254
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural diversity is a key driver of above-ground biomass in tropical forests

ORCID Icon, ORCID Icon & ORCID Icon
Pages 147-164 | Received 21 Nov 2022, Accepted 26 Oct 2023, Published online: 24 Nov 2023

References

  • Aguirre‐Gutiérrez J, Oliveras I, Rifai S, Fauset S, Adu‐Bredu S, Affum‐Baffoe K, Baker TR, Feldpausch TR, Gvozdevaite A, Hubau W, et al. 2019. Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol Lett. 22(5):855–865. doi:10.1111/ele.13243.
  • Aiba S, Kitayama K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 140(2):139–157. doi: 10.1023/A:1009710618040.
  • Ali A. 2019. Forest stand structure and functioning: Current knowledge and future challenges. Ecol Ind. 98:665–677. doi: 10.1016/j.ecolind.2018.11.017.
  • Ali A, Lin S-L, He J-K, Kong F-M, Yu J-H, Jiang H-S. 2019. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. For Ecol Manage. 432:823–831. doi: 10.1016/j.foreco.2018.10.024.
  • Ali A, Sanaei A, Li M, Nalivan OA, Pour MJ, Valipour A, Karami J, Aminpour M, Kaboli H, Askari Y. 2020. Big-trees–Energy mechanism underlies forest diversity and aboveground biomass. For Ecol Manage. 461:117968. doi: 10.1016/j.foreco.2020.117968.
  • Ali A, Yan ER, Chen HY, Chang SX, Zhao YT, Yang XD, Xu MS. 2016. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences. 13(16):4627–4635. doi: 10.5194/bg-13-4627-2016.
  • Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FA, Joly CA, Martinelli LA. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manage. 260(5):679–691. doi: 10.1016/j.foreco.2010.05.023.
  • Ashton PS. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives In Perspect Plant Ecol Evol Syst. 6(1–2):87–104. doi: 10.1078/1433-8319-00044.
  • Ayushi K, Babu KN, Reddy CS, Mayamanikandan T, Barathan N, Debabrata B, Ayyappan N. 2022. Remote sensing based characterization of community level phenological variations in a regional forest landscape of Western Ghats, India. Geocarto Int. 37(27):16620–16635. doi: 10.1080/10106049.2022.2112304.
  • Balasubramanian A. 2017. Soil Erosion- and Effects. Mysore: Centre for Advanced Studies in Earth Science, University of Mysore. Report No.: 1. https://doi.org/10.13140/RG.2.2.26247.39841.
  • Bentler PM. 2007. Handbook of latent variable and related models. In: S-Y Lee, editors. Covariance structure models for maximal reliability of unit-weighted composites. North-Holland, Amsterdam: The Netherlands; p. 1–19. https://doi.org/10.1016/B978-044452044-9/50004-5.
  • Bhattacharya A. 2021. Effect of soil water deficit on growth and development of plants: a review. In: Soil water deficit and physiological issues in plants. 1st ed. Singapore: Springer. p. 393–488. https://doi.org/10.1007/978-981-33-6276-5.
  • Bizzi S, Surridge BW, Lerner DN. 2013. Structural equation modelling: a novel statistical framework for exploring the spatial distribution of benthic macroinvertebrates in riverine ecosystems. River Res Appl. 29(6):743–759. doi: 10.1002/rra.2563.
  • Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B, Gomory D. 2016. Tree size inequality reduces forest productivity: an analysis combining inventory data for ten European species and a light competition model. PloS One. 11(3):0151852. doi: 10.1371/journal.pone.0151852.
  • Brodribb TJ, Bowman DM, Nichols S, Delzon S. 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188(2):533–542.
  • Cadotte MW. 2013. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc Natl Acad Sci. 110(22):8996–9000. doi: 10.1073/pnas.1301685110.
  • Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol. 48(5):1079–1087. doi: 10.1111/j.1365-2664.2011.02048.x.
  • Cavender‐Bares J, Kozak KH, Fine PV, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecol Lett. 12(7):693–715. doi: 10.1111/j.1461-0248.2009.01314.x.
  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecol Lett. 12(4):351–366. doi: 10.1111/j.1461-0248.2009.01285.x.
  • Chave J, Réjou‐Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 20(10):3177–3190. doi:10.1111/gcb.12629.
