saboungi, M.-L.; Chourpa, I. Poly(Ethylene Glycol)-Stabilized Silver Nanoparticles for Bioanalytical Applications of SERS Spectroscopy. Analyst 2009, 134 (9), 1868. doi:10.1039/b905694g.
  • Jayaramudu, T.; Raghavendra, G.M.; Varaprasad, K.; Reddy, G.V.S.; Reddy, A.B.; Sudhakar, K.; Sadiku, E.R. Preparation and Characterization of Poly(Ethylene Glycol) Stabilized Nano Silver Particles by a Mechanochemical Assisted Ball Mill Process. J. Appl. Polym. Sci. 2016, 133 (7). doi:10.1002/app.43027.
  • Mosaddegh, E. Ultrasonic-assisted Preparation of Nano Eggshell Powder: A Novel Catalyst in Green and High Efficient Synthesis of 2-Aminochromenes. Ultrason. Sonochem. 2013, 20 (6), 1436–1441. doi:10.1016/j.ultsonch.2013.04.008.
  • Huang, N.; Wang, J. A TGA-FTIR Study on the Effect of CaCO3 on the Thermal Degradation of EBA Copolymer. J. Anal. Appl. Pyrolysis 2009, 84 (2), 124–130. doi:10.1016/j.jaap.2009.01.001.
  • Isitman, N.A.; Dogan, M.; Bayramli, E.; Kaynak, C. Fire Retardant Properties of Intumescent Polypropylene Composites Filled with Calcium Carbonate. Polym. Eng. Sci. 2011, 51 (5), 875–883. doi:10.1002/pen.21901.
  • Dhumal, P.S.; Bhakare, M.A.; Lokhande, K.D.; Bondarde, M.P.; Some, S. Bio-waste Derived, Phosphorus Decorated Composite for Highly Efficient Flame Retardant for Cotton Fabric. Cellulose 2022, 29 (16), 8879–8888. doi:10.1007/s10570-022-04783-4.
  • Trigui, A.; Abdelmouleh, M.; Boudaya, C. Performance Enhancement of a Thermal Energy Storage System Using Shape-Stabilized LDPE/Hexadecane/SEBS Composite PCMs by Copper Oxide Addition. RSC Adv. 2022, 12 (34), 21990–22003. doi:10.1039/D2RA02437C.
  • Righetti, G.; Doretti, L.; Zilio, C.; Longo, G.A.; Mancin, S. Experimental Investigation of Phase Change of Medium/High Temperature Paraffin wax Embedded in 3D Periodic Structure. Int. J. Thermofluids 2020, 5-6, 100035. doi:10.1016/j.ijft.2020.100035.
  • Chriaa, I.; Karkri, M.; Trigui, A.; Boudaya, C.; Jedidi, I.; Abdelmouleh, M. Preparation and Thermal Properties of Form Stable LDPE/ Hexadecane/ SEBS Composite for Thermal Energy Storage. International Alliance for Sustainable Urbanization and Regeneration (IASUR), 2end International Conference « Green Building and Smart City », Xian, China, Mar, 2019. ⟨hal-04326423⟩.
  • Yang, H.; Wang, Y.; Liu, Z.; Liang, D.; Liu, F.; Zhang, W.; Di, X.; Wang, C.; Ho, S.-H.; Chen, W.-H. Enhanced Thermal Conductivity of Waste Sawdust-Based Composite Phase Change Materials with Expanded Graphite for Thermal Energy Storage. Bioresour. Bioprocess. 2017, 4 (1), 52. doi:10.1186/s40643-017-0182-4.
  • Feng, L.; Zhao, W.; Zheng, J.; Frisco, S.; Song, P.; Li, X. The Shape-Stabilized Phase Change Materials Composed of Polyethylene Glycol and Various Mesoporous Matrices (AC, SBA-15 and MCM-41). Sol. Energy Mater. Sol. Cells 2011, 95 (12), 3550–3556. doi:10.1016/j.solmat.2011.08.020.
  • Qian, T.; Li, J.; Min, X.; Deng, Y.; Guan, W.; Ma, H. Polyethylene Glycol/Mesoporous Calcium Silicate Shape-Stabilized Composite Phase Change Material: Preparation, Characterization, and Adjustable Thermal Property. Energy 2015, 82, 333–340. doi:10.1016/j.energy.2015.01.043.
