480
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the Effect of Leap Motion on Upper Extremity Rehabilitation in Children with Cerebral Palsy: A Randomized Controlled Trial

, B.O., , , , ORCID Icon & ORCID Icon
Pages 244-252 | Received 16 Jun 2022, Accepted 12 Apr 2023, Published online: 25 Apr 2023

References

  • Baxter P, Morris C, Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Colver A, Damiano D, Graham H. The definition and classification of cerebral palsy. Dev Med Child Neurol. 2007;49:1–44.
  • Weiss PL, Tirosh E, Fehlings D. Role of virtual reality for cerebral palsy management. J Child Neurol. 2014;29(8):1119–24. doi:10.1177/0883073814533007.
  • Brochard S, Robertson J, Medee B, Remy-Neris O. What’s new in new technologies for upper extremity rehabilitation? Curr Opin Neurol. 2010;23(6):683–87. doi:10.1097/WCO.0b013e32833f61ce.
  • Tatla SK, Sauve K, Virji‐babul N, Holsti L, Butler C, Der Loos HFM V. Evidence for outcomes of motivational rehabilitation interventions for children and adolescents with cerebral palsy: an American Academy for Cerebral Palsy and Developmental Medicine systematic review. Dev Med Child Neurol. 2013;55(7):593–601. doi:10.1111/dmcn.12147.
  • Weichert F, Bachmann D, Rudak B, Fisseler D. Analysis of the accuracy and robustness of the leap motion controller. Sensors. 2013;13(5):6380–93. doi:10.3390/s130506380.
  • Iosa M, Morone G, Fusco A, Castagnoli M, Fusco FR, Pratesi L, Paolucci S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil. 2015;22(4):306–16. doi:10.1179/1074935714Z.0000000036.
  • Levac D, Miller P, Missiuna C. Usual and virtual reality video game-based physiotherapy for children and youth with acquired brain injuries. Phys Occup Ther Pediatr. 2012;32(2):180–95. doi:10.3109/01942638.2011.616266.
  • Vanbellingen T, Filius SJ, Nyffeler T, Van Wegen EE. Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: a pilot study. Front Neurol. 2017;8:654. doi:10.3389/fneur.2017.00654.
  • Z-R W, Wang P, Xing L, L-P M, Zhao J, Zhang T. Leap motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neural regener res. 2017;12(11):1823. doi:10.4103/1673-5374.219043.
  • Aguilera-Rubio Á, Alguacil-Diego IM, Mallo-López A, Cuesta-Gómez A. Use of the Leap Motion Controller® system in the rehabilitation of the upper limb in stroke. A systematic review. J Stroke Cerebrovasc Dis. 2022;31(1):106174. doi:10.1016/j.jstrokecerebrovasdis.2021.106174.
  • Gieser SN, Boisselle A, Makedon F. Real-Time Static Gesture Recognition for Upper Extremity Rehabilitation Using the Leap Motion. In Duffy V, editor. Digital Human Modeling. Applications in Health, Safety, Ergonomics and Risk Management: Ergonomics and Health. DHM 2015. Lecture Notes in Computer Science. Vol. 9185. Cham: Springer; 2015. doi:10.1007/978-3-319-21070-4_15 .
  • de Oliveira JM, Fernandes RCG, Pinto CS, Pinheiro PR, Ribeiro S, de Albuquerque VHC, de Oliveira JM, de Albuquerque change VHC. Novel virtual environment for alternative treatment of children with cerebral palsy. Comput Intell Neurosci. 2016;2016:1–10. doi:10.1155/2016/8984379.
  • de Los Reyes-Guzmán, A, Lozano-Berrio V, Alvarez-Rodríguez M, López-Dolado E, Ceruelo-Abajo S, Talavera-Díaz F, Gil-Agudo A, de Los Reyes-Guzmán A. RehabHand: oriented-tasks serious games for upper limb rehabilitation by using leap motion controller and target population in spinal cord injury. NeuroRehabilitation. 2021;Preprint(3):1–9. doi:10.3233/NRE-201598.
