3,295
Views
5
CrossRef citations to date
0
Altmetric
Articles

Integrating Sentinel-1 and 2 with LiDAR data to estimate aboveground biomass of subtropical forests in northeast Guangdong, China

, ORCID Icon, ORCID Icon, &
Pages 158-182 | Received 23 Aug 2022, Accepted 01 Jan 2023, Published online: 16 Jan 2023

References

  • Almeida, C.T.d., L. S. Galvão, L.E.d.O.C.e. Aragão, J. P. H. B. Ometto, A. D. Jacon, F.R.d.S. Pereira, L. Y. Sato, et al. 2019. “Combining LiDAR and Hyperspectral Data for Aboveground Biomass Modeling in the Brazilian Amazon Using Different Regression Algorithms.” Remote Sensing of Environment 232: 111323. doi:10.1016/j.rse.2019.111323.
  • Baloloy, A. B., A. C. Blanco, C. G. Candido, R. J. L. Argamosa, J. B. L. C. Dumalag, L. L. C. Dimapilis, and E. C. Paringit. 2018. “Estimation of Mangrove Forest Aboveground Biomass Using Multispectral Bands, Vegetation Indices and Biophysical Variables Derived From Optical Satellite Imageries: Rapideye, Planetscope and Sentinel-2 ISPRS Annals of the Photogrammetry.” Remote Sensing and Spatial Information Sciences, 29–36. doi:10.5194/isprs-annals-IV-3-29-2018.
  • Bhatt, C. K., and A. S. Nain. 2021. “Estimation of Biophysical Parameters of Rice Using Sentinel-1A SAR Data in Udham Singh Nagar (Uttarakhand).” Mausam 72 (4): 739–748. doi:10.54302/mausam.v72i4.3544.
  • Bjork, S., S. N. Anfinsen, E. Naesset, T. Gobakken, and E. Zahabu. 2022. “On the Potential of Sequential and Nonsequential Regression Models for Sentinel-1-Based Biomass Prediction in Tanzanian Miombo Forests.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15: 4612–4639. doi: 10.1109/jstars.2022.3179819.
  • Bolton, D. K., N. C. Coops, and M. A. Wulder. 2015. “Characterizing Residual Structure and Forest Recovery Following High-Severity Fire in the Western Boreal of Canada Using Landsat Time-Series and Airborne Lidar Data.” Remote Sensing of Environment 163: 48–60. doi:10.1016/j.rse.2015.03.004.
  • Bouvet, A., S. Mermoz, T. L. Toan, L. Villard, R. Mathieu, L. Naidoo, and G. P. Asner. 2018. “An Above-Ground Biomass Map of African Savannahs and Woodlands at 25 m Resolution Derived from ALOS PALSAR.” Remote Sensing of Environment 206: 156–173. doi:10.1016/j.rse.2017.12.030.
  • Castillo, J. A. A., A. A. Apan, T. N. Maraseni, and S. G. Salmo. 2017. “Estimation and Mapping of Above-Ground Biomass of Mangrove Forests and Their Replacement Land Uses in the Philippines Using Sentinel Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 134: 70–85. doi:10.1016/j.isprsjprs.2017.10.016.
  • Chen, L., C. Y. Ren, B. Zhang, Z. M. Wang, and Y. B. Xi. 2018. “Estimation of Forest Above-Ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery.” Forests 9 (10): 582. doi:10.3390/f9100582.
  • Chen, L., Y. Q. Wang, C. Y. Ren, B. Zhang, and Z. M. Wang. 2019. “Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data.” Remote Sensing 11 (4): 414. doi:10.3390/rs11040414.
  • Chirici, G., F. Giannetti, R. E. McRoberts, D. Travaglini, M. Pecchi, F. Maselli, M. Chiesi, and P. Corona. 2020. “Wall-to-wall Spatial Prediction of Growing Stock Volume Based on Italian National Forest Inventory Plots and Remotely Sensed Data.” International Journal of Applied Earth Observation and Geoinformation 84: 101959. doi:10.1016/j.jag.2019.101959.