  • Qian, T.; Li, J.; Min, X.; Guan, W.; Deng, Y.; Ning, L. Enhanced Thermal Conductivity of PEG/Diatomite Shape-Stabilized Phase Change Materials with Ag Nanoparticles for Thermal Energy Storage. J. Mater. Chem. A 2015, 3 (16), 8526–8536. doi:10.1039/C5TA00309A.
  • Trigui, A. Techniques for the Thermal Analysis of PCM. In Phase Change Materials - Technology and Applications; IntechOpen, 2022. doi:10.5772/intechopen.105935.
  • Trigui, A.; Karkri, M. Latent Heat Storage Using Composite Phase Change Material: Thermophysical Characterization with Heat Flux Sensors. 2014 5th International Renewable Energy Congress (IREC), Mar, 2014; IEEE; pp 1–5. doi:10.1109/IREC.2014.6826924.
  • Trigui, A.; Karkri, M.; Krupa, I. Thermal Conductivity and Latent Heat Thermal Energy Storage Properties of LDPE/wax as a Shape-Stabilized Composite Phase Change Material. Energy Convers. Manag. 2014, 77, 586–596. doi:10.1016/j.enconman.2013.09.034.
  • Trigui, A.; Karkri, M.; Boudaya, C.; Candau, Y.; Ibos, L.; Fois, M. Experimental Investigation of a Composite Phase Change Material: Thermal-Energy Storage and Release. J. Compos. Mater. 2014, 48 (1), 49–62. doi:10.1177/0021998312468185.
  • Moulahi, C.; Trigui, A.; Boudaya, C.; Karkri, M. Smart Macroencapsulated Resin/wax Composite for Energy Conservation in the Built Environment. J. Thermoplast. Compos. Mater. 2017, 30 (7), 887–914. doi:10.1177/0892705715614065.
  • Sundararajan, S.; Samui, A.B.; Kulkarni, P.S. Shape-stabilized Poly(Ethylene Glycol) (PEG)-Cellulose Acetate Blend Preparation with Superior PEG Loading via Microwave-Assisted Blending. Sol. Energy 2017, 144, 32–39. doi:10.1016/j.solener.2016.12.056.
  • Yazdani, M.R.; Ajdary, R.; Kankkunen, A.; Rojas, O.J.; Seppälä, A. Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. ACS Appl. Mater. Interfaces 2021, 13 (5), 6188–6200. doi:10.1021/acsami.0c18623.
  • Liu, L.; Fan, X.; Zhang, Y.; Zhang, S.; Wang, W.; Jin, X.; Tang B. Novel Bio-Based Phase Change Materials with High Enthalpy for Thermal Energy Storage. Appl. Energy 2020, 268, 114979. doi:10.1016/j.apenergy.2020.114979.
  • Zahir, M.H.; Rahman, M.M.; Irshad, K.; Rahman, M.M. Shape-Stabilized Phase Change Materials for Solar Energy Storage: MgO and Mg(OH)2 Mixed with Polyethylene Glycol. Nanomaterials 2019, 9 (12), 1773. doi:10.3390/nano9121773.
  • Khoddami, A.; Avinc, O.; Ghahremanzadeh, F. Improvement in Poly(Lactic Acid) Fabric Performance via Hydrophilic Coating. Prog. Org. Coatings 2011, 72 (3), 299–304. doi:10.1016/j.porgcoat.2011.04.020.
  • Şentürk, S.B.; Kahraman, D.; Alkan, C.; Gökçe, İ. Biodegradable PEG/Cellulose, PEG/Agarose and PEG/Chitosan Blends as Shape Stabilized Phase Change Materials for Latent Heat Energy Storage. Carbohydr. Polym. 2011, 84 (1), 141–144. doi:10.1016/j.carbpol.2010.11.015.
  • Wang, W.; Yang, X.; Fang, Y.; Ding, J. Preparation and Performance of Form-Stable Polyethylene Glycol/Silicon Dioxide Composites as Solid–Liquid Phase Change Materials. Appl. Energy 2009, 86 (2), 170–174. doi:10.1016/j.apenergy.2007.12.003.
  • Zhang, X.; Huang, Z.; Ma, B.; Wen, R.; Zhang, M.; Huang, Y.; Fang, M.; Liu, Y.-G.; Wu, X. Polyethylene Glycol/Cu/SiO2 Form Stable Composite Phase Change Materials: Preparation, Characterization, and Thermal Conductivity Enhancement. RSC Adv. 2016, 6 (63), 58740–58748. doi:10.1039/C6RA12890D.