  • Tarakci E, Arman N, Tarakci D, Kasapcopur O. Leap motion controller–based training for upper extremity rehabilitation in children and adolescents with physical disabilities: a randomized controlled trial. J Hand Ther. 2020;33(2):220–8. e221. doi:10.1016/j.jht.2019.03.012.
  • Demers M, Fung K, Subramanian SK, Lemay M, Robert MT. Integration of motor learning principles into virtual reality interventions for individuals with cerebral palsy: systematic review. JMIR Serious Games. 2021;9(2):e23822. doi:10.2196/23822.
  • Fandim JV, Saragiotto BT, Porfírio GJM, Santana RF. Effectiveness of virtual reality in children and young adults with cerebral palsy: a systematic review of randomized controlled trial. Braz J Phys Ther. 2021;25(4):369–86. doi:10.1016/j.bjpt.2020.11.003.
  • Avcil E, Tarakci D, Arman N, Tarakci E. Upper extremity rehabilitation using video games in cerebral palsy: a randomized clinical trial. Acta Neurol Belg. 2021;121(4):1053–60. doi:10.1007/s13760-020-01400-8.
  • Pritchard-Wiart L, Phelan SK. Goal setting in paediatric rehabilitation for children with motor disabilities: a scoping review. Clin Rehabil. 2018;32(7):954–66. doi:10.1177/0269215518758484.
  • Choudhary A, Gulati S, Kabra M, Singh UP, Sankhyan N, Pandey RM, Kalra V. Efficacy of modified constraint induced movement therapy in improving upper limb function in children with hemiplegic cerebral palsy: a randomized controlled trial. Brain Dev. 2013;35(9):870–76. doi:10.1016/j.braindev.2012.11.001.
  • Mohamed R, Yousef A, Radwan N, Ibrahim M. Efficacy of different approaches on quality of upper extremity function, dexterity and grip strength in hemiplegic children: a randomized controlled study. Eur Rev Med Pharmacol Sci. 2021;25(17):5412–23. doi:10.26355/eurrev_202109_26648.
  • Harb A, Kishner S. Modified ashworth scale. Statpearls. Treasure Island (FL): StatPearls Publishing; 2022.
  • Ramey SL, DeLuca SC, Stevenson RD, Conaway M, Darragh AR, Lo W. Constraint-induced movement therapy for cerebral palsy: a randomized trial. Pediatrics. 2021;148(5). doi:10.1542/peds.2020-033878.
  • Wu Y-T, Chen K-H, Ban S-L, Tung K-Y, Chen L-R. Evaluation of leap motion control for hand rehabilitation in burn patients: an experience in the dust explosion disaster in formosa fun coast. Burns. 2019;45(1):157–64. doi:10.1016/j.burns.2018.08.001.
  • Smeragliuolo AH, Hill NJ, Disla L, Putrino D. Validation of the leap motion controller using markered motion capture technology. J Biomech. 2016;49(9):1742–50. doi:10.1016/j.jbiomech.2016.04.006.
  • Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. 1985;66:69–74.
  • Dekkers K, Janssen-Potten Y, Gordon AM, Speth L, Smeets R, Rameckers E. Reliability of maximum isometric arm, grip and pinch strength measurements in children (7–12 years) with unilateral spastic cerebral palsy. Disabil Rehabil. 2020;42(10):1448–53. doi:10.1080/09638288.2018.1524522.
  • ACdC F, Shimano AC, Mazzer N, Barbieri CH, Elui VMC, Fonseca Md CR. Força de preensão palmar e pinças em indivíduos sadios entre 6 e 19 anos. Acta Ortop Bras. 2011;19(2):92–97. doi:10.1590/S1413-78522011000200006.