  • Deb, D., J. P. Singh, S. Deb, D. Datta, A. Ghosh, and R. S. Chaurasia. 2017. “An Alternative Approach for Estimating Above Ground Biomass Using Resourcesat-2 Satellite Data and Artificial Neural Network in Bundelkhand Region of India.” Environmental Monitoring and Assessment 189 (11): 12. doi:10.1007/s10661-017-6307-6.
  • Delegido, J., J. Verrelst, L. Alonso, and J. Moreno. 2011. “Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content.” Sensors 11 (7): 7063–7081. doi:10.3390/s110707063.
  • Drusch, M., U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, et al. 2012. “Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services.” Remote Sensing of Environment 120: 25–36. doi:10.1016/j.rse.2011.11.026.
  • Fang, J., G. Liu, and S. XU. 1996. “Biomass and Net Production of Forest Vegetation in China.” Acta Ecologica Sinica 16: 497–508.
  • Fassnacht, F. E., F. Hartig, H. Latifi, C. Berger, J. Hernández, P. Corvalán, and B. Koch. 2014. “Importance of Sample Size, Data Type and Prediction Method for Remote Sensing-Based Estimations of Aboveground Forest Biomass.” Remote Sensing of Environment 154: 102–114. doi:10.1016/j.rse.2014.07.028.
  • Forkuor, G., J.-B. B. Zoungrana, K. Dimobe, B. Ouattara, K. P. Vadrevu, and J. E. Tondoh. 2020. “Above-ground Biomass Mapping in West African Dryland Forest Using Sentinel-1 and 2 Datasets - A Case Study.” Remote Sensing of Environment 236: 111496. doi:10.1016/j.rse.2019.111496.
  • “GEE developers forum.”. [Online]. Available: https://developers.google.com/earth-engine/.
  • Godwin, C., G. Chen, and K. K. Singh. 2015. “The Impact of Urban Residential Development Patterns on Forest Carbon Density: An Integration of LiDAR, Aerial Photography and Field Mensuration.” Landscape and Urban Planning 136: 97–109. doi:10.1016/j.landurbplan.2014.12.007.
  • Han, H. S., R. R. Wan, and B. Li. 2022. “Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China.” Remote Sensing 14 (1): 176. doi:10.3390/rs14010176.
  • Hawbaker, T. J., N. S. Keuler, A. A. Lesak, T. Gobakken, and V. C. Radeloff. 2009. “Improved Estimates of Forest Vegetation Structure and Biomass with a LiDAR-Optimized Sampling Design.” Journal of Geophysical Research: Biogeosciences 114: 363–369. doi:10.1029/2008JG000870.
  • Hyyppä, J., X.W. Yu, H. Hyyppä, M. Vastaranta, M. Holopainen, A. Kukko, H. Kaartinen, A. Jaakkola, M.T. Vaaja, J. Koskinen, and P. Alho. 2012. “Advances in Forest Inventory Using Airborne Laser Scanning.” Remote Sensing 4 (5): 1190–1207. doi:10.3390/rs4051190.
  • Kane, V. R., R. J. McGaughey, J. D. Bakker, R. F. Gersonde, J. A. Lutz, and J. F. Franklin. 2010. “Comparisons Between Field- and LiDAR-Based Measures of Stand Structural Complexity.” Canadian Journal of Forest Research 40 (4): 761–773. doi: 10.1139/x10-024.
  • Karki, S., R. Bermejo, R. Wilkes, M. Mac Monagail, E. Daly, M. Healy, J. Hanafin, et al. 2021. “Mapping Spatial Distribution and Biomass of Intertidal Ulva Blooms Using Machine Learning and Earth Observation.” Frontiers in Marine Science 8. doi:10.3389/fmars.2021.633128.
  • Kelsey, K. C., and J. C. Neff. 2014. “Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery.” Remote Sensing 6 (7): 6407–6422. doi:10.3390/rs6076407.
  • Kim, J. B., J. M. So, and D. H. Bae. 2020. “Global Warming Impacts on Severe Drought Characteristics in Asia Monsoon Region.” Water 12 (5): 1360. doi:10.3390/w12051360.
