357
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Specific leaf area is lower on ultramafic than on neighbouring non-ultramafic soils

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 243-252 | Received 05 Mar 2022, Accepted 16 Dec 2022, Published online: 01 Jan 2023

References

  • Adamidis GC, Kazakou E, Baker AJM, Reeves RD, Dimitrakopoulos PG. 2014b. The effect of harsh abiotic conditions on the diversity of serpentine plant communities on Lesbos, an eastern Mediterranean island. Plant Ecol Divers. 7(3):433–444. doi:10.1080/17550874.2013.802050.
  • Adamidis GC, Kazakou E, Fyllas NM, Dimitrakopoulos PG. 2014a. Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on Lesbos, eastern Mediterranean. PLoS One. 9(5):e96034. doi:10.1371/journal.pone.0096034.
  • Aerts R, Chapin III FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res. 30:1–67. doi:10.1016/S0065-2504(08)60016-1.
  • Aiba SI, Sawada Y, Takyu M, Seino T, Kitayama K, Repin R. 2015. Structure, floristics and diversity of tropical montane rain forests over ultramafic soils on Mount Kinabalu (Borneo) compared with those on non-ultramafic soils. Aust J Bot. 63(4):191–203. doi:10.1071/BT14238.
  • Alexander EB, Coleman RG, Keeler-Wolf T, Harrison S. 2007. Serpentine geoecology of western North America: geology, soils, and vegetation. New York (NY): Oxford University Press.
  • Anacker B, Rajakaruna N, Ackerly D, Harrison S, Keeley J, Vasey M. 2011. Ecological strategies in California chaparral: interacting effects of soils, climate, and fire on specific leaf area. Plant Ecol Divers. 4(2–3):1–10. doi:10.1080/17550874.2011.633573.
  • Axelrod DI. 1972. Edaphic aridity as a factor in angiosperm evolution. Am Nat. 106(949):311–320. doi:10.1086/282773.
  • Chadwick KD, Asner GP. 2020. Geomorphic transience moderates topographic controls on tropical canopy foliar traits. Ecol Lett. 23(8):1276–1286. doi:10.1111/ele.13531.
  • Chapin FS, Autumn K, Pugnaire F. 1993. Evolution of suites of traits in response to environmental stress. Am Nat. 142:s78–92. doi:10.1086/285524.
  • Conover WJ, Iman RL. 1981. Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat. 35(3):124–129. doi:10.1080/00031305.1981.10479327.
  • De Deyn GB, Cornelissen JH, Bardgett RD. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett. 11(5):516–531. doi:10.1111/j.1461-0248.2008.01164.x.
  • Díaz S, Kattge J, Cornelissen J, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, et al. 2016. The global spectrum of plant form and function. Nature. 529(7585):167–171. doi:10.1038/nature16489.
  • Dwyer JM, Hobbs RJ, Mayfield MM. 2014. Specific leaf area responses to environmental gradients through space and time. Ecology. 95(2):399–410. doi:10.1890/13-0412.1.
  • Escudero A, Palacio S, Maestre FT, Luzuriaga AL. 2015. Plant life on gypsum: a review of its multiple facets. Biol Rev. 90(1):1–18. doi:10.1111/brv.12092.
  • Ewel JJ, Whitmore JL. 1973. The ecological life zones of Puerto Rico and the U.S. Virgin Islands. USDA for Serv Inst Trop For Res Pap ITF-018; pp. 72.
  • Fernandez-Going BM, Harrison SP, Anacker BL, Safford HD. 2013. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology. 94(9):2007–2018. doi:10.1890/12-2011.1.
  • Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol. 37(12):4302–4315. doi:10.1002/joc.5086.
  • Fine PV, Baraloto C. 2016. Habitat endemism in white-sand forests: insights into the mechanisms of lineage diversification and community assembly of the neotropical flora. Biotropica. 48(1):24–33. doi:10.1111/btp.12301.
  • Flinn KM, Kuhns HAD, Mikes JL, Lonsdorf EV, Lake JK. 2017. Invasion and succession change the functional traits of serpentine plant communities. J Torrey Bot Soc. 144(2):109–124. doi:10.3159/TORREY-D-16-00018.
  • Fortunel C, Paine CET, Fine PVA, Kraft NJB, Baroloto C. 2014. Environmental factors predict community functional composition in Amazonian forests. J Ecol. 102(1):145–155. doi:10.1111/1365-2745.12160.
