186
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Environment rather than genetic background explains intraspecific variation in the protein-precipitating capacity of phenolic compounds in beech litter

, , , &
Pages 73-79 | Received 14 Feb 2013, Accepted 23 Nov 2013, Published online: 22 Jan 2014

References

  • Alberto F, Bouffier L, Louvet J-M, Lamy J-B, Delzon S, Kremer A. 2011. Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. Journal of Evolutionary Biology 24:1442–1454.
  • Ayres MP, Clausen TP, MacLean SF, Redman AM, Reichardt PB. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.
  • Balsberg-Påhlsson A-M. 1989. Mineral nutrients, carbohydrates and phenolic compounds in leaves of beech (Fagus sylvatica L.) in southern Sweden as related to environmental factors. Tree Physiology 5:485–495.
  • Bangert RK, Lonsdorf EV, Wimp GM, Shuster SM, Fischer D, Schweitzer JA, Allan GJ, Bailey JK, Whitham TG. 2006. A genetic similarity rule determines arthropod community structure. Molecular Ecology 15:1379–1391.
  • Barbehenn RV, Constabel CP. 2011. Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565.
  • Bärlocher F, Graça MAS. 2005. Total phenolics. In: Graça MAS, Bärlocher F, Gessner MO, editors. Methods to study litter decomposition: a practical guide. New York: Springer. p. 97–100.
  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA. 2011. Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution 26:183–192.
  • Cameron GN, LaPoint TW. 1978. Effects of tannins on the decomposition of Chinese tallow leaves by terrestrial and aquatic invertebrates. Oecologia 32:349–366.
  • Connan S, Deslandes E, Ar Gall E. 2007. Influence of day-night and tidal cycles on phenol content and antioxidant capacity in three intertidal brown seaweeds. Journal of Experimental Marine Biology and Ecology 349:359–369.
  • Connan S, Goulard F, Stiger V, Deslandes E, Ar Gall E. 2005. Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Botanica Marina 47: 410–416.
  • Coq S, Souquet JM, Meudec E, Cheynier V, Hättenschwiler S. 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091.
  • Covelo F, Gallardo A. 2001. Temporal variation in total leaf phenolics concentration of Quercus robur in forested and harvested stands in northwestern Spain. Canadian Journal of Botany 79:1262–1269.
  • Dawkins R. 1982. The extended phenotype: the long reach of the gene. Oxford: Oxford University Press.
  • Day TA, Howells BW, Rice WJ. 1994. Ultraviolet absorption and epidermal-transmittance spectra in foliage. Physiologia Plantarum 92:207–218.
  • Dübeler A, Voltmer G, Gora V, Lunderstädt J, Zeeck A. 1997. Phenols from Fagus sylvatica and their role in defence against Cryptococcus fagisuga. Phytochemistry 45:51–57.
  • Garcia ME, Rom CR, Murphy JB, Kugler K. 1997. Leaf phenolic variation within Apple tree canopies. Horticulture Science 32:596.
  • Graça MAS, Bärlocher F. 2005. Radial diffusion assay for tannins. In: Graça MAS, Bärlocher F, Gessner MO, editors. Methods to study litter decomposition: a practical guide. New York: Springer. p. 101–105.
  • Haase J. 2009. Biodiversity and ecosystem functioning: the effects of tree and litter diversity. PhD thesis, Helmholtz Centre for Environmental Research (UFZ), Halle (Germany) & Institute for Environmental Sciences, University of Zurich (Switzerland).
  • Harrison AF. 1971. The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition. Soil Biology & Biochemistry 3:167–172.
  • Heil M. 2010. Plastic defence expression in plants. Evolutionary Ecology 24:555–569.
  • Herrmann KM, Weaver LM. 1999. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology 50:473–503.
  • Jansen MAK, Noort RE, Tan MYA, Prinsen E, Lagrimini LM, Thorneley RNF. 2001. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet-B radiation stress. Plant Physiology 126:1012–1023.
  • Koivikko R, Eränen JK, Loponen J, Jormalainen V. 2008. Variation of phlorotannins among three populations of Fucus vesiculosus as revealed by HPLC and colorimetric quantification. Journal of Chemical Ecology 34:57–64.
  • Kuiters AT, Sarink HM. 1986. Leaching of Phenolic Compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology & Biochemistry 18:475–480.
  • Laitinen ML, Julkunen-Tiitto R, Tahvainen J, Heinonen J, Rousi M. 2005. Variation in birch (Betula pendula) shoot secondary chemistry due to genotype, environment, and ontogeny. Journal of Chemical Ecology 31:697–717.
  • Lecerf A, Chauvet E. 2008. Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology 9:598–605.
  • Liesebach H. 2012a. Genotypisierung mit nuklearen Mikrosatellitenmarkern – Möglichkeiten der Datenauswertung am Beispiel von Buchenpopulationen (Fagus sylvatica L.) aus einem Herkunftsversuch. Applied Agricultural and Forestry Research 62:221–236.