  • LaRue, E. A., F. W. Wagner, S. L. Fei, J. W. Atkins, R. T. Fahey, C. M. Gough, and B. S. Hardiman. 2020. “Compatibility of Aerial and Terrestrial LiDAR for Quantifying Forest Structural Diversity.” Remote Sensing 12 (9): 1407. doi:10.3390/rs12091407.
  • Laurin, G. V., V. Liesenberg, Q. Chen, L. Guerriero, F. Del Frate, A. Bartolini, D. Coomes, B. Wilebore, J. Lindsell, and R. Valentini. 2013. “Optical and SAR Sensor Synergies for Forest and Land Cover Mapping in a Tropical Site in West Africa.” International Journal of Applied Earth Observation and Geoinformation 21: 7–16. doi:10.1016/j.jag.2012.08.002.
  • Li, Z.j., Z. Y. Wang, X. T. Liu, Y. D. Zhu, K. Wang, and T. G. Zhang. 2022. “Classification and Evolutionary Analysis of Yellow River Delta Wetlands Using Decision Tree Based on Time Series SAR Backscattering Coefficient and Coherence.” Frontiers in Marine Science 9. doi:10.3389/fmars.2022.940342.
  • Li, L., X. S. Zhou, L. Q. Chen, L. G. Chen, Y. Zhang, and Y. Q. Liu. 2020. “Estimating Urban Vegetation Biomass from Sentinel-2A Image Data.” Forests 11 (2): 125. doi:10.3390/f11020125.
  • Liao, Z. M., B. B. He, and X. W. Quan. 2020. “Potential of Texture from SAR Tomographic Images for Forest Aboveground Biomass Estimation.” International Journal of Applied Earth Observation and Geoinformation 88: 102049. doi:10.1016/j.jag.2020.102049.
  • Lin, J. Y., D. C. Chen, W. J. Wu, and X. H. Liao. 2022b. “Estimating Aboveground Biomass of Urban Forest Trees with Dual-Source UAV Acquired Point Clouds.” Urban Forestry & Urban Greening 69: 127521. doi:10.1016/j.ufug.2022.127521.
  • Lin, Y.-C., J. Y. Shao, S.-Y. Shin, Z. Saka, M. Joseph, R. Manish, S. L. Fei, and A. Habib. 2022a. “Comparative Analysis of Multi-Platform, Multi-Resolution, Multi-Temporal LiDAR Data for Forest Inventory.” Remote Sensing 14 (3), doi: 10.3390/rs14030649.
  • Liu, Y. A., W. S. Gong, Y. Q. Xing, X. Y. Hu, and J. Y. Gong. 2019. “Estimation of the Forest Stand Mean Height and Aboveground Biomass in Northeast China Using SAR Sentinel-1B, Multispectral Sentinel-2A, and DEM Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 151: 277–289. doi:10.1016/j.isprsjprs.2019.03.016.
  • Lu, D. S., Q. Chen, G. X. Wang, L. J. Liu, G. Y. Li, and E. Moran. 2016. “A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems.” International Journal of Digital Earth 9 (1): 63–105. doi:10.1080/17538947.2014.990526.
  • Ludwig, M., T. Morgenthal, F. Detsch, T. P. Higginbottom, M. L. Valdes, T. Nauss, and H. Meyer. 2019. “Machine Learning and Multi-Sensor Based Modelling of Woody Vegetation in the Molopo Area, South Africa.” Remote Sensing of Environment 222: 195–203. doi:10.1016/j.rse.2018.12.019.
  • Luo, K., Y. F. Wei, J. Du, L. Liu, X. R. Luo, Y. H. Shi, X. J. Pei, et al. 2022. “Machine Learning-Based Estimates of Aboveground Biomass of Subalpine Forests Using Landsat 8 OLI and Sentinel-2B Images in the Jiuzhaigou National Nature Reserve, Eastern Tibet Plateau.” Journal of Forestry Research 33 (4): 1329–1340. doi:10.1007/s11676-021-01421-w.
