9,638
Views
6
CrossRef citations to date
0
Altmetric
Other

Copernicus Ocean State Report, issue 6

References

References

  • Aboobacker VM, Shanas PR, Al-Ansari EMAS, Sanil Kumar V, Vethamony P. 2021. The maxima in northerly wind speeds and wave heights over the Arabian Sea, the Arabian/Persian Gulf and the Red Sea derived from 40 years of ERA5 data. Clim Dyn. 56:1037–1052. doi:10.1007/s00382-020-05518-6.
  • Belmonte Rivas M, Stoffelen A. 2019. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci. 15:831–852. doi:10.5194/os-15-831-2019.
  • Belmonte Rivas M, Stoffelen A, Bentamy A. 2019. Sea surface winds and Ekman pumping. In: Copernicus Marine Service Ocean state report, issue 3. J Oper Oceanogr. 12(Suppl. 1):S1–S123. doi:10.1080/1755876X.2019.1633075.
  • Bevere L, Fan I, Holzheu T. 2020. Swiss Re Institute estimates USD 83 billion global insured catastrophe losses in 2020, the fifth-costliest on record, Swiss Re web article. [cited 27 Dec 2020]. https://www.swissre.com/media/news-releases/nr-20201215-sigma-full-year-2020-preliminary-natcat-loss-estimates.html.
  • Bian G-F, Nie G-Z, Qiu X. 2021. How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset? Atmos Res. 249:105339. doi:10.1016/j.atmosres.2020.105339.
  • Bourassa MA, Meissner T, Cerovecki I, Chang PS, Dong X, De Chiara G, Donlon C, Dukhovskoy DS, Elya J, Fore A, et al. 2019. Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front Mar Sci. 6:443. doi:10.3389/fmars.2019.00443.
  • Collins M, Sutherland M, Bouwer L, Cheong S-M, Frölicher T, Jacot Des Combes H, Koll Roxy M, Losada I, McInnes K, Ratter B, et al. 2019. Extremes, abrupt changes and managing risk. In: IPCC special report on the ocean and cryosphere in a changing climate [H-O. Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegría, M Nicolai, A Okem, J Petzold, B Rama, NM Weyer, editors]. In press.
  • Davies PA, McCarthy M, Christidis N, Dunstone N, Fereday D, Kendon M, Knight JR, Scaife AA, Sexton D. 2021. The wet and stormy UK winter of 2019/2020. Weather. doi:10.1002/wea.3955.
  • de Kloe J, Stoffelen A, Verhoef A. 2017. Improved use of scatterometer measurements by using stress-equivalent reference winds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10:2340–2347. doi:10.1109/JSTARS.2017.2685242.
  • Dong B, Sutton RT, Woollings T, Hodges K. 2013. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ Res Lett. 8:034037. doi:10.1088/1748-9326/8/3/034037.
  • Dullaart JCM, Muis S, Bloemendaal N, Aerts JCJH. 2020. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Clim Dyn. 54:1007–1021. doi:10.1007/s00382-019-05044-0.
  • Earl N, Dorling S, Hewston R, von Glasow R. 2013. 1980–2010 variability in U.K. surface wind climate. J Clim. 26(4):1172–1191. doi:10.1175/JCLI-D-12-00026.1.
  • Hoskins BJ, Hodges KI. 2005. A new perspective on Southern hemisphere storm tracks. J Clim. 18(20):4108–4129. doi:10.1175/JCLI3570.1.
  • Hu S, Hu D, Guan C, Xing N, Li J, Feng J. 2017. Variability of the western Pacific warm pool structure associated with El Niño. Clim Dyn. 49:2431–2449. doi:10.1007/s00382-016-3459-y.
  • IPCC. 2021. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu, B Zhou, editors]. Cambridge University Press. In press.
  • Knutson T, Camargo SJ, Chan JCL, Emanuel K, Ho C, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K, Wu L. 2020. Tropical cyclones and climate change assessment: part II: projected response to anthropogenic warming. Bull Am Meteorol Soc. 101(3):E303–E322. doi:10.1175/BAMS-D-18-0194.1.
  • Laurila TK, Sinclair VA, Gregow H. 2021. Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. Int J Climatol. 41:2253–2278. doi:10.1002/joc.6957.
  • Lee S-S, Lee J-Y, Wang B, Ha K-J, Heo K-Y, Jin F-F, Straus DM, Shukla J. 2012. Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim Dyn. 39:313–327. doi:10.1007/s00382-011-1188-9.
  • Marseille G-J, Stoffelen A, van den Brink H, Stepek A. 2019. WISC bias derivation and uncertainty assessment, C3S windstorm information service – copernicus (WISC), Doc. C3S_441_Lot3_WISC_SC2-D3.3-CGI-RP-17-0071, KNMI. Available from: https://wisc.climate.copernicus.eu/wisc/documents/shared/(C3S_441_Lot3_WISC_SC2-D3.3-CGI-RP-17-0071)%20(Final%20Bias%20Derivation)%20(v1.0).pdf.
  • Moore GWK, Renfrew IA. 2005. Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J Clim. 18(18):3713–3725. doi:10.1175/JCLI3455.1.
  • Oliver EC, Lago V, Hobday AJ, Holbrook NJ, Ling SD, Mundy CN. 2018. Marine heatwaves off eastern Tasmania: trends, interannual variability, and predictability. Prog Oceanogr. 161:116–130.
  • Russell JL, Long DG, Chang PS, Cowell M, Curchitser E, Dinniman MS, Fellows C, Goodman PJ, Hofmann EE, Jelenak Z, et al. 2021. Measuring vector winds from space to reduce the uncertainty in the Southern Ocean carbon fluxes: science requirements and proposed mission. Geophys Res Lett, in review.