  • Chen L, Xiang W, Wu H, Ouyang S, Zhou B, Zeng Y, Chen Y, Kuzyakov Y. 2019. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biol Biochem. 130:113–121. doi: 10.1016/j.soilbio.2018.12.008.
  • Chin W, Cheah JH, Liu Y, Ting H, Lim XJ, Cham TH. 2020. Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Ind Manag Data Syst. 120(12):2161–2209. doi: 10.1108/IMDS-10-2019-0529.
  • Chu C, Bartlett M, Wang Y, He F, Weiner J, Chave J, Sack L. 2016. Does climate directly influence NPP globally? Glob Chang Biol. 22(1):12–24. doi: 10.1111/gcb.13079.
  • Chu C, Lutz JA, Král K, Vrška T, Yin X, Myers JA, Abiem I, Alonso A, Bourg N, Burslem DF, et al. 2019. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol Lett. 22(2):245–255.
  • Clark DB, Clark DA. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manage. 137(1–3):185–198. doi: 10.1016/S0378-1127(99)00327-8.
  • Clark DA, Piper SC, Keeling CD, Clark DB. 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci. 100(10):5852–5857. doi: 10.1073/pnas.0935903100.
  • Cronbach LJ. 1951. Coefficient alpha and the internal structure of tests. Psychometrika. 16(3):297–334.
  • Cuni-Sanchez A, Pfeifer M, Marchant R, Calders K, Sørensen CL, Pompeu PV, Lewis SL, Burgess ND. 2017. New insights on above ground biomass and forest attributes in tropical montane forests. For Ecol Manage. 399:235–246. doi: 10.1016/j.foreco.2017.05.030.
  • Danks NP, Ray S. 2018. Predictions from partial least squares models. In: Ali F, Rasoolimanesh SM, Cobanoglu C, editors. Applying partial least squares in tourism and hospitality research. Bingley: Emerald Publishing Limited; p. 35–52. https://doi.org/10.1108/978-1-78756-699-620181003.
  • de Aguiar‐Campos N, Coelho de Souza F, Maia VA, Rezende VL, de Souza CR, de Paula GGP, Santos PF, de Oliveira Menino GC, da Silva WB, dos Santos RM. 2021. Evolutionary constraints on tree size and aboveground biomass in tropical dry forests. J Ecol. 109(4):1690–1702. doi: 10.1111/1365-2745.13589.
  • Del Grosso S, Parton W, Stohlgren T, Zheng D, Bachelet D, Prince S, Hibbard K, Olson R. 2008. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecol. 89(8):2117–2126. doi: 10.1890/07-0850.1.
  • Dijkstra TK, Henseler J. 2015. Consistent partial least squares path modeling. MIS Q. 39(2):297–316. doi: 10.25300/MISQ/2015/39.2.02.
  • Dyola N, Sigdel SR, Liang E, Babst F, Camarero JJ, Aryal S, Chettri N, Gao S, Lu X, Sun J, et al. 2022. Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere. 13(6):e4107. doi: 10.1002/ecs2.4107.
  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJ, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, et al. 2012. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 9(8):3381–3403. doi: 10.5194/bg-9-3381-2012.
  • Forrester DI. 2019. Linking forest growth with stand structure: tree size inequality, tree growth or resource partitioning and the asymmetry of competition. For Ecol Manage. 447:139–157. doi: 10.1016/j.foreco.2019.05.053.
  • Forrester DI, Bauhus J. 2016. A review of processes behind diversity—productivity relationships in forests. Curr For Rep. 2(1):45–61. doi: 10.1007/s40725-016-0031-2.
  • Galbraith D, Malhi Y, Affum-Baffoe K, Castanho AD, Doughty CE, Fisher RA, Lewis SL, Peh KSH, Phillips OL, Quesada CA, et al. 2013. Residence times of woody biomass in tropical forests. Plant Ecol Divers. 6(1):139–157. doi:10.1080/17550874.2013.770578.
  • Gamble JS, Fischer CEC. 1915–1935. Flora of the Presidency of Madras. Vols. 1–3. 21 Hart Street, WC: Adlard & Son.
  • Geldhof GJ, Preacher KJ, Zyphur MJ. 2014. Reliability estimation in a multilevel confirmatory factor analysis framework. Psychol Methods. 19(1):72. doi: 10.1037/a0032138.