  • Mayamanikandan, T., S. Reddy, R. Fararoda, K. C. Thumaty, M. S. S. Praveen, G. Rajashekar, G. S. Jha, I. C. Das, and J. Gummapu. 2022. “Quantifying the Influence of Plot-Level Uncertainty in Above Ground Biomass Up Scaling Using Remote Sensing Data in Central Indian dry Deciduous Forest.” Geocarto International 37 (12): 3489–3503. doi:10.1080/10106049.2020.1864029.
  • McRoberts, R. E., Q. Chen, G. M. Domke, E. Næsset, T. Gobakken, G. Chirici, and M. Mura. 2017. “Optimizing Nearest Neighbour Configurations for Airborne Laser Scanning-Assisted Estimation of Forest Volume and Biomass.” Forestry 90 (1): 99–111. doi:10.1093/forestry/cpw035.
  • Monnet, J. M., J. Chanussot, and F. Berger. 2011. “Support Vector Regression for the Estimation of Forest Stand Parameters Using Airborne Laser Scanning.” IEEE Geoscience and Remote Sensing Letters 8 (3): 580–584. doi: 10.1109/lgrs.2010.2094179.
  • Moomaw, W. R., B. E. Law, and S. J. Goetz. 2020. “Focus on the Role of Forests and Soils in Meeting Climate Change Mitigation Goals: Summary.” Environmental Research Letters 15 (4): 045009. doi:10.1088/1748-9326/ab6b38.
  • Mutanga, O., and A. K. Skidmore. 2004. “Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation.” International Journal of Remote Sensing 25: 3999–4014. doi:10.1080/01431160310001654923.
  • Navarro, J. A., N. Algeet, A. Fernandez-Landa, J. Esteban, P. Rodriguez-Noriega, and M. L. Guillen-Climent. 2019. “Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal.” Remote Sensing 11 (1): 77. doi:10.3390/rs11010077.
  • Nguyen, H., Y. Choi, X. N. Bui, and T. Nguyen-Thoi. 2020. “Predicting Blast-Induced Ground Vibration in Open-Pit Mines Using Vibration Sensors and Support Vector Regression-Based Optimization Algorithms.” Sensors 20 (1): 132. doi:10.3390/s20010132.
  • Nguyen, L. V., R. Tateishi, H. T. Nguyen, R. C. Sharma, T. T. Tu, and S. M. Le. 2016. “Estimation of Tropical Forest Structural Characteristics Using ALOS-2 SAR Data.” Advances in Remote Sensing 05 (2): 131–144. doi:10.4236/ars.2016.52011.
  • Nuthammachot, N., A. Askar, D. Stratoulias, and P. Wicaksono. 2022. “Combined use of Sentinel-1 and Sentinel-2 Data for Improving Above-Ground Biomass Estimation.” Geocarto International 37 (2): 366–376. doi:10.1080/10106049.2020.1726507.
  • Persson, H. J., J. Jonzén, and M. Nilsson. 2021. “Combining TanDEM-X and Sentinel-2 for Large-Area Species-Wise Prediction of Forest Biomass and Volume.” International Journal of Applied Earth Observation and Geoinformation 96: 102275. doi:10.1016/j.jag.2020.102275.
  • Poorazimy, M., S. Shataee, R. E. McRoberts, and J. Mohammadi. 2020. “Integrating Airborne Laser Scanning Data, Space-Borne Radar Data and Digital Aerial Imagery to Estimate Aboveground Carbon Stock in Hyrcanian Forests, Iran.” Remote Sensing of Environment 240: 111669. doi:10.1016/j.rse.2020.111669.
  • Puliti, S., M. Hauglin, J. Breidenbach, P. Montesano, C. S. R. Neigh, J. Rahlf, S. Solberg, T. F. Klingenberg, and R. Astrup. 2020. “Modelling Above-Ground Biomass Stock Over Norway Using National Forest Inventory Data with ArcticDEM and Sentinel-2 Data.” Remote Sensing of Environment 236: 111501. doi:10.1016/j.rse.2019.111501.
  • Qin, S. Z., S. Nie, Y. S. Guan, D. Zhang, C. Wang, and X. L. Zhang. 2022. “Forest Emissions Reduction Assessment Using Airborne LiDAR for Biomass Estimation.” Resources, Conservation and Recycling 181. doi:10.1016/j.resconrec.2022.106224.
  • Ronoud, G., P. Fatehi, A. A. Darvishsefat, E. Tomppo, J. Praks, and M. E. Schaepman. 2021. “Multi-Sensor Aboveground Biomass Estimation in the Broadleaved Hyrcanian Forest of Iran.” Canadian Journal of Remote Sensing 47 (6): 818–834. doi:10.1080/07038992.2021.1968811.
  • Saatchi, S., M. Marlier, R. L. Chazdon, D. B. Clark, and A. E. Russell. 2011. “Impact of Spatial Variability of Tropical Forest Structure on Radar Estimation of Aboveground Biomass.” Remote Sensing of Environment 115 (11): 2836–2849. doi:10.1016/j.rse.2010.07.015.
  • Shao, Z. F., L. J. Zhang, and L. Wang. 2017. “Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (12): 5569–5582. doi: 10.1109/jstars.2017.2748341.
  • Shoko, C., and O. Mutanga. 2017. “Examining the Strength of the Newly-Launched Sentinel 2 MSI Sensor in Detecting and Discriminating Subtle Differences Between C3 and C4 Grass Species.” ISPRS Journal of Photogrammetry and Remote Sensing 129: 32–40. doi:10.1016/j.isprsjprs.2017.04.016.
  • Singh, K. K., G. Chen, J. B. McCarter, and R. K. Meentemeyer. 2015. “Effects of LiDAR Point Density and Landscape Context on Estimates of Urban Forest Biomass.” ISPRS Journal of Photogrammetry and Remote Sensing 101: 310–322. doi:10.1016/j.isprsjprs.2014.12.021.
  • SNAP. 2022. Sentinels Application Platform software ver. 9.0.0. European Space Agency.
  • Stojanova, D., P. Panov, V. Gjorgjioski, A. Kobler, and S. Džeroski. 2010. “Estimating vegetation height and canopy cover from remotely sensed data with machine learning.” Ecological Informatics 5 (4): 256–266. doi:10.1016/j.ecoinf.2010.03.004.
  • Thapa, R. B., M. Watanabe, T. Motohka, and M. Shimada. 2015. “Potential of High-Resolution ALOS–PALSAR Mosaic Texture for Aboveground Forest Carbon Tracking in Tropical Region.” Remote Sensing of Environment 160: 122–133. doi:10.1016/j.rse.2015.01.007.
  • Theofanous, N., I. Chrysafis, G. Mallinis, C. Domakinis, N. Verde, and S. Siahalou. 2021. “Aboveground Biomass Estimation in Short Rotation Forest Plantations in Northern Greece Using ESA’s Sentinel Medium-High Resolution Multispectral and Radar Imaging Missions.” Forests 12 (7): 902. doi:10.3390/f12070902.
  • Thiel, C., and C. Schmullius. 2016. “The Potential of ALOS PALSAR Backscatter and InSAR Coherence for Forest Growing Stock Volume Estimation in Central Siberia.” Remote Sensing of Environment 173: 258–273. doi:10.1016/j.rse.2015.10.030.
  • Timothy, D., M. Onisimo, S. Cletah, S. Adelabu, and B. Tsitsi. 2016. “Remote Sensing of Aboveground Forest Biomass: A Review.” Tropical Ecology 57 (2): 125–132.
  • Torabzadeh, H., F. Morsdorf, and M. E. Schaepman. 2014. “Fusion of Imaging Spectroscopy and Airborne Laser Scanning Data for Characterization of Forest Ecosystems – A Review.” ISPRS Journal of Photogrammetry and Remote Sensing 97: 25–35. doi:10.1016/j.isprsjprs.2014.08.001.
  • Tsui, O. W., N. C. Coops, M. A. Wulder, and P. L. Marshall. 2013. “Integrating Airborne LiDAR and Space-Borne Radar via Multivariate Kriging to Estimate Above-Ground Biomass.” Remote Sensing of Environment 139: 340–352. doi:10.1016/j.rse.2013.08.012.
  • Vafaei, S., J. Soosani, K. Adeli, H. Fadaei, H. Naghavi, T. D. Pham, and D. T. Bui. 2018. “Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran).” Remote Sensing 10 (2): 172. doi:10.3390/rs10020172.
  • Wang, G., D. S. Guan, L. Xiao, and M. R. Peart. 2019. “Forest Biomass-Carbon Variation Affected by the Climatic and Topographic Factors in Pearl River Delta, South China.” Journal of Environmental Management 232: 781–788. doi:10.1016/j.jenvman.2018.11.130.
  • Wang, D. Z., B. Wan, J. Liu, Y. J. Su, Q. H. Guo, P. H. Qiu, and X. C. Wu. 2020. “Estimating Aboveground Biomass of the Mangrove Forests on Northeast Hainan Island in China Using an Upscaling Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery.” International Journal of Applied Earth Observation and Geoinformation 85: 101986. doi:10.1016/j.jag.2019.101986.
  • Wolanin, A., G. Camps-Valls, L. Gómez-Chova, G. Mateo-García, C. van der Tol, Y. G. Zhang, and L. Guanter. 2019. “Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 Using Machine Learning Methods Trained with Radiative Transfer Simulations.” Remote Sensing of Environment 225: 441–457. doi:10.1016/j.rse.2019.03.002.
  • Wu, D. H., G. G. Vargas, J. S. Powers, N. G. McDowell, J. M. Becknell, D. Perez-Aviles, D. Medvigy, et al. 2022. “Reduced Ecosystem Resilience Quantifies Fine-Scale Heterogeneity in Tropical Forest Mortality Responses to Drought.” Global Change Biology 28 (6): 2081–2094. doi:10.1111/gcb.16046.
  • Wulder, M. A., J. C. White, R. F. Nelson, E. Naesset, H. O. Orka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken. 2012. “Lidar Sampling for Large-Area Forest Characterization: A Review.” Remote Sensing of Environment 121: 196–209. doi:10.1016/j.rse.2012.02.001.
  • Xie, L., X. Meng, X. D. Zhao, L. Y. Fu, R. P. Sharma, and H. Sun. 2022. “Estimating Fractional Vegetation Cover Changes in Desert Regions Using RGB Data.” Remote Sensing 14 (15): 3833. doi:10.3390/rs14153833.
  • Yu, H., Y. F. Wu, L. T. Niu, Y. F. Chai, Q. S. Feng, W. Wang, and T. G. Liang. 2021. “A Method to Avoid Spatial Overfitting in Estimation of Grassland Above-Ground Biomass on the Tibetan Plateau.” Ecological Indicators 125: 107450. doi:10.1016/j.ecolind.2021.107450.
  • Zald, H. S. J., M. A. Wulder, J. C. White, T. Hilker, T. Hermosilla, G. W. Hobart, and N. C. Coops. 2016. “Integrating Landsat Pixel Composites and Change Metrics with Lidar Plots to Predictively map Forest Structure and Aboveground Biomass in Saskatchewan, Canada.” Remote Sensing of Environment 176: 188–201. doi:10.1016/j.rse.2016.01.015.
  • Zhang, W. F., L. X. Zhao, Y. Li, J. M. Shi, M. Yan, and Y. J. Ji. 2022. “Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model.” Remote Sensing 14 (7): 1608. doi:10.3390/rs14071608.
  • Zhao, H. B., Z. J. Li, G. Y. Zhou, Z. J. Qiu, and Z. M. Wu. 2019. “Site-Specific Allometric Models for Prediction of Above-and Belowground Biomass of Subtropical Forests in Guangzhou, Southern China.” Forests 10 (10): 862. doi:10.3390/f10100862.