  • Sampe T, Xie S. 2007. Mapping high sea winds from space: a global climatology. Bull. Am. Meteorol. Soc. 88:1965-1978. doi:10.1175/BAMS-88-12-1965.
  • Schreck CJS, Knapp KR, Kossin JP. 2014. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon Weather Rev. 142(10):3881–3899. doi:10.1175/MWR-D-14-00021.1.
  • Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI, Hwang Y-T, Li C, O’Gorman PA, Rivière G, Simpson IR, Voigt A. 2016. Storm track processes and the opposing influences of climate change. Nat Geosci. 9:656–664. doi:10.1038/ngeo2783.
  • Stoffelen A, Mouche A, Polverari F, van Zadelhoff G-J, Sapp J, Portabella M, Chang P, Lin W, Jelenak Z. 2020. C-band high and extreme-force speeds (CHEFS) – final report, EUMETSAT project report, KNMI. Available from: https://www-cdn.eumetsat.int/files/2020-06/pdf_ss_chefs_final_rep.pdf.
  • Tilburg CE, Hurlburt HE, O'Brien JJ, Shriver JF. 2001. The dynamics of the East Australian current system: the Tasman front, the East Auckland current, and the East Cape current. J Phys Oceanogr. 31(10):2917–2943.
  • Wang C, Wu K, Wu L, Zhao H, Cao J. 2021. What caused the unprecedented absence of western North Pacific tropical cyclones in July 2020? Geophys Res Lett. 48:e2020GL092282. doi:10.1029/2020GL092282.
  • Wang Z, Stoffelen A, Zhang B, He Y, Lin W, Li X. 2019. Inconsistencies in scatterometer wind products based on ASCAT and OSCAT-2 collocations. Remote Sens Environ. 225:207–216. doi:10.1016/j.rse.2019.03.005.
  • Yeasmin A, Chand S, Turville C, Sultanova N. 2021. Detection and verification of tropical cyclones and depressions over the South Pacific Ocean basin using ERA-5 reanalysis dataset. Int J Climatol. 41:5318–5330. doi:10.1002/joc.7131.
  • Young IR, Ribal A. 2019. Multiplatform evaluation of global trends in wind speed and wave height. Science. 364:548–552. doi:10.1126/science.aav9527.
  • Buckley MW, Marshall J. 2016. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev Geophys. 54(1):5–63. doi:10.1002/2015RG000493.
  • Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V. 2018. Observed fingerprint of a weakening Atlantic Ocean Overturning Circulation. Nature. 556(7700):191–196. doi:10.1038/s41586-018-0006-5.
  • Collins M, Sutherland M, Bouwer L, Cheong S-M, Frölicher T, Jacot Des Combes H, Koll Roxy M, Losada I, McInnes K, Ratter B, et al. 2019. Extremes, abrupt changes and managing risk, in H-O Pörtner; DC Roberts; V Masson-Delmotte; P Zhai; M Tignor; E Poloczanska; K Mintenbeck; A Alegría; M Nicolai; A Okem; J Petzold; B Rama, NM Weyer, editors. IPCC special report on the ocean and cryosphere in a changing climate.
  • Danabasoglu G, Yeager SG, Kim WM, Behrens E, Bentsen M, Bi D, Biastoch A, Bleck R, Böning C, Bozec A, et al. 2016. North Atlantic simulations in coordinated Ocean-ice reference experiments phase II (CORE-II). Part II: inter-annual to decadal variability. Ocean Modell. 97:65–90. doi:10.1016/j.ocemod.2015.11.007.
  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Metereol Soc. 137(656):553–597. doi:10.1002/qj.828.
  • Desbruyères DG, Mercier H, Maze G, Daniault N. 2019. Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic. Ocean Sci. 15(3):809–817. doi:10.5194/os-15-809-2019.
  • Fu Y, Li F, Karstensen J, Wang C. 2020. A stable Atlantic Meridional Overturning Circulation in a changing North Atlantic Ocean since the 1990s. Sci Adv. 6(48):eabc7836. doi:10.1126/sciadv.abc7836.
  • Jackson LC, Dubois C, Forget G, Haines K, Harrison M, Iovino D, Köhl A, Mignac D, Masina S, Peterson KA, et al. 2019. The mean state and variability of the North Atlantic circulation: a perspective from ocean reanalyses. J Geophys Res Oceans. 124(12):9141–9170. doi:10.1029/2019JC015210.
  • Jackson L, Dubois C, Masina S, Storto A, Zuo H. 2018. Atlantic Meridional Overturning Circulation. In: von Schuckmann et al. the Copernicus Marine Service Ocean state report. J Operat Ocean. 11(Suppl. 1):S1–S142.
  • Jackson LC, Peterson KA, Roberts CD, Wood RA. 2016. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening. Nat Geosci. 9(7):518–522. doi:10.1038/ngeo2715.
  • Lellouche JM, Le Galloudec O, Drévillon M, Régnier C, Greiner E, Garric G, Ferry N, Desportes C, Testut CE, Bricaud C, et al. 2013. Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci. 9(1):57–81. doi:10.5194/os-9-57-2013.
  • Li F, Lozier MS, Bacon S, Bower AS, Cunningham SA, de Jong MF, deYoung B, Fraser N, Fried N, Han G, et al. 2021. Subpolar North Atlantic western boundary density anomalies and the meridional overturning circulation. Nat Commun. 12(1):3002. doi:10.1038/s41467-021-23350-2.