  • Girardin CAJ, Malhi Y, Aragao LEOC, Mamani M, Huaraca Huasco W, Durand L, Feeley KJ, Rapp J, Silva‐Espejo JE, Silman M, et al. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Chang Biol. 16(12):3176–3192. doi:10.1111/j.1365-2486.2010.02235.x.
  • Glime JM. 2019. Bryophyte Ecology. Vol. 4, Chapter 8-8. Tropics: Elevation.
  • Grace JB, Anderson TM, Olff H, Scheiner SM. 2010. On the specification of structural equation models for ecological systems. Ecol Monogr. 80(1):67–87.
  • Grubb PJ. 1977. The maintenance of species‐richness in plant communities: the importance of the regeneration niche. Biol Rev. 52(1):107–145. doi: 10.1111/j.1469-185X.1977.tb01347.x.
  • Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K, Avissar R, Curran LM, Friedlingstein P, Jones CD, et al. 2007. Tropical forests and climate policy. Sci. 316(5827):985–986. doi: 10.1126/science.1136163.
  • Hair JF,Hult GTM, Ringle CM, Sarstedt M, Danks NP, Ray S. 2021. Partial least squares structural equation modeling (PLS-SEM) using R: a workbook. 1st ed. Springer Nature; p. 197. https://doi.org/10.1007/978-3-030-80519-7.
  • Hair JF, Risher JJ, Sarstedt M, Ringle CM. 2019. When to use and how to report the results of PLS-SEM. Eur Bus Rev. 31(1):2–24. doi: 10.1108/EBR-11-2018-0203.
  • Hector A, Bagchi R. 2007. Biodiversity and ecosystem multifunctionality. Nature. 448(7150):188–190. doi: 10.1038/nature05947.
  • Henseler J. 2017. Bridging design and behavioral research with variance-based structural equation modeling. J Advert. 46(1):178–192. doi: 10.1080/00913367.2017.1281780.
  • Hernández-Stefanoni JL, Reyes-Palomeque G, Castillo-Santiago MÁ, George-Chacón SP, Huechacona-Ruiz AH, Tun-Dzul F, Rondon-Rivera D, Dupuy JM. 2018. Effects of sample plot size and GPS location errors on aboveground biomass estimates from LiDAR in tropical dry forests. Remote Sens. 10(10):1586.
  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 75(1):3–35. doi:10.1890/04-0922.
  • Jayanthi J, Jalal JS. 2023. A checklist to the orchids of Biligiri rangaswamy temple tiger reserve, Western Ghats, India. Lankesteriana: International Journal on Orchidology.
  • Jia B, Guo W, He J, Sun M, Chai L, Liu J, Wang X. 2022. Topography, diversity, and forest structure attributes drive aboveground carbon storage in different forest types in northeast China forests. Forests. 13(3):455. doi: 10.3390/f13030455.
  • Jin Y, Qian H. 2019. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography. 42(8):1353–1359. doi: 10.1111/ecog.04434.
  • Jost L. 2006. Entropy and diversity. Oikos. 113(2):363–375. doi: 10.1111/j.2006.0030-1299.14714.x.
  • Jucker T, Bouriaud O, Coomes DA, Baltzer J. 2015. Crown plasticity enables trees to optimize canopy packing in mixed‐species forests. Funct Ecol. 29(8):1078–1086. doi: 10.1111/1365-2435.12428.
  • Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 4(1):1–20. doi: 10.1038/sdata.2017.122.
  • Kaushal S, Baishya R. 2021. Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India. Ecol Process. 10(1):1–18.
  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 26(11):1463–1464. doi: 10.1093/bioinformatics/btq166.
  • Key Biodiversity Areas Partnership. 2022. Key Biodiversity Areas factsheet: Biligiri Rangaswamy Temple Wildlife Sanctuary and Hills. Extracted from the World Database of Key Biodiversity Areas. Developed by the Key Biodiversity Areas Partnership: BirdLife International, IUCN, American Bird Conservancy, Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Re:wild, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, World Wildlife Fund and Wildlife Conservation Society. Retrived from October 23, 2022. http://www.keybiodiversityareas.org/.
  • Knapp AK, Ciais P, Smith MD. 2017. Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytol. 214(1):41–47.