  • Liesebach H. 2012b. Wachstum und phänotypische Variation von sechs Herkünften der Rot-Buche (Fagus sylvatica L.) an einem Standort in Schleswig-Holstein. Applied Agricultural and Forestry Research 62:179–192.
  • Madritch MD, Hunter MD. 2005. Phenotypic variation in oak litter influences short- and long-term nutrient cycling through litter chemistry. Soil Biology & Biochemistry 37:319–327.
  • Magurran AE. 2004. Measuring biological diversity. Oxford: Blackwell Publishing.
  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, Van Der Knaap WO, Petit RJ, De Beaulieu J-L. 2006. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist 171:199–221.
  • Mansfield JL, Curtis DS, Zak DR, Pregitzer KS. 1999. Genotypic variation for condensed tannin production in trembling aspen (Populus tremuloides, Salicaceae) under elevated CO2 and in high- and low-fertility soil. American Journal of Botany 86:1154–1159.
  • Martinez ER. 1996. Micropopulation differentiation in phenol content and susceptibility to herbivory in the chilean kelp Lessonia nigrescens (Phaeophyta, Laminariales). Hydrobiologia 326/327:205–211.
  • Mpofu A, Spairstein HD, Beta T. 2006. Genotype and environmental variation in phenolic sontent, phenolic acid composition, and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry 54:1265–1270.
  • Nagy NE, Fossdal CG, Krokente P, Krekling T, Lönneborg A, Solheim H. 2004. Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiology 24:505–151.
  • Nakazato T, Bogonovich M, Moyle LC. 2008. Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 62:774–792.
  • Nicholson RL, Hammerschmidt R. 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30:369–389.
  • Norby RJ, Cotrufo MF, Ineson P, O‘Neill EG, Canadell JG. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165.
  • Nurmi K, Ossipov V, Haukioja E, Pihlaja K. 1996. Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa). Journal of Chemical Ecology 22:2023–2040.
  • Petrakis PV, Spanos K, Feest A, Daskalakou E. 2011. Phenols in leaves and bark of Fagus sylvatica as determinants of insect occurrences. International Journal of Molecular Sciences 12:2769–2782.
  • Poinsot-Balaguer N, Racon L, Sadaka N, Le Petit J. 1993. Effects of tannin compounds on two species of Collembola. European Journal of Soil Biology 29:13–16.
  • Robles C, Greff S, Pasqualini V, Garzino S, Bousquet-Mélou A, Fernandez C, Korboulewsky N, Bonin G. 2003. Phenols and flavonoids in Aleppo Pine needles as bioindicators of air pollution. Journal of Environmental Quality 32:2265–2271.
  • Salminen J-P, Ossipov V, Haukioja E, Pihlaja K. 2001. Seasonal variation in the content of hydrolysable tannins in the leaves of Betula pubescens. Phytochemistry 57:15–22.
  • Savoie J-M, Gourbière F. 1989. Decomposition of cellulose by the species of the fungal succession degrading Abies alba needles. FEMS Microbiology Ecology 62:307–314.
  • Scalbert A, Monties B, Favre J-M. 1988. Polyphenols of Quercus robur: adult tree and in vitro grown calli and shoots. Phytochemistry 27:3483–3488.
  • Schofield J, Hagerman AE, Harold A. 1998. Loss of tannins and other phenolics from willow leaf litter. Journal of Chemical Ecology 24:1409–1421.
  • Steinberg P. 1995. Seasonal variation in the relationship between growth rate and phlorotannin production in the kelp Ecklonia radiata. Oecologia 102:169–173.
  • Streit W, Fengel D. 1994. Purified tannins from quebracho colorado. Phytochemistry 36:481–484.
  • Van Alstyne KL. 1995. A comparison of three methods for quantifying brown algal polyphenolic compounds. Journal of Chemical Ecology 21:45–58.
  • von Wühlisch G. 2007. Series of international provenance trials of European Beech. In: Sagheb-Talebi K, Madsen P, Terazawa K, editors. Improvement and silviculture of beech: proceedings of the 7th International Beech Symposium. Research Institute of Forests and Rangelands (RIFR), Tehran, Iran. 135–144.
  • Whitham TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL. 2003. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559–573.
  • Zimmer M. 1999. The fate and effects of ingested hydrolyzable tannins in Porcellio scaber. Journal of Chemical Ecology 25:611–628.
  • Zimmer M. 2002a. Is decomposition of woodland leaf litter influenced by its species richness? Soil Biology & Biochemistry 34:277–284.
  • Zimmer M. 2002b. Postembryonic ontogenetic development in Porcellio scaber (Isopoda: Oniscidea): the significance of food. Invertebrate Reproduction and Development 42:75–82.
  • Zimmer M, Oliveira R, Rodrigues E, Graça MAS. 2005. Degradation of leaf litter tannins by aquatic and terrestrial isopods. Journal of Chemical Ecology 31:1933–1952.
  • Zimmer M, Topp W. 1997. Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber Latr., 1804 (Crustacea: Isopoda)? Biology and Fertility of Soils 24:435–441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.