  • Li F, Lozier MS, Johns WE. 2017. Calculating the meridional volume, heat, and freshwater transports from an observing system in the subpolar North Atlantic: observing system simulation experiment. J Atmos Ocean Technol. 34(7):1483–1500. doi:10.1175/JTECH-D-16-0247.1.
  • Lozier MS, Bacon S, Bower AS, Cunningham SA, De Jong MF, De Steur L, De Young B, Fischer J, Gary SF, Greenan BJW, et al. 2017. Overturning in the subpolar north Atlantic program: a new international ocean observing system. Bull Am Meteorol Soc. 98(4):737–752. doi:10.1175/BAMS-D-16-0057.1.
  • Lozier MS, Li F, Bacon S, Bahr F, Bower AS, Cunningham SA, De Jong MF, De Steur L, DeYoung B, Fischer J, et al. 2019. A sea change in our view of overturning in the subpolar North Atlantic. Science. 363(6426):516–521. doi:10.1126/science.aau6592.
  • MacLachlan C, Arribas A, Peterson KA, Maidens A, Fereday D, Scaife AA, Gordon M, Vellinga M, Williams A, Comer RE, et al. 2015. Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q J R Metereol Soc. 141(689):1072–1084. doi:10.1002/qj.2396.
  • Menary MB, Jackson LC, Lozier MS. 2020. Reconciling the relationship between the AMOC and Labrador Sea in OSNAP observations and climate models. Geophys Res Lett. 47(18):e2020GL089793. doi:10.1029/2020GL089793.
  • Moffa-Sánchez P, Moreno-Chamarro E, Reynolds DJ, Ortega P, Cunningham L, Swingedouw D, Amrhein DE, Halfar J, Jonkers L, Jungclaus JH, et al. 2019. Variability in the Northern North Atlantic and Arctic Oceans across the last two millennia: a review. Paleoceanogr Paleoclimatol. 34(8):1399–1436. doi:10.1029/2018PA003508.
  • Rahmstorf S. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Chang. 5(5):475–480. doi:10.1038/nclimate2554.
  • Robson J, Lohmann K, Smith D, Palmer MD. 2012. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J Clim. 25(12):4116–4134. doi:10.1175/JCLI-D-11-00443.1.
  • Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T, Lozier S, Marotzke J, Sutton R. 2012. Past, present, and future changes in the Atlantic Meridional Overturning Circulation. Bull Am Meteorol Soc. 93(11):1663–1676. doi:10.1175/BAMS-D-11-00151.1.
  • Storto A, Masina S, Navarra A. 2016. Evaluation of the CMCC eddy-permitting global ocean physical reanalysis system (C-GLORS, 1982–2012) and its assimilation components. Q J R Metereol Soc. 142(695):738–758. doi:10.1002/qj.2673.
  • Thornalley DJR, Oppo DW, Ortega P, Robson JI, Brierley CM, Davis R, Hall IR, Moffa-Sanchez P, Rose NL, Spooner PT, et al. 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature. 556(7700):227–230. doi:10.1038/s41586-018-0007-4.
  • von Schuckmann K, Le Traon PY, Smith N, Pascual A, Brasseur P, Fennel K, Djavidnia S, Aaboe S, Fanjul EA, Autret E, et al. 2018. Copernicus Marine Service Ocean state report. J Oper Oceanogr. 11(Suppl. 1):S1–S142. doi:10.1080/1755876X.2018.1489208.
  • Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M. 2019. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15(3):779–808. doi:10.5194/os-15-779-2019.
  • Zuo H, Balmaseda MA, de Boisseson E, Tietsche S, Mayer M, de Rosnay P. 2021. The ORAP6 ocean and sea-ice reanalysis: description and evaluation. EGU General Assembly 2021. EGU21-9997. https://doi.org/10.5194/egusphere-egu21-9997.
  • Zou S, Lozier MS, Li F, Abernathey R, Jackson L. 2020. Density-compensated overturning in the Labrador Sea. Nat Geosci. 13(2):121–126. doi:10.1038/s41561-019-0517-1.
  • Årthun M, Eldevik T. 2016. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J Clim. 29(2):689–704.
  • Asbjørnsen H, Årthun M, Skagseth Ø, Eldevik T. 2019. Mechanisms of ocean heat anomalies in the Norwegian Sea. J Geophys Res Oceans. 124(4):2908–2923.
  • Asbjørnsen H, Johnson HL, Årthun M. 2021. Variable Nordic Seas inflow linked to shifts in North Atlantic circulation. J Clim. 34(17):7057–7071.
  • Berx B, et al. 2013. Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the faroe–Shetland channel. Ocean Sci. 9:639–654.
  • Bosse A, Fer I, Søiland H, Rossby T. 2018. Atlantic water transformation along its poleward pathway across the Nordic Seas. J Geophys Res Oceans. 123(9):6428–6448.
  • Bringedal C, Eldevik T, Skagseth Ø, Spall MA, Østerhus S. 2018. Structure and forcing of observed exchanges across the Greenland–Scotland ridge. J Clim. 31(24):9881–9901.
  • Buckley MW, Marshall J. 2016. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev Geophys. 54(1):5–63.
  • Chafik L, Rossby T. 2019. Volume, heat, and freshwater divergences in the subpolar North Atlantic suggest the Nordic Seas as key to the state of the meridional overturning circulation. Geophys Res Lett. 46(9):4799–4808.
  • Curry JA, Schramm JL, Ebert EE. 1995. Sea ice-albedo climate feedback mechanism. J Clim. 8(2):240–247.