  • Kraft NJ, Godoy O, Levine JM. 2015. Plant functional traits and the multidimensional nature of species coexistence. Proc Natl Acad Sci. 112(3):797–802. doi: 10.1073/pnas.1413650112.
  • Kuder GF, Richardson MW. 1937. The theory of the estimation of test reliability. Psychometrika. 2(3):151–160. doi: 10.1007/BF02288391.
  • Kunwar S, Wang LQ, Chaudhary R, Joshi PR, Ali A. 2021. Stand density of coexisting species regulates above-ground biomass along a local‐scale elevational gradient in tropical forests. Appl Veg Sci. 24(2):e12577. doi: 10.1111/avsc.12577.
  • LaRue EA, Knott JA, Domke GM, Chen HY, Guo Q, Hisano M, Oswalt C, Oswalt S, Kong N, Potter KM, et al. 2023. Structural diversity as a reliable and novel predictor for ecosystem productivity. Front Ecol Environ. 21(1):33–39. doi:10.1002/fee.2586.
  • Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL, Vila M. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett. 17(9):1158–1167. doi: 10.1111/ele.12322.
  • Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia. 129(2):271–280. doi: 10.1007/s004420100716.
  • Lewis SL, Lloyd J, Sitch S, Mitchard ET, Laurance WF. 2009. Changing ecology of tropical forests: evidence and drivers. Annu Rev Ecol Evol Syst. 40(1):529–549. doi: 10.1146/annurev.ecolsys.39.110707.173345.
  • Li Y, Bao W, Bongers F, Chen B, Chen G, Guo K, Jiang M, Lai J, Lin D, Liu C, et al. 2019. Drivers of tree carbon storage in subtropical forests. Sci Total Environ. 654:684–693. doi: 10.1016/j.scitotenv.2018.11.024.
  • Liu X, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang Z, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, et al. 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc Royal Soc B. 285(1885):20181240. doi: 10.1098/rspb.2018.1240.
  • Liu LB, Yang HM, Xu Y, Guo YM, Ni J. 2016. Forest biomass and net primary productivity in southwestern China: a meta-analysis focusing on environmental driving factors. Forests. 7(8):173. doi: 10.3390/f7080173.
  • Lohbeck M, Bongers F, Martinez‐Ramos M, Poorter L. 2016. The importance of biodiversity and dominance for multiple ecosystem functions in a human‐modified tropical landscape. Ecol. 97(10):2772–2779.
  • Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson‐Teixeira KJ, Andrade A, Baltzer J, Becker KM, et al. 2018. Global importance of large‐diameter trees. Glob Ecol Biogeogr. 27(7):849–864. doi: 10.1111/geb.12747.
  • Magurran AE. 2021. Measuring biological diversity. Curr Biol. 31(19):R1174–R1177. doi: 10.1016/j.cub.2021.07.049.
  • Malhi Y, Phillips OL, Lloyd J, Baker T, Wright J, Almeida S, Arroyo L, Frederiksen T, Grace J, Higuchi N, et al. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J Veg Sci. 13(3):439–450. doi: 10.1111/j.1654-1103.2002.tb02068.x.
  • Mensah S, du Toit B, Seifert T. 2018. Diversity–biomass relationship across forest layers: implications for niche complementarity and selection effects. Oecologia. 187(3):783–795. doi: 10.1007/s00442-018-4144-0.
  • Mensah S, Salako VK, Seifert T. 2020. Structural complexity and large‐sized trees explain shifting species richness and carbon relationship across vegetation types. Funct Ecol. 34(8):1731–1745. doi: 10.1111/1365-2435.13585.
  • Mina M, Huber MO, Forrester DI, Thürig E, Rohner B, Hector A. 2018. Multiple factors modulate tree growth complementarity in central European mixed forests. J Ecol. 106(3):1106–1119. doi: 10.1111/1365-2745.12846.
  • Moreno CE, Calderón‐Patrón JM, Martín‐Regalado N, Martínez‐Falcón AP, Ortega‐Martínez IJ, Rios‐Díaz CL, Rosas F. 2018. Measuring species diversity in the tropics: a review of methodological approaches and framework for future studies. Biotropica. 50(6):929–941. doi: 10.1111/btp.12607.
  • Morin X. 2015. Species richness promotes canopy packing: a promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct Ecol. 29(8):993–994. doi: 10.1111/1365-2435.12473.
  • Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo‐Murakami A, Paniagua‐Zambrana N, Seidel R, Cornell H. 2013. Beta‐diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett. 16(2):151–157. doi: 10.1111/ele.12021.
  • Ohsawa M. 1991. Structural comparison of tropical montane rain forests along latitudinal and altitudinal gradients in south and east Asia. Vegetatio. 97(1):1–10. doi: 10.1007/BF00033897.
  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, StevensMHH, Wagner H. 2019. Vegan: Community Ecology Package. R package version 2.5-6 Retrieved from https://CRAN.R-project.org/package=vegan.
  • Ouyang S, Xiang W, Wang X, Xiao W, Chen L, Li S, Sun H, Deng X, Forrester DI, Zeng L et al. 2019. Effects of stand 1120 age, richness and density on productivity in subtropical forests in China. J Ecol. 107(5):2266–2277. doi: https://doi.org/10.1111/2266–2277.
  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, et al. 2011. A large and persistent carbon sink in the world’s forests. Sci. 333(6045):988–993. doi: 10.1126/science.1201609.
  • Paquette A, Messier C. 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr. 20(1):170–180. doi: 10.1111/j.1466-8238.2010.00592.x.
  • Pascal JP, Ramesh BR. 1997. A field key to the trees and lianas of the evergreen forests of the Western Ghats (India). Travaux de la section scientifique et technique. Institut franc¸ais de Pondichery. 23:236.
  • Ramesh BR 1989. [Flora of Biligirirangan Hills] [ Ph.D. Thesis]. Chennai, India: Madras University.
  • Ramesh BR, Narayanan A, Grard P, Prosperi J, Aravajy S, Pascal JP. 2010. BIOTIK: biodiversity informatics and co-operation in taxonomy for interactive shared knowledge base. Western Ghats v 1.0. A multimedia identification system of evergreen tree species of the Western Ghats, India. Pondicherry: Institut Franc¸ais de Pondichery. [DVD-ROM].
  • Ray S, Danks NP, Calero Valdez A. 2021. R package seminr: Domain-specifc language for building and estimating structural equation models version 2.1.0 [computer software] Retrieved from https://cran.r-project.org/web/packages/seminr/.
  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Reddy CS. 2021. Manual biodiversity characterization at community level in India using earth observation data. Hyderabad: DBT-DOS Project Document. National Remote Sensing Centre. https://doi.org/10.13140/RG.2.2.22905.75367/1.
  • Rigdon EE. 2012. Rethinking partial least squares path modeling: in praise of simple methods. Long Range Plann. 45(5–6):341–358. doi: 10.1016/j.lrp.2012.09.010.
  • Rosseel Y. 2012. Lavaan: an R package for structural equation modeling. J Stat Softw. 48(2):1–36. doi: 10.18637/jss.v048.i02.
  • Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D. 2012. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc B Biol Sci. 367(1606):3135–3144.
  • Saldanha CJ. 1996. Flora of Karnataka. Vols. I-IV, New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.
  • Saldanha CJ, Nicholson DH. 1976. Flora of Hassan District. Karnataka, India. New Delhi: Amerind Publishing Co.
  • Salinas‐Melgoza MA, Skutsch M, Lovett JC. 2018. Predicting aboveground forest biomass with topographic variables in human‐impacted tropical dry forest landscapes. Ecosphere. 9(1):e02063. doi: 10.1002/ecs2.2063.
  • Sanaei A, Ali A, Yuan Z, Liu S, Lin F, Fang S, Ye J, Hao Z, Loreau M, Bai E, et al. 2020. Context-dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality. Sci Total Environ. 757:143724. doi: 10.1016/j.scitotenv.2020.143724.
  • Schuur EA. 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology. 84(5):1165–1170. doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2.
  • Schwinning S, Weiner J. 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia. 113(4):447–455. doi: 10.1007/s004420050397.
  • Seidel D, Leuschner C, Scherber C, Beyer F, Wommelsdorf T, Cashman MJ, Fehrmann L. 2013. The relationship between tree species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest. For Ecol Manage. 310:366–374. doi: 10.1016/j.foreco.2013.08.058.
  • Shmueli G, Sarstedt M, Hair JF, Cheah JH, Ting H, Vaithilingam S, Ringle CM. 2019. Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. Eur J Mark. 53(11):2322–2347. doi: 10.1108/EJM-02-2019-0189.
  • Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny. Am J Bot. 105(3):302–314. doi: 10.1002/ajb2.1019.
  • Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N, Mooers A. 2012. Phylogenetic diversity and the functioning of ecosystems. Ecol Lett. 15(7):637–648. doi: 10.1111/j.1461-0248.2012.01795.x.
  • Sullivan MJ, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, Cuni-Sanchez A, Hubau W, Lopez-Gonzalez G, et al. 2017. Diversity and carbon storage across the tropical forest biome. Sci Rep. 7(1):1–12. doi:10.1038/srep39102.
  • Swenson NG, Enquist BJ, Thompson J, Zimmerman JK. 2007. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecol. 88(7):1770–1780. doi: 10.1890/06-1499.1.
  • Swenson NG, Stegen JC, Davies SJ, Erickson DL, Forero-Montaña J, Hurlbert AH, Kress WJ, Thompson J, Uriarte M, Wright SJ, et al. 2012. Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecol. 93(3):490–499.
  • Takeda S, Takahashi K. 2020. Elevational variation in abundance of coarse woody debris in subalpine forests, central Japan. For Ecol Manage. 473:118295. doi: 10.1016/j.foreco.2020.118295.
  • Taylor PG, Cleveland CC, Wieder WR, Sullivan BW, Doughty CE, Dobrowski SZ, Townsend AR, Liu L. 2017. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol Lett. 20(6):779–788. doi: 10.1111/ele.12765.
  • Thukral AK. 2017. A review on measurement of alpha diversity in biology. Intern J Contemp Microbiol. 54(1):1. doi: 10.5958/2395-146X.2017.00001.1.
  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. 1997. The influence of functional diversity and composition on ecosystem processes. Sci. 277(5330):1300–1302.
  • Ullah F, Gilani H, Sanaei A, Hussain K, Ali A. 2021. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient. For Ecol Manage. 486:118984. doi: 10.1016/j.foreco.2021.118984.
  • Vilà M, Vayreda J, Gracia C, Ibáñez JJ. 2003. Does tree diversity increase wood production in pine forests? Oecologia. 135(2):299–303.
  • Vinzi VE, Trinchera L, Amato S. 2010. PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement. In: Esposito Vinzi V, Chin W, Henseler J, Wang H, editors. Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics. Berlin, Heidelberg: Springer; p. 47–82. ht tps://doi.org/101007/978-3-540-32827-8_3.
  • Wang G, Ran F, Chang R, Yang Y, Luo J, Jianrong F. 2014. Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan plateau, China. For Ecol Manage. 329:255–263. doi: 10.1016/j.foreco.2014.06.023.
  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annu Rev Ecol Syst. 33(1):475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448.
  • Werts CE, Linn RL, Jöreskog KG. 1974. Intraclass reliability estimates: Testing structural assumptions.Educ. Psychol Meas. 34(1):25–33. doi: 10.1177/001316447403400104.
  • Wold H. 1982. Soft modelling: the basic design and some extensions. Systems under indirect observation. Part. II:36–37.
  • Xie L, Chen H, Wei L, Chen S, Wang L, Xu B, Yi X, Wang X, Ding H, Fang Y. 2023. Scale‐dependent effects of species diversity on aboveground biomass and productivity in a subtropical broadleaved forest on mt. Huangshan Ecol Evol. 13(2):e9786. doi: 10.1002/ece3.9786.
  • Yachi S, Loreau M. 2007. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol Lett. 10(1):54–62. doi: 10.1111/j.1461-0248.2006.00994.x.
  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database. Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. http://hdl.handle.net/10255/dryad.235.
  • Zhang Z, Ju W, Zhou Y. 2021. The effect of water stress on net primary productivity in northwest China. Environ Sci Pollut Res. 28(46):65885–65898. doi: 10.1007/s11356-021-15314-2.
  • Zuazo VHD, Pleguezuelo CRR. 2009. Soil-erosion and runoff prevention by plant covers: a review. Sustain Agric. 28:785–811. https://doi.org/10.1051/agro:2007062.
  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. Vol. 574. New York: springer; p. 574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.