358
Views
8
CrossRef citations to date
0
Altmetric
Articles

Stomatal response functions to environmental stress of dominant species in the tropical Andean páramo

ORCID Icon, ORCID Icon &
Pages 649-661 | Received 23 Sep 2019, Accepted 17 Oct 2019, Published online: 05 Nov 2019

References

  • Azócar A, Rada F. 2006. Ecofisiología de plantas de páramo. Mérida (Venezuela): ICAE, Universidad de los Andes.
  • Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog Photosynth Res. 221–224. doi:10.1007/978-94-017-0519-6_48.
  • Baruch Z. 1979. Elevation differentiation in espeletia schultzii (compositae), a giant rosette plant of the venezuelan paramos. Ecology. 60:85–98. doi:10.2307/1936471.
  • Baruch Z, Smith AP. 1979. Morphological and physiological correlates of niche breadth in two species of espeletia (compositae) in the venezuelan andes. Oecologia. 38:71–82.
  • Beck E. 1994. Cold tolerance in tropical alpine plants. In: Rundel PW, Smith AP, Meinzer F, editors. Tropical alpine environments: plant form and function. Cambridge: Cambridge University Press; p. 77–110.
  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Arce ME. 2009. Soil water availability and rooting depth as determinants of hydraulic architecture of patagonian woody species. Oecologia. 160:631–641. doi:10.1007/s00442-009-1331-z.
  • Buytaert W, Iñiguez V, Celleri R, De Bièvre B, Wyseure G, Deckers J. 2006. Analysis of the water balance of small páramo catchments in south ecuador. In: Krecek J, Haigh M, editors. Environmental role of wetlands in headwaters. NATO science series: IV: earth and environmental sciences. Dordrecht: Springer; p. 271–281. doi:10.1007/1-4020-4228-0_24.
  • Buytaert W, Ramírez-Villegas J. 2012. Generación de escenarios desagregados del cambio climático para los Andes Tropicales, in: Cuesta, F., Bustamante, M., Becerra, M.T., Postigo, J., Peralvo, M. (Eds.), Panorama Andino Sobre Cambio Climático: Vulnerabilidades y Adaptación En Los Andes Tropicales. CONDESAN, SGCAN, Lima, pp. 37–57.
  • Cáceres Y, Llambí LD, Rada F. 2015. Shrubs as foundation species in a high tropical alpine ecosystem: a multi-scale analysis of plant spatial interactions. Plant Ecol Divers. 8:147–161. doi:10.1080/17550874.2014.960173.
  • Campbell GS, Norman JM. 1998. An introduction to environmental biophysics. New York (NY): Springer New York. doi:10.1007/978-1-4612-1626-1.
  • Cárdenas MF, Tobón C, Rock BN, Del Valle JI. 2018. Ecophysiology of frailejones (Espeletia spp.), and its contribution to the hydrological functioning of páramo ecosystems. Plant Ecol. 219:185–198. doi:10.1007/s11258-017-0787-x.
  • Córdova C, 2014. Estudio de las características edáficas con el fin de estimar la capacidad potencial de almacenamiento hídrico en los suelos minerales de la Microcuenca de Miguaguó, Mixteque [ B.Sc. Thesis]. Estado Mérida (Venezuela).
  • Crespo PJ, Feyen J, Buytaert W, Bücker A, Breuer L, Frede H-G, Ramírez M. 2011. Identifying controls of the rainfall–runoff response of small catchments in the tropical andes (ecuador). J Hydrol. 407:164–174. doi:10.1016/j.jhydrol.2011.07.021.
  • Damour G, Simonneau T, Cochard H, Urban L. 2010. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33:1419–1438. doi:10.1111/j.1365-3040.2010.02181.x.
  • Gerosa G, Mereu S., Finco A, Marzuoli R. 2012. Stomatal Conductance Modeling to Estimate the Evapotranspiration of Natural and Agricultural Ecosystems, in: Irmak, A. (Ed.), Evapotranspiration - Remote Sensing and Modeling. InTech. Available from: http://www.intechopen.com/books/evapotranspiration-remote-sensing-and-modeling/stomatal-conductance- modeling-to-estimate-the-evapotranspiration-of-natural-and-agricultural-ecosyst, pp. 403–420. doi:10.5772/725.
  • Goldstein G, Meinzer FC, Moncayo LB. 1984. The role of capacitance in the water balance of Andean giant rosette species. Plant, Cell Environ. 7:179–186. doi:10.1111/1365-3040.ep11614612.
  • Guan H, Wilson JL. 2009. A hybrid dual-source model for potential evaporation and transpiration partitioning. J Hydrol. 377:405–416. doi:10.1016/j.jhydrol.2009.08.037.
  • Haefner JW. 2005. Modeling biological systems: principles and applications. 2nd ed.  New York: Springer.
  • Hanan NP, Prince SD. 1997. Stomatal conductance of west-central supersite vegetation in HAPEX-Sahel: measurements and empirical models. J Hydrol. 188–189:536–562. doi:10.1016/S0022-1694(96)03192-7.
  • Harden CP, Hartsig J, Farley KA, Lee J, Bremer LL. 2013. Effects of land-use change on water in Andean páramo grassland soils. Ann Assoc Am Geogr. 103:375–384. doi:10.1080/00045608.2013.754655.
  • Hedberg O. 1964. Features of afroalpine plant ecology. Acta Phytogeogr Suec. 49.
  • Jarvis PG. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc B Biol Sci. 273:593–610. doi:10.1098/rstb.1976.0035.
  • Jarvis PG, McNaughton KG. 1986. Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res. 15:1–49. doi:10.1016/S0065-2504(08)60119-1.
  • Jones HG, Sutherland RA. 1991. Stomatal control of xylem embolism. Plant, Cell Environ. 14:607–612. doi:10.1111/j.1365-3040.1991.tb01532.x.
  • Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M. 2004. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: dry spell effects. J Hydrol. 287:237–251. doi:10.1016/j.jhydrol.2003.10.002.
  • Lhomme JP, Elguero E, Chehbouni A, Boulet G. 1998. Stomatal control of transpiration: examination of Monteith’s formulation of canopy resistance. Water Resour Res. 34:2301–2308. doi:10.1029/98WR01339.
  • Llambí LD, Fariñas MR, Smith JK, Castañeda SM, Briceño B. 2014. Diversidad de la Vegetación en dos Páramos de Venezuela: un enfoque multiescalar con fines de conservación, in: Cuesta, F., Sevink, J., Llambí, L.D., De Bièvre, B., Posner, J. (Eds.), Avances En Investigación Para La Conservación de Los Páramos Andinos. CONDESAN. Lima; pp. 46–63.
  • Llambí LD, Fontaine M, Rada F, Saugier B, Sarmiento L. 2003. Ecophysiology of dominant plant species during old-field succession in a high tropical andean ecosystem. Arctic, Antarct. Alp Res. 35:447–453. doi:10.1657/1523-0430(2003)035[0447:EODPSD]2.0.CO;2.
  • Llambí LD, Sarmiento L, Rada F. 2013. La evolución de la investigación ecológica en los páramos de venezuela: múltiples visiones de un ecosistema único. In: Medina E, Huber O, Nassar J, Navarro P, editors. Recorriendo el paisaje vegetal de venezuela. Caracas (Venezuela): Ediciones IVIC; p. 173–209.
  • Macfarlane C, White DA, Adams MA. 2004. The apparent feed-forward response to vapour pressure deficit of stomata in droughted, field-grown Eucalyptus globulus Labill. Plant, Cell Environ. 27:1268–1280. doi:10.1111/j.1365-3040.2004.01234.x.
  • Mackay DS, Ahl DE, Ewers BE, Samanta S, Gower ST, Burrows SN. 2003. Physiological tradeoffs in the parameterization of a model of canopy transpiration. Adv Water Resour. 26:179–194. doi:10.1016/S0309-1708(02)00090-8.
  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol. 17:2134–2144. doi:10.1111/j.1365-2486.2010.02375.x.
  • Meek DW, Hatfield JL, Howell TA, Idso SB, Reginato RJ. 1984. A generalized relationship between photosynthetically active radiation and solar radiation1. Agron J. 76:939. doi:10.2134/agronj1984.00021962007600060018x.
  • Meinzer FC, Goldstein G. 1985. Some consequences of leaf pubescence in the andean giant rosette plant espeletia timotensis. Ecology. 66:512. doi:10.2307/1940399.
  • Meinzer FC, Goldstein G, Rundel PW. 1985. Morphological changes along an altitude gradient and their consequences for an Andean giant rosette plant. Oecologia. 65:278–283. doi:10.1007/BF00379230.
  • Mitchell M, Muftakhidinov B, Winchen T. 2015. Engauge digitizer software. doi:10.5281/zenodo.1214854.
  • Monasterio M, Reyes S. 1980. Diversidad ambiental y variación de la vegetación en los Páramos de Los Andes Venezolanos. In: Monasterio M, editor. Estudios Ecológicos En Los Páramos Andinos. Mérida (Venezuela): Editorial de la Universidad de Los Andes; p. 47–91.
  • Moncayo LB. 1980. Las formaciones vegetales de los páramos de venezuela. In: Monasterio M, editor. Estudios ecológicos en los páramos andinos. Mérida (Venezuela): Editorial de la Universidad de Los Andes; p. 93–158.
  • Monteith JL. 1965. Evaporation and environment. In: 19th symposia of the society for experimental biology.  Society for Experimental Biology. Cambridge: University Press; p. 205–223.
  • Monteith JL. 1995. Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol. 166:251–263. doi:10.1016/0022-1694(94)05086-D.
  • Ochoa-Tocachi BF, Buytaert W, De Bièvre B, Célleri R, Crespo P, Villacís M, Llerena CA, Acosta L, Villazón M, Guallpa M, et al. 2016. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol Process. 30:4074–4089. doi:10.1002/hyp.10980.
  • Ogle K, Reynolds JF. 2002. Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata. Plant, Cell Environ. 25:909–921. doi:10.1046/j.1365-3040.2002.00876.x.
  • Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer KVR. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22:1515–1526. doi:10.1046/j.1365-3040.1999.00513.x.
  • Pearcy RW, Schulze E-D, Zimmermann R. 2000. Measurement of transpiration and leaf conductance. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW, editors. Plant physiological ecology. Dordrecht: Springer Netherlands; p. 137–160. doi:10.1007/978-94-010-9013-1_8.
  • Pirela MÁ, 2006. Análisis funcional de la comunidad de plantas en tres unidades geomorfológicas del páramo de Mucubají [ B.Sc. Thesis]. Mérida (Venezuela): ICAE. Universidad de los Andes.
  • Poulenard J, Podwojewski P, Janeau J-L, Collinet J. 2001. Runoff and soil erosion under rainfall simulation of andisols from the ecuadorian páramo: effect of tillage and burning. CATENA. 45:185–207. doi:10.1016/S0341-8162(01)00148-5.
  • R Core Team. 2014. R: A language and environment for statistical computing.
  • Rada F, 1993. Respuesta estomática y Asimilación de CO2 en Plantas de distintas formas de Vida a lo largo de un gradiente Altitudinal en la Alta Montaña Tropical Venezolana [ Ph.D. Thesis]. Mérida (Venezuela): ICAE. Universidad de los Andes.
  • Rada F, Azócar A, Gonzalez J, Briceño B. 1998. Leaf gas exchange in espeletia schultzii wedd, a giant caulescent rosette species, along an altitudinal gradient in the venezuelan andes. Acta Oecologica. 19:73–79. doi:10.1016/S1146-609X(98)80010-6.
  • Ramírez LA, Rada F, Llambí LD. 2014. Linking patterns and processes through ecosystem engineering: effects of shrubs on microhabitat and water status of associated plants in the high tropical Andes. Plant Ecol. 216:213–225. doi:10.1007/s11258-014-0429-5.
  • Rayment MB, Loustau D, Jarvis PG. 2000. Measuring and modeling conductances of black spruce at three organizational scales: shoot, branch and canopy. Tree Physiol. 20:713–723.
  • Rodríguez ME. 2010. El páramo como proveedor de agua: análisis de las unidades geomorfológicas y de vegetación sobre el balance hídrico de una microcuenca andina de Venezuela [ M.Sc. Thesis]. Mérida (Venezuela): ICAE. Universidad de los Andes.
  • Rodríguez ME, Acevedo D, Buytaert W, Ablan M, De Bièvre B. 2014. El páramo andino como productor y regulador del recurso agua. El caso de la microcuenca alta de la quebrada mixteque, sierra nevada de mérida, venezuela. In: Cuesta F, Sevink J, Llambí LD, De Bièvre B, Posner J, editors. Avances en investigación para la conservación de los páramos andinos. CONDESAN. Lima; p. 245–266.
  • Rodríguez-Morales M, Novoa DA, Machado D, Ablan M, Dugarte W, Dávila F. 2019. Ecohydrology of the venezuelan páramo: water balance of a high andean watershed. Plant Ecol Divers. doi:10.1080/17550874.2019.1673494.
  • Sandoval D, 2015. Intercepción, Evaporación desde el Suelo y Transpiración en un Páramo Andino Venezolano: Modelización desde la hoja al ecosistema [ MSc Thesis]. Mérida (Venezuela): ICAE, Universidad de los Andes. doi:10.13140/RG.2.1.4442.3127
  • Sarmiento G. 1986. Ecologically crucial features of climate in high tropical mountains, in: Vuilleumier, F., Monasterio, M. (Eds.), High Altitude Tropical Biogeography. Oxford University Press. Oxford; pp. 11–45.
  • Sarmiento L. 2000. Water balance and soil loss under long fallow agriculture in the venezuelan andes. Mt Res Dev. 20:246–253. doi:10.1659/0276-4741(2000)020[0246:wbaslu]2.0.co;2.
  • Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT. 1965. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science. 148:339–346. doi:10.1126/science.148.3668.339.
  • Schultze E-D, Beck E, Müller-Hohenstein K. 2002. Plant ecology. Heidelberg: Springer Berlin.
  • Smith AP. 1972. Notes on wind-related growth patterns of paramo plants in venezuela. Biotropica. 4:10. doi:10.2307/2989640.
  • Smith AP, Young TP. 1987. Tropical alpine plant ecology. Annu Rev Ecol Syst. 18:137–158. doi:10.1146/annurev.es.18.110187.001033.
  • Stewart JB. 1988. Modelling surface conductance of pine forest. Agric For Meteorol. 43:19–35. doi:10.1016/0168-1923(88)90003-2.
  • Stocker BD, Wang H, Smith NG, Harrison SP, Keenan TF, Sandoval D, Davis T, Prentice IC. 2019. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci Model Dev Discuss. 37:1–59. doi:10.5194/gmd-2019-200.
  • Tardieu F, Davies WJ. 1993. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant, Cell Environ. 16:341–349. doi:10.1111/j.1365-3040.1993.tb00880.x.
  • Torres E, Schwarzkopf T, Fariñas MR, Aranguren A. 2012. ¿ Es La Orientación De La Pendiente Un Factor Modificador De La Estructura Florística En La Alta Montaña Tropical Andina? Ecotrópicos. 25:61–74.
  • Valero L, 2010. Efecto de la exclusión del pastoreo sobre humedales altoandinos en la Sierra Nevada de Mérida [ M.Sc. Thesis]. Mérida (Venezuela): ICAE. Universidad de los Andes.
  • White DA, Beadle CL, Sands PJ, Worledge D, Honeysett JL. 1999. Quantifying the effect of cumulative water stress on stomatal conductance of eucalyptus globulus and eucalyptus nitens: a phenomenological approach. Funct Plant Biol. 26:17. doi:10.1071/PP98023.
  • Wright IR, Gash JHC, da Rocha HR, Roberts JM. 1996. Modelling surface conductance for Amazonian pasture and forest, in: Gash, John H.C., Nobre, C.A., Roberts, J.M., Victoria, R.L. (Eds.), Amazonian Deforestation and Climate. Institute of Hydrology. Chichester, UK; pp. 437–458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.