  • Gallagher RV, Leishman MR. 2012. A global analysis of trait variation and evolution in climbing plants. J Biogeogr. 39(10):1757–1771. doi:10.1111/j.1365-2699.2012.02773.x.
  • Garnica-Díaz CJ 2020. Plant functional diversity across two elevational gradients in serpentine and volcanic soils of Puerto Rico [ master’s thesis]. Mayaguez (PR): University of Puerto Rico.
  • Garnica-Díaz CJ, Berazaín Iturralde R, Cabrera B, Calderón E, Felipe FL, García R, Gómez Hecheverría JL, Guimarães AF, Medina E, Paul A, et al. 2022. Global plant ecology of tropical ultramafic ecosystems. Bot Rev. 1–43. doi:10.1007/s12229-022-09278-2.
  • Garnier E, Cordonnier P, Guillerm J-L, Sonie L. 1997. Specific leaf area and leaf nitrogen concentration in annual and perennial grass species growing in Mediterranean old-fields. Oecologia. 111(4):490–498. doi:10.1007/s004420050262.
  • Gong H, Gao J. 2019. Soil and climatic drivers of plant SLA (specific leaf area). Glob Ecol Conserv. 20:e00696. doi:10.1016/j.gecco.2019.e00696.
  • Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 111(982):1169–1194. doi:10.1086/283244.
  • Grömping U. 2006. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 17(1):1–27. doi:10.18637/jss.v017.i01.
  • Grubb PJ. 1974. Factors controlling the distribution of forest-types on tropical mountains: new facts and a new perspective. In: Flenley J, editor. Altitudinal zonation in Malaysia. transactions of the third Aberdeen-Hull symposium on Malaysian ecology. university of hull, department of geography, miscellaneous series (Vol. 16). Hull, UK: University of Hull; pp. 13–46.
  • Henry L, Wickham H 2020. Purrr: functional programming tools. R package version 0.3.4. https://CRAN.R-project.org/package=purrr
  • Hofhansl F, Chacón-Madrigal E, Fuchslueger L, Jenking D, Morera-Beita A, Plutzar C, Silla F, Andersen KM, Buchs DM, Dullinger S, et al. 2020. Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Sci Rep. 10(1):5066. doi:10.1038/s41598-020-61868-5.
  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biometrical J. 50(3):346–353. doi:10.1002/bimj.200810425.
  • Hulshof CM, Spasojevic MJ. 2020. The edaphic control of plant diversity. Glob Ecol Biogeogr. 29(10):1634–1650. doi:10.1111/geb.13151.
  • Hulshof CM, Waring BG, Powers JS, Harrison SP. 2020. Trait-based signatures of cloud base height in a tropical cloud forest. Am J Bot. 107(6):886–894. doi:10.1002/ajb2.1483.
  • Hulshof C, Waring BG, Powers JS, Harrison SP. 2021. Data from: trait based signatures of cloud base height in a tropical cloud forest, dryad, dataset. Am J Bot. 107(6):886–894. doi:10.5061/dryad.2ngf1vhnr.
  • Jenny H. 1980. The soil resource origin and behavior. New York (NY): Springer New York.
  • Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner G, Aakala T, Abedi M, et al. 2020. TRY plant trait database – enhanced coverage and open access. Glob Chang Biol. 26(1):119–188. accessed2021 May 13.doi:10.1111/gcb.14904.
  • Kruckeberg AR. 1985. California serpentines: flora, vegetation, geology, soils, and management problems. Berkeley (CA): University of California Press.
  • Laliberté E, Grace JB, Huston MA, Lambers H, Teste FP, Turner BL, Wardle DA. 2013. How does pedogenesis drive plant diversity? Trends Ecol Evol. 28(6):331–340. doi:10.1016/j.tree.2013.02.008.
  • Maitner BS, Boyle B, Casler N, Condit R, J D II, Duran SM, Guaderrama D, Hinchliff CE, Jorgensen PM, Kraft NJB, et al. 2017. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol Evol. 9(2):373–379. doi:10.1111/2041-210X.12861.
  • Moles AT, Ackerly DD, Tweddle JC, Dickie JB, Smith R, Leishman MR, Mayfield MM, Pitman A, Wood JT, Westoby M. 2007. Global patterns in seed size. Glob Ecol Biogeogr. 16(1):109–116. doi:10.1111/j.1466-8238.2006.00259.x.
  • Molina-Venegas R, Aparicio A, Lavergne S, Arroyo J. 2016. How soil and elevation shape local plant biodiversity in a Mediterranean hotspot. Biodivers Conserv. 25(6):1133–1149. doi:10.1007/s10531-016-1113-y.
  • Mori GB, Poorter L, Schietti J, Piedade MF. 2021. Edaphic characteristics drive functional traits distribution in Amazonian floodplain forests. Plant Ecol. 222(3):349–360. doi:10.1007/s11258-020-01110-4.
  • Ordoñez JC, Van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr. 18(2):137–149. doi:10.1111/j.1466-8238.2008.00441.x.
  • Ottaviani G, Marcantonio M. 2020. Precipitation seasonality promotes acquisitive and variable leaf water-economics traits in southwest Australian granite outcrop species. Biol J Linn Soc. 133(2):411–417. doi:10.1093/biolinnean/blaa053.
  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, et al. 2013. New handbook for standardized measurement of plant functional traits worldwide. Aust J Bot. 61(3):167–234. doi:10.1071/BT12225.
  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182(3):565–588. doi:10.1111/j.1469-8137.2009.02830.x.
  • Rajakaruna N, Boyd R. 2008. The edaphic factor. In: Jorgensen S Fath B, editors. The encyclopedia of ecology. vol 2 Oxford (UK): Elsevier; pp. 1201–1207.
  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org.
  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci. 164(S3):S143–164. doi:10.1086/374368.
  • Roberts BA, Proctor J, editors. 1992. Introduction. In: The ecology of areas with serpentinized rocks: a world view. Dordrecht (Netherlands): Springer; p. 1–5.
  • Samojedny TJ, Devlin M, Shane R, Rajakaruna N. 2022. The effects of nitrogen enrichment on low-nutrient environments: insights from studies of serpentine soil-plant relations. In: Naeem M, Bremont J, Ansari A Gill S, editors. Agrochemicals in soil and environment. Singapore: Springer; pp. 277–311. doi:10.1007/978-981-16-9310-6_13
  • Schimper AFW. 1903. Plant-geography upon a physiological basis. Oxford (UK): Clarendon Press.
  • Siebert SJ, Van Wyk AE, Bredenkamp GJ. 2002. The physical environment and major vegetation types of Sekhukhuneland, South Africa. S Afr J Bot. 68(2):127–142. doi:10.1016/S0254-6299(15)30412-9.
  • Sillanpää M. 1982. Micronutrients and the nutrient status of soils: a global study. Rome (Italy): FAO.
  • Spasojevic M, Harrison S. 2022. Data from: plant functional trait data for serpentine and non-serpentine plants in the California Floristic Province. Dryad Digital Repository. accessed 2021 May 1310.6086/D1P96N
  • Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJB, Cadotte MW, Livingstone SW, Mouillot D. 2017. Functional rarity: the ecology of outliers. Trends Ecol Evol. 32(5):356–367. doi:10.1016/j.tree.2017.02.002.
  • EJ von Wettberg, Ray-Mukherjee J, D’Adesky N, Nesbeth D, Sistla S. 2014. The evolutionary ecology and genetics of stress resistance syndrome (SRS) traits: revisiting Chapin, Autumn and Pugnaire (1993). In: Rajakaruna N, Boyd R Harris T, editors. Plant ecology and evolution in harsh environments. Hauppauge (NY): Nova Publishers; pp. 201–226.
  • Whittaker RH. 1954. The ecology of serpentine soils. Ecology. 35(2):258–288. doi:10.2307/1931126.
  • Wickham H. 2016. Ggplot2: elegant graphics for data analysis. New York (NY): Springer-Verlag. https://ggplot2.tidyverse.org
  • Wieczynski DJ, Boyle B, Buzzard V, Duran SM, Henderson AN, Hulshof CM, Kerkhoff AJ, McCarthy MC, Michaletz ST, Swenson, Nathan G, et al. 2019. Climate shapes and shifts functional biodiversity in forests worldwide. Proc Natl Acad Sci U S A. 116(2):587–592. doi:10.1073/pnas.1813723116.
  • Wilke CO 2021. Ggridges: ridgeline plots in ‘ggplot2’. version 0.5.3. https://CRAN.R-project.org/package=ggridges
  • Woodward FI. 1987. Climate and plant distribution. Cambridge (UK): Cambridge University Press.
  • Wright IJ, Reich PB, Cornelissen JH, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets U, Oleksyn J, et al. 2005. Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr. 14(5):411–421. doi:10.1111/j.1466-822x.2005.00172.x.
  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, et al. 2004. The worldwide leaf economics spectrum. Nature. 428(6985):821–827. doi:10.1038/nature02403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.