  • Thorley M, Lannin N, Cusick A, Novak I, Boyd R. Reliability of the quality of upper extremity skills test for children with cerebral palsy aged 2 to 12 years. Phys Occup Ther Pediatr. 2012;32(1):4–21. doi:10.3109/01942638.2011.602389.
  • Cortés-Pérez I, Zagalaz-Anula N, Montoro-Cárdenas D, Lomas-Vega R, Obrero-Gaitán E, Osuna-Pérez MC. Leap motion controller video game-based therapy for upper extremity motor recovery in patients with central nervous system diseases. A systematic review with meta-analysis. Sensors. 2021;21(6):2065. doi:10.3390/s21062065.
  • Yıldırım Y, Budak M, Tarakçı D, Algun ZC. The effect of video-based games on hand functions and cognitive functions in cerebral palsy. Games Health J. 2021;10(3):180–89. doi:10.1089/g4h.2020.0182.
  • Kurillo G, Zupan A, Bajd T. Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Clin Biomech. 2004;19(10):1014–21. doi:10.1016/j.clinbiomech.2004.07.003.
  • Dhage P, Naqvi WM, Arora SP, Kulkarni CA Impact of leap motion controller on pinch grip in sub-acute and chronic stroke patients.
  • Escobar I, Acurio A, Pruna E, Mena L, Pilatásig M, Bucheli J, Silva F, Robalino R . Fine Motor Rehabilitation of Children Using the Leap Motion Device – Preliminary Usability Tests. In Rocha A, Adeli H, Reis L, Costanzo S, editors. Trends and Advances in Information Systems and Technologies. WorldCIST'18 2018. Advances in Intelligent Systems and Computing. Vol. 746. Cham: Springer; 2018. doi:10.1007/978-3-319-77712-2_98.
  • Video game based kinematic assessment using a leap motion controller. XXVIII Congress of the International Society of Biomechanics; 2021.
  • Cuesta-Gómez A, Sánchez-Herrera-Baeza P, Oña-Simbaña ED, Martínez-Medina A, Ortiz-Comino C, Balaguer-Bernaldo-de-Quirós C, Jardón-Huete A, Cano-de-la-Cuerda R. Effects of virtual reality associated with serious games for upper limb rehabilitation in patients with multiple sclerosis: randomized controlled trial. J Neuroeng Rehabil. 2020;17(1):1–10. doi:10.1186/s12984-020-00718-x.
  • Fernández-González P, Carratalá-Tejada M, Monge-Pereira E, Collado-Vázquez S, Sánchez-Herrera Baeza P, Cuesta-Gómez A, Oña-Simbaña ED, Jardón-Huete A, Molina-Rueda F, Balaguer-Bernaldo de Quirós C. Leap motion controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: a feasibility study. J Neuroeng Rehabil. 2019;16(1):1–10. doi:10.1186/s12984-019-0593-x.
  • Chen Y-P, Kang L-J, Chuang T-Y, Doong J-L, Lee S-J, Tsai M-W, Jeng S-F, Sung W-H. Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys Ther. 2007;87(11):1441–57. doi:10.2522/ptj.20060062.
  • Rostami HR, Arastoo AA, Nejad SJ, Mahany MK, Malamiri RA, Goharpey S. Effects of modified constraint-induced movement therapy in virtual environment on upper-limb function in children with spastic hemiparetic cerebral palsy: a randomised controlled trial. NeuroRehabilitation. 2012;31(4):357–65. doi:10.3233/NRE-2012-00804.
  • De Oliveira J, Jorge J, Duarte J, De Albuquerque V. Complementary treatment for children with cerebral palsy based on virtual reality. IEEE Lat Am. 2016;14(8):3820–25. doi:10.1109/TLA.2016.7786369.
  • Gamboa E, Serrato A, Castro J, Toro D, Trujillo M. Advantages and limitations of leap motion from a developers’, physical therapists’, and patients’ perspective. Methods Inf Med. 2020;59(02/03):110–16. doi:10.1055/s-0040-1715127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.