  • Hansen B, Østerhus S, Turrell WR, Jónsson S, Valdimarsson H, Hátún H, Olsen SM. 2008. The inflow of Atlantic water, heat, and salt to the Nordic seas across the Greenland–Scotland ridge. In: Arctic–Subarctic ocean fluxes. Dordrecht: Springer; p. 15–43.
  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, et al. 2020. The ERA5 global reanalysis. Q J R Metereol Soc. 146(730):1999–2049.
  • Jackson LC, Kahana R, Graham T, Ringer MA, Woollings T, Mecking JV, Wood RA. 2015. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim Dyn. 45(11):3299–3316.
  • Jónsson S, Valdimarsson H. 2012. Water mass transport variability to the North Icelandic shelf, 1994–2010. ICES J Mar Sci. 69:809–815.
  • Hansen B, Larsen KMH, Hátún H, Kristiansen R, Mortensen E, Østerhus S. 2015. Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993–2013. Ocean Sci. 11:743–757.
  • Hansen B, Østerhus S. 2000. North Atlantic-Nordic Seas exchanges. Prog Oceanogr. 45:109–208.
  • Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H. 2005. Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science. 309(5742):1841–1844.
  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka, K, et al. 2015. The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II. 93(1):5–48.
  • Loeb NG, Doelling DR, Wang H, Su W, Nguyen C, Corbett JG, Liang L, Mitrescu C, Rose FG, Kato S. 2018. Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J Clim. 31(2):895–918.
  • Mauritzen C. 1996. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland ridge. Part 1: evidence for a revised circulation scheme. Deep Sea Res Part I. 43(6):769–806.
  • Mayer J, Mayer M, Haimberger L. 2021. Consistency and homogeneity of atmospheric energy, moisture, and mass budgets in ERA5. J Clim. 34(10):3955–3974.
  • Mayer M, Haimberger L, Pietschnig M, Storto A. 2016. Facets of Arctic energy accumulation based on observations and reanalyses 2000–2015. Geophys Res Lett. 43(19):10–420.
  • Mayer M, Haimberger L, Edwards JM, Hyder P. 2017. Toward consistent diagnostics of the coupled atmosphere and ocean energy budgets. J Clim. 30(22):9225–9246.
  • Mayer M, Lien VS, Mork KA, von Schuckmann K, Monier M, Greiner E. 2021. Ocean heat content in the High North. In CMEMS ocean state report vol. 5, accepted in Journal of Operational Oceanography.
  • Mayer M, Tietsche S, Haimberger L, Tsubouchi T, Mayer J, Zuo H. 2019. An improved estimate of the coupled Arctic energy budget. J Clim. 32(22):7915–7934.
  • Muilwijk M, Smedsrud LH, Ilicak M, Drange H. 2018. Atlantic Water heat transport variability in the 20th century Arctic Ocean from a global ocean model and observations. J Geophys Res Oceans. 123(11):8159–8179.
  • Oort AH, Yienger JJ. 1996. Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim. 9(11):2751–2767.
  • Østerhus S, Woodgate R, Valdimarsson H, Turrell B, de Steur L, Quadfasel D, Olsen SM, Moritz M, Lee CM, Larsen KMH, et al. 2019. Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci. 15:379–399.
  • Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. 356(6335):285–291.
  • Richter K, Segtnan OH, Furevik T. 2012. Variability of the Atlantic inflow to the Nordic Seas and its causes inferred from observations of sea surface height. J Geophys Res. 117:C04004. doi:10.1029/2011JC007719.
  • Rudels B, Marnela M, Eriksson P. 2008. Constraints on estimating mass, heat and freshwater transports in the Arctic Ocean: an exercise. In: Robert R. Dickson, Jens Meincke, Peter Rhines, editors. Arctic–Subarctic ocean fluxes. Dordrecht: Springer; p. 315–341.
  • Shu Q, Wang Q, Song Z, Qiao F. 2021. The poleward enhanced Arctic Ocean cooling machine in a warming climate. Nat Commun. 12(1):1–9.
  • Skagseth Ø, Eldevik T, Årthun M, Asbjørnsen H, Lien VS, Smedsrud LH. 2020. Reduced efficiency of the Barents Sea cooling machine. Nat Clim Change. doi:10.1038/s41558-020-0772-6.
  • Swift JH, Aagaard K. 1981. Seasonal transitions and water mass formation in the Iceland and Greenland Seas. Deep Sea Res A. 28(10). doi:10.1016/0198-0149(81)90050-9.
  • Trenberth KE, Fasullo JT. 2017. Atlantic meridional heat transports computed from balancing Earth’s energy locally. Geophys Res Lett. 44(4):1919–1927.
  • Tsubouchi T, Bacon S, Aksenov Y, Garabato ACN, Beszczynska-Möller A, Hansen E, de Steur L, Curry B, Leeet CM. 2018. The Arctic Ocean seasonal cycles of heat and freshwater fluxes: observation-based inverse estimates. J Phys Oceanogr. 48(9):2029–2055.
  • Tsubouchi T, Våge K, Hansen B, Larsen KMH, Østerhus S, Johnson C, Jónsson S, Valdimarsson H. 2021. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nat Clim Change. 11(1):21–26.
  • Von Schuckmann K, Palmer MD, Trenberth KE, Cazenave A, Chambers D, Champollion N, Hansen J, Josey SA, Loeb N, Mathieu P-P, et al. 2016. An imperative to monitor Earth's energy imbalance. Nat Clim Change. 6(2):138–144.
  • Williams RG, Roussenov V, Lozier MS, Smith D. 2015. Mechanisms of heat content and thermocline change in the subtropical and subpolar North Atlantic. J Clim. 28(24):9803–9815. [cited 2021 Nov 12]. Available from: https://journals.ametsoc.org/view/journals/clim/28/24/jcli-d-15-0097.1.xml.
  • Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M. 2019. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean science. 15(3):779–808.
  • Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay JE, Ehn JK, Assmy P, Daase M, Candlish LM, Rysgaard S. 2015. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog. Oceanogr. 139:122-150. doi:10.1016/J.Pocean.2015.09.003.
  • Blanchard-Wrigglesworth E, Roach LA, Donohoe A, Ding Q. 2021. Impact of winds and Southern Ocean SSTs on Antarctic sea ice trends and variability. J Clim. 34:949–965. doi:10.1175/JCLI-D-20-0386.1.
  • Bintanja R, van Oldenborgh GJ, Drijfhout SS, Wouters B, Katsman CA. 2013. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci. 6:376–379. doi:10.1038/ngeo1767.
  • Comiso JC, Gersten RA, Stock LV, Turner J, Perez GJ, Cho K. 2017. Positive trend in the Antarctic sea ice cover and associated changes in surface temperature. J Clim. 30(6):2251–2267. doi:10.1175/JCLI-D-16-0408.1.
  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Royal Meteorol Soc. 137(656):553–597. doi:10.1002/qj.828.
  • Dumont D, Kohout A, Bertino L. 2011. A wave-based model for the marginal ice zone including a floe breaking parameterization. J Geophys Res Ocean. 116:C04001. doi:10.1029/2010JC006682.
  • Eayrs C, Li X, Raphael MN, Holland DM. 2021. Rapid decline in Antarctic sea ice in recent years hints at future change. Nature Geosci. 14:460–464. doi:10.1038/s41561-021-00768-3.
  • Goosse H, Zunz V. 2014. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback. Cryosphere. 8:453–470. doi:10.5194/tc-8-453-2014.
  • Haid V, Iovino D, Masina S. 2017. Impacts of freshwater changes on Antarctic sea ice in an eddy-permitting sea-ice–ocean model. Cryosphere. 11:1387–1402. doi:10.5194/tc-11-1387-2017.
  • Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W. 2016. A review of recent changes in Southern ocean sea ice, their drivers and forcings. Glob Planet Change. 143:228–250. doi:10.1016/j.gloplacha.2016.06.008.
  • Holland PR, Kwok R. 2012. Wind-driven trends in Antarctic sea-ice drift. Nat Geosci. 5:872–875. doi:10.1038/ngeo1627.
  • Holland PR, Bruneau N, Enright C, Losch M, Kurtz NT, Kwok R. 2014. Modeled trends in Antarctic sea ice thickness. J Clim. 27:3784–3801. doi:10.1175/JCLI-D-13-00301.1.
  • Ivanova N, Pedersen LT, Tonboe RT, Kern S, Heygster G, Lavergne T, Sørensen A, Saldo R, Dybkjær G, Brucker L, Shokr M. 2015. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere. 9:1797–1817. doi:10.5194/tc-9-1797-2015.
  • Lellouche JM, Le Galloudec O, Drevillon M, Regnier C, Greiner E, Garric G, Ferry N, Desportes C, Testut C-E, Bricaud C, et al. 2013. Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci. 9(1):57–81. doi:10.5194/os-9-57-2013.
  • MacLachlan C, Arribas A, Peterson KA, Maidens A, Fereday D, Scaife AA, Gordon M, Vellinga M, Williams A, Comer RE, et al. 2015. Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart J Royal Meteorol Soc. 141(689):1072–1084. doi:10.1002/qj.2396.
  • Maksym T. 2019. Arctic and Antarctic sea ice change: contrasts, commonalities, and causes. Ann Rev Mar Sci. 11:187–213. doi:10.1146/annurev-marine-010816-060610.
  • Maksym TE, Stammerjohn E, Ackley S, Massom R. 2012. Antarctic sea ice – a polar opposite? I. 25:140–151. doi:10.5670/oceanog.2012.88.
  • Meehl GA, Arblaster JM, Bitz CM, Chung CTYY, Teng H. 2016. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nature Geosci. 9:590–595. doi:10.1038/ngeo2751.
  • Meier WN, Fetterer F, Savoie M, Mallory S, Duerr R, Stroeve J. 2017. NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 3. Boulder (CO): NSIDC: National Snow and Ice Data Center. https://nsidc.org/data/g02202/versions/3.
  • Meier WN, Stewart JS. 2019. Assessing uncertainties in sea ice extent climate indicators. Environ Res Lett. 14:035005. doi:10.1088/1748-9326/aaf52c.
  • Meylan MH, Bennetts LG, Kohout AL. 2014. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophys Res Lett. 2(41):5046–5051. doi:10.1002/2014GL060809.
  • Parkinson CL. 2019. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc Natl Acad Sci USA. 116:414–423. doi:10.1073/pnas.1906556116.
  • Paul F, Mielke T, Nisters C, Schröder J, Rampai T, Skatulla S, Audh R, Hepworth E, Vichi M, Lupascu DC. 2021. Brief communication: grease ice in the Antarctic marginal ice zone. Cryosphere Discuss. doi:10.5194/tc-2020-362.
  • Pauling AG, Bitz CM, Smith IJ, Langhorne PJ. 2016. The response of the Southern Ocean and Antarctic sea ice to fresh water from ice shelves in an earth system model. J Climate. 29:1655–1672. doi:10.1175/JCLI-D-15-0501.1.
  • Peng G, Meier WN, Scott DJ, Savoie MH. 2013. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst Sci Data. 5:311–318. doi:10.5194/essd-5-311-2013.
  • Simmonds I. 2015. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979–2013. Ann Glaciol. 56:18–28. doi:10.3189/2015AoG69A909.
  • Squire VA. 2007. Of ocean waves and sea-ice revisited. Cold Reg Sci Technol. 49:110–133. doi:10.1016/j.coldregions.2020.103042.
  • Storto A, Masina S, Simoncelli S, Iovino D, Cipollone A, Drevillon M, Drillet Y, von Schuckman K, Parent L, Garric G, et al. 2019. The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Clim Dyn. 53:287–312. doi:10.1007/s00382-018-4585-5.
  • Stroeve JC, Jenouvrier S, Campbell GG, Barbraud C, Delord K. 2016. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels. Cryosphere. 10:1823–1843. doi:10.5194/tc-10-1823-2016.
  • Sutherland BR, Balmforth NJ. 2019. Damping of surface waves by floating particles. Phys Rev Fluids. 4:014804. doi:10.1103/PhysRevFluids.4.014804.
  • Tonboe RT, Eastwood S, Lavergne T, Sørensen AM, Rathmann N, Dybkjær G, Pedersen LT, Høyer JL, Kern S. 2016. The EUMETSAT sea ice concentration climate data record. Cryosphere. 10:2275–2290. doi:10.5194/tc-10-2275-2016.
  • Venables HJ, Meredith MP. 2014. Feedbacks between ice cover, ocean stratifcation, and heat content in Ryder Bay, Western Antarctic Peninsula. J Geophys Res Oceans. 119:5323–5336. doi:10.1002/2013JC009669.
  • Vichi M. 2021. A statistical definition of the Antarctic marginal ice zone. Cryosphere. Discuss, in review. doi:10.5194/tc-2021-307
  • Vichi M, Eayrs C, Alberello A, Bekker A, Bennetts L, Holland D, Jong E, Joubert W, MacHutchon K, Messori G, et al. 2019. Effects of an explosive polar cyclone crossing the Antarctic marginal ice zone. Geophys Res Lett. 46:5948–5958. doi:10.1029/2019GL082457.
  • Wadhams P. 2000. Ice in the Ocean. Amsterdam: Gordon and Breach Science Publishers, xii 351 p, illustrated, hard cover. ISBN 90-5699-296-1. £44.00; US$67.00. Polar Record, 38(206):269-270. doi:10.1017/S0032247400017848.
  • Wadhams P, Martin S, Johannessen OM, Hibler WD, Campbell WJ. 1981. MIZEX, a program for mesoscale air-ice-ocean interaction experiments in arctic marginal ice zones. I. Research strategy. – US Army Cold Regions Res. & Engng. Lab., Hanover N.H. Special Rept, p. 81–19.
  • Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL. 2008. Thickness distribution of Antarctic sea ice. J Geophys Res. 113:C05S92. doi:10.1029/2007JC004254.
  • Wright NC, Polashenski CM. 2018. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery. Cryosphere. 12:1307–1329. doi:10.5194/tc-12-1307-2018.
  • Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M. 2019. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15(3):779–808. doi:10.5194/os-15-779-2019.
  • Baker J, Renshaw R, Jackson L, Dubois C, Iovino D, Zuo H. 2022. Overturning variations in thesubpolar North Atlantic in an ocean reanalyses ensemble. Copernicus Marine Service Ocean State Report, Issue 6, Journal of Operational Oceanography. Accepted.
  • Buckley MW, Marshall J. 2016. Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: a review. Rev Geophys. 54:5–63. doi:10.1002/2015RG00049.
  • Carracedo LI, Gilcoto M, Mercier H, Pérez FF. 2014. Seasonal dynamics in the Azores–Gibraltar Strait region: a climatologically-based study. Prog Oceanogr. 122:116–130.
  • Cessi P. 2019. The global overturning circulation. Ann Rev Mar Sci. 11(1):249–270.
  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ, Beal LM, et al. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science. 317(5840):935–938.
  • Danabasoglu G, Yeager SG, Kim WM, Behrens E, Bentsen M, Bi D, et al. 2016. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell. 97:65–90. doi:10.1016/j.ocemod.2015.11.007.
  • Escudier R, Clementi E, Cipollone A, Pistoia J, Drudi M, Grandi A, Lyubartsev V, Lecci R, Aydogdu A, Delrosso D, et al. 2021. A high resolution reanalysis for the Mediterranean Sea. Front Earth Sci. 9:702285. doi:10.3389/feart.2021.702285.
  • Escudier R, Clementi E, Omar M, Cipollone A, Pistoia J, Aydogdu A, Drudi M, Grandi A, Lyubartsev V, Lecci R, et al. 2020. Mediterranean Sea physical reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1.
  • Ivanovic RF, Valdes PJ, Gregoire L, Flecker R, Gutjahr M. 2014. Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global general circulation model. Clim Dyn. 42(3):859–877.
  • Jaccard S, Galbraith E. 2012. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat Geosci. 5:151–156. doi:10.1038/ngeo1352.
  • Jackson LC, Dubois C, Forget G, Haines K, Harrison M, Iovino D, et al. 2019. The mean state and variability of the North Atlantic circulation: a perspective from ocean reanalyses. J Geophys Res Oceans. 124:9141–9170. doi:10.1029/2019JC015210.
  • Jia Y, Coward AC, De Cuevas BA, Webb DJ, Drijfhout SS. 2007. A model analysis of the behavior of the Mediterranean water in the North Atlantic. J Phys Oceanogr. 37(3):764–786.
  • Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat Geosci. 5(3):171–180.
  • McCarthy GD, Smeed DA, Johns WE, Frajka-Williams E, Moat BI, Rayner D, Baringer MO, Meinen CS, Collins J, Bryden HL. 2015. Measuring the Atlantic meridional overturning circulation at 26°N. Prog Oceanogr. 130:91–111. doi:10.1016/j.pocean.2014.10.006.
  • Pinardi N, Bonaduce A, Navarra A, Dobricic S, Oddo P. 2014. The mean sea level equation and its application to the Mediterranean Sea. J Clim. doi:10.1175/JCLI-D-13-00139.1.
  • Pinardi N, Cessi P, Borile F, Wolfe CL. 2019. The Mediterranean Sea overturning circulation. J Phys Oceanogr. 49(7):1699–1721.
  • Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, et al. 2015. Mediterranean Sea large-scale low frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr. 132:318–332. doi:10.1016/j.pocean.2013.11.003.
  • Rixen M, Beckers J-M, Levitus S, Antonov J, Boyer T, Maillard C, Fichaut M, Balopoulos E, Iona S, Dooley H, et al. 2005. The Western Mediterranean deep water: a proxy for climate change. Geophys Res Lett. 32:L12608. doi:10.1029/2005GL022702.
  • Soto-Navarro J, Criado-Aldeanueva F, Garci-Lafuente J, Sanchez-Roman A. 2010. Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. J Geophys Res. 115. doi:10.1029/2010JC006302.
  • Storto A, Masina S, Simoncelli S, Iovino D, Cipollone A, Drevillon M, Drillet Y, von Schuckman K, Parent L, Garric G, et al. 2019. The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Clim Dyn. 53:287–312.
  • Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R. 2009. Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J Clim. 22(23):6377–6403.
  • Volkov DL, Baringer M, Smeed D, Johns W, Landerer FW. 2019. Teleconnection between the Atlantic meridional overturning circulation and sea level in the Mediterranean Sea. J Clim. 32(3):935–955.
  • Volkov DL, Fu L-L. 2011. Interannual variability of the azores current strength and eddy energy in relation to atmospheric forcing. J Geophys Res. 116:C11011. doi:10.1029/2011JC007271.
  • Von Schuckmann K, Le Traon P-Y, Smith N, Pascual A, Brasseur P, Fennel K, Djavidnia S. 2018. Copernicus Marine Service Ocean state report. J Oper Ocean. 11:S1–S142. doi:10.1080/1755876X.2018.1489208.
  • Von Schuckmann K, Le Traon P-Y, Smith N, Pascual A, Djavidnia S, Gattuso J-P, Grégoire M, Nolan G, Aaboe S, Fanjul EÁ, et al. 2020. Copernicus Marine Service Ocean ERA-interim state report, issue 4. J Oper Oceanogr. 13(suppl. 1):S1–S172. doi:10.1080/1755876X.2020.1785097.
  • Waldman R, Brüggemann N, Bosse A, Spall M, Somot S, Sevault F. 2018. Overturning the Mediterranean thermohaline circulation. Geophys Res Lett. 45(16):8407–8415.
  • Wolfe CL, Cessi P. 2009. Overturning circulation in an eddy-resolving model: the effect of the pole-to-pole temperature gradient. J Phys Oceanogr. 39(1):125–142.
  • Wüst G. 1961. On the vertical circulation of the Mediterranean Sea. J Geophys Res. 66(10):3261–3271.
  • Brito AC, Garrido-Amador P, Gameiro C, Nogueira M, Moita MT, Cabrita MT. 2020. Integrating in situ and ocean color data to evaluate ecological quality under the water framework directive. Water (Basel). 12(12):3443.
  • Civitarese G, Gačić M, Lipizer M, Eusebi Borzelli GL. 2010. On the impact of the bimodal oscillating system (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences. 7:3987–3997.
  • Cossarini G, Feudale L, Teruzzi A, Bolzon G, Coidessa G, Solidoro C, Di Biagio V, Amadio C, Lazzari P, Brosich A, Salon S. 2021. High-resolution reanalysis of the Mediterranean Sea biogeochemistry (1999–2019). Front Mar Sci. 8:741486. doi:10.3389/fmars.2021.741486.
  • Crise A, Allen JI, Baretta J, Crispi G, Mosetti R, Solidoro C. 1999. The Mediterranean pelagic ecosystem response to physical forcing. Prog Oceanogr. 44(1–3):219–243.
  • Crispi G, Mosetti R, Solidoro C, Crise A. 2001. Nutrients cycling in Mediterranean basins: the role of the biological pump in the trophic regime. Ecol Modell. 138(1–3):101–114.
  • Desmit X, Thieu V, Billen G, Campuzano F, Dulière V, Garnier J, Lassaletta L, Ménesguen A, Neves R, Pinto L, et al. 2018. Reducing marine eutrophication may require a paradigmatic change. Sci Total Environ. 635:1444–1466.
  • Di Biagio V, Cossarini G, Salon S, Lazzari P, Querin S, Sannino G, Solidoro C. 2019. Temporal scales of variability in the Mediterranean Sea ecosystem: insight from a coupled model. J Mar Sys. 197:103176.
  • Di Biagio V, Cossarini G, Salon S, Solidoro C. 2020. Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll. Biogeosciences. 17(23):5967–5988.
  • D’Ortenzio F, Iudicone D, de Boyer Montegut C, Testor P, Antoine D, Marullo S, Santoleri R, Madec G. 2005. Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophys Res Lett. 32:12.
  • Escudier R, Clementi E, Omar M, Cipollone A, Pistoia J, Aydogdu A, Drudi M, Grandi A, Lyubartsev V, Lecci R, et al. 2020. Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (version 1) [data set]. Copernicus Monitoring Environment Marine Service (CMEMS). Available from: https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1.
  • Gačić M, Borzelli GLE, Civitarese G, Cardin V, Yari S. 2010. Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophys Res Lett. 37:L09608. doi:10.1029/2010GL043216.
  • Gohin F, Van der Zande D, Tilstone G, Eleveld MA, Lefebvre A, Andrieux-Loyer F, Blauw AN, Bryère P, Devreker D, Garnesson P, et al. 2019. Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English channel. Is the water quality improving? Remote Sens Environ. 233:111343.
  • Greenwood N, Devlin MJ, Best M, Fronkova L, Graves CA, Milligan A, Barry J, Van Leeuwen SM. 2019. Utilizing eutrophication assessment directives from transitional to marine systems in the Thames Estuary and Liverpool Bay, UK. Front Mar Sci. 6:116.
  • Hernandez F, Smith G, Baetens K, Cossarini G, Garcia-Hermosa I, Drevillon M, Maksymczuk J, Melet A, Regnier C, von Schuckman K. 2018. Measuring performances skill and accuracy in operational oceanography. New Front Oper Oceanogr. 2018:759–795.
  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz.Sabater J, Nicolas J, Peubey C, Radu R, Schepers D. 2020. The ERA5 global reanalysis. Quarter J Royal Meteoro Soc. 146(730):1999–2049. doi:10.1016/j.piutam.2018.03.003.
  • Houpert L, Testor P, de Madron XD, Somot S, D’ortenzio F, Estournel C, Lavigne H. 2015. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog Oceanogr. 132:333–352.
  • Huertas IE, Ríos AF, García-Lafuente J, Navarro G, Makaoui A, Sánchez-Román A, Rodriguez-Galvez A, Ruiz OJ, Pérez FF. 2012. Atlantic forcing of the Mediterranean oligotrophy. Global Biogeochem Cycles. 26:GB2022. doi:10.1029/2011GB004167.
  • Josey SA, Somot S, Tsimplis M. 2011. Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange. J Geophys Res Oceans. 116:C2.
  • Lavigne H, Civitarese G, Gačić M, D’Ortenzio F. 2018. Impact of decadal reversals of the north Ionian circulation on phytoplankton phenology. Biogeosciences. 15:4431–4445. doi:10.5194/bg-15-4431-2018.
  • Lazzari P, Solidoro C, Ibello V, Salon S, Teruzzi A, Béranger K, Colella S, Crise A. 2012. Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. Biogeosciences. 9(1):217–233.
  • Lazzari P, Solidoro C, Salon S, Bolzon G. 2016. Spatial variability of phosphate and nitrate in the Mediterranean Sea: A modeling approach. Deep Sea Res. Part I: Oceanogr. Res. Pap. 108:39-52. doi:10.1016/j.dsr.2015.12.006.
  • Lledó L, Cionni I, Torralba V, Bretonnière PA, Samsó M. 2020. Seasonal prediction of Euro–Atlantic teleconnections from multiple systems. Environ Res Lett. 15(7):074009.
  • Macias D, Garcia-Gorriz E, Stips A. 2018a. Major fertilization sources and mechanisms for Mediterranean Sea coastal ecosystems. Limnol Oceanogr. 63:897–914. doi:10.1002/lno.10677.
  • Macias D, Garcia-Gorriz E, Stips A. 2018b. Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) scenarios. Sci Rep. 8:6626. doi:10.1038/s41598-018-24965-0.
  • Manca B, Burca M, Giorgetti A, Coatanoan C, Garcia MJ, Iona A. 2004. Physical and biochemical averaged vertical profiles in the Mediterranean regions: an important tool to trace the climatology of water masses and to validate incoming data from operational oceanography. J Mar Sys. 48(1-4):83–116.
  • Mayot N, D’Ortenzio F, Taillandier V, Prieur L, de Fommervault OP, Claustre H, Bosse A, Testor P, Conan P. 2017. Physical and biogeochemical controls of the phytoplankton blooms in North Western Mediterranean Sea: a multiplatform approach over a complete annual cycle (2012–2013 DEWEX experiment). J Geophys Res Oceans. 122:9999–10019. doi:10.1002/2016JC012052.
  • Moutin T, Raimbault P. 2002. Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J Mar Sys. 33:273–288.
  • Papadopoulos VP, Josey SA, Bartzokas A, Somot S, Ruiz S, Drakopoulou P. 2012. Large-scale atmospheric circulation favoring deep-and intermediate-water formation in the Mediterranean Sea. J Clim. 25(18):6079–6091.
  • Pardo S, Sathyendranath S, Platt T. 2021. Chapter 2.4 eutrophic and oligotrophic indicators for the North Atlantic Ocean. In Ocean state report n. 5 edited by von Schuckmann. J Oper Oceanogr 14(sup1):1–185. doi:10.1080/1755876X.2021.1946240.
  • Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, Bonaduce A. 2015. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Progress in Oceanography. 132:318–332.
  • Poikāne S, Alves MH, Argillier C, van den Berg M, Buzzi F, Hoehn E, de Hoyos C, Karottki I, Laplace-Treyture C, Solheim AL, et al. 2010. Defining chlorophyll -a reference conditions in European lakes. Environ Manag. 45(6):1286–1298. doi:10.1007/s00267-010-9484-4.
  • Reale M, Giorgi F, Solidoro C, Di Biagio V, Di Sante F, Mariotti L, Farneti R, Sannino G. 2020a. The regional earth system model RegCM-ES: evaluation of the Mediterranean climate and marