2,715
Views
4
CrossRef citations to date
0
Altmetric
Articles

Extreme environmental forcing on the container ship SS El Faro

ORCID Icon &
Pages 98-113 | Received 20 Feb 2019, Accepted 14 Oct 2019, Published online: 08 Nov 2019

References

  • Ardhuin F, Gille ST, Menemenlis D, Rocha CB, Rascle N, Chapron B, Gula J, Molemaker J. 2017. Small-scale open ocean currents have large effects on wind wave heights. J Geophys Res Oceans. 122(6):4500–4517. doi: 10.1002/2016JC012413
  • Bell RJ, Gray SL, Jones OP. 2017. North Atlantic storm driving of extreme wave heights in the North Sea. J Geophys Res Oceans. 122(4):3253–3268. doi: 10.1002/2016JC012501
  • Bell R, Kirtman B. 2018. Seasonal forecasting of winds, waves and currents in the North Pacific. J Oper Oceanogr. 11:11–26.
  • Breivik Ø, Aarnes OJ, Abdalla S, Bidlot J-R, Janssen PAEM. 2014. Wind and wave extremes over the world oceans from very large ensembles. Geophys Res Lett. 41(14):5122–5131. doi: 10.1002/2014GL060997
  • C3S. 2017. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home.
  • Cardone VJ, Callahan BT, Chen H, Cox AT, Morrone MA, Swail VR. 2015. Global distribution and risk to shipping of very extreme sea states (VESS). Int J Climatol. 35(1):69–84. doi: 10.1002/joc.3963
  • Carvalho JPS, Costa FB, Mignac D, Tanajura CAS. 2019. Assessing the extended-range predictability of the ocean model HYCOM with the REMO ocean data assimilation system (RODAS) in the South Atlantic. J Oper Oceanog. 1–11.
  • Cattrell AD, Srokosz M, Moat BI, Marsh R. 2018. Can rogue waves be predicted using characteristic wave parameters? J Geophys Res Oceans. 123(8):5624–5636. doi: 10.1029/2018JC013958
  • Cummings JA. 2005. Operational multivariate ocean data assimilation. Q J R Metereol Soc. 131(613):3583–3604. doi: 10.1256/qj.05.105
  • Cummings JA, Smedstad OM. 2013. Variational data assimilation for the global ocean BT – data assimilation for atmospheric, oceanic and hydrologic applications (vol. II). Berlin: Springer Berlin Heidelberg.
  • Curcic M, Chen SS, Özgökmen TM. 2016. Hurricane-induced ocean waves and stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico. Geophys Res Lett. 43(6):2773–2781. doi: 10.1002/2015GL067619
  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, et al. 2011. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc. 137(656):553–597. doi: 10.1002/qj.828
  • Donelan MA, Magnusson A-K. 2017. The making of the Andrea wave and other rogues. Sci Rep. 7:44124. doi: 10.1038/srep44124
  • Duerr AES, Dhanak MR, Van Zweiten J. 2012. Utilizing the hybrid coordinate ocean model data for the assessment of the Florida current’s hydrokinetic renewable energy resource. Mar Technol Soc J. 46(5):24–33. doi: 10.4031/MTSJ.46.5.2
  • Edwing RF. 2018. NOAA’s physical oceanographic real-time system (PORTS®). J Oper Oceanogr. 1–11.
  • Faulkner D. 1998. An independent assessment of the sinking of the MV DERBYSHIRE. SNAME Trans. 106:59–103.
  • Fedele F, Brennan J, Ponce de León S, Dudley J, Dias F. 2016. Real world ocean rogue waves explained without the modulational instability. Sci Rep. 6:27715. doi: 10.1038/srep27715
  • Fedele F, Lugni C, Chawla A. 2017. The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin. Sci Rep. 7:11188. doi: 10.1038/s41598-017-11505-5
  • France WN, Levadou M, Treakle TW, Paulling JR, Michel RK, Moore C. 2003. An investigation of head-sea parametric rolling and its influence on container lashing systems. Mar Technol. 40(1):1–19.
  • Gavrikov AV, Krinitsky MA, Grigorieva VG. 2016. Modification of Globwave satellite altimetry database for sea wave field diagnostics. Oceanology. 56(2):301–306. doi: 10.1134/S0001437016020065
  • Gibson R, Christou M, Feld G. 2014. The statistics of wave height and crest elevation during the December 2012 storm in the North Sea. Ocean Dyn. 64(9):1305–1317. doi: 10.1007/s10236-014-0750-5
  • Gyakum JR. 1983. On the evolution of the QE II storm. I: synoptic aspects. Mon Weather Rev. 111(6):1137–1155. doi: 10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2
  • Heij C, Knapp S. 2015. Effects of wind strength and wave height on ship incident risk: regional trends and seasonality. Transport Res D-TR E. 37:29–39. doi: 10.1016/j.trd.2015.04.016
  • Ibrahim RA, Grace IM. 2010. Modeling of ship roll dynamics and its coupling with heave and pitch. Math Probl Eng. 2010:1–32. doi: 10.1155/2010/934714
  • Janssen PAEM. 2003. Nonlinear four-wave interactions and freak waves. J Phys Oceanogr. 33:863–884. doi: 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
  • Janssen PAEM. 2014. On a random time series analysis valid for arbitrary spectral shape. J Fluid Mech. 759:236–256. doi: 10.1017/jfm.2014.565
  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ. 2010. The international best track archive for climate stewardship (IBTrACS). Bull Amer Meteor Soc. 91(3):363–376. doi: 10.1175/2009BAMS2755.1
  • Kossin JP, Knaff JA, Berger HI, Herndon DC, Cram TA, Velden CS, Murnane RJ, Hawkins JD. 2007. Estimating hurricane wind structure in the absence of aircraft reconnaissance. Weather Forecast. 22(1):89–101. doi: 10.1175/WAF985.1
  • Krasitskii VP. 1990. Canonical transformation in a theory of weakly non-linear waves with a nondecay dispersion law. Sov Phys JETP. 71:921–927.
  • Landsea CW, Franklin JL. 2013. Atlantic hurricane database uncertainty and presentation of a new database format. Mon Wea Rev. 141(10):3576–3592. doi: 10.1175/MWR-D-12-00254.1
  • Laurindo LC, Mariano AJ, Lumpkin R. 2017. An improved near-surface velocity climatology for the global ocean from drifter observations. Deep Sea Res Part I. 124:73–92. doi: 10.1016/j.dsr.2017.04.009
  • Longuet-Higgins MS. 1983. On the joint distribution of wave periods and amplitudes in a random wave field. Proc R Soc Lond. 389:241–258.
  • Luo S, Ma N, Hirakawa Y. 2016. Evaluation of resistance increase and speed loss of a ship in wind and waves. J Ocean Eng Sci. 1(3):212–218. doi: 10.1016/j.joes.2016.04.001
  • Munro MC, Mohajerani A. 2016. Liquefaction incidents of mineral cargoes on board bulk carriers. Adv Mater Sci Eng. 5219474:20.
  • Murakami H. 2014. Tropical cyclones in reanalysis data sets. Geophys Res Lett. 41(6):2133–2141. doi: 10.1002/2014GL059519
  • NTSB. 2017. Board meeting: October 2015 sinking of the cargo ship EL FARO in the Atlantic Ocean. https://www.ntsb.gov/news/events/Pages/2017-DCA16MM001-BMG.aspx.
  • Olauson J. 2018. ERA5: the new champion of wind power modelling? Renewable Energ. 126:322–331. doi: 10.1016/j.renene.2018.03.056
  • Queffeulou P, Croizé-Fillon D. 2016. Global altimeter SWH data set – September 2016.
  • Quilfen Y, Yurovskaya M, Chapron B, Ardhuin F. 2018. Storm waves focusing and steepening in the Agulhas current: satellite observations and modeling. Remote Sens Environ. 216:561–571. doi: 10.1016/j.rse.2018.07.020
  • Savage JA, Tokmakian RT, Batteen ML. 2015. Assessment of the HYCOM velocity fields during Agulhas return current cruise 2012. J Oper Oceanogr. 8(1):11–24.
  • Sepulveda HH, Queffeulou P, Ardhuin F. 2015. Assessment of SARAL/AltiKa wave height measurements relative to Buoy, Jason-2, and Cryosat-2 data. Mar Geod. 38:449–465. doi: 10.1080/01490419.2014.1000470
  • Skandrani C, Lefevre J-M, Queffeulou P. 2004. Impact of multisatellite altimeter data assimilation on wave analysis and forecast. Mar Geod. 27(3):511–533. doi: 10.1080/01490410490883496
  • Tayfun MA. 1980. Narrow-band nonlinear sea waves. J Geophys Res. 85:1548–1552. doi: 10.1029/JC085iC03p01548
  • Tayfun MA, Fedele F. 2007. Wave-height distributions and nonlinear effects. Ocean Eng. 34:1631–1649. doi: 10.1016/j.oceaneng.2006.11.006
  • Toffoli A, Lefèvre JM, Bitner-Gregersen E, Monbaliu J. 2005. Towards the identification of warning criteria: analysis of a ship accident database. Appl Ocean Res. 27(6):281–291. doi: 10.1016/j.apor.2006.03.003
  • Zakharov VE. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys. 9:190–194. doi: 10.1007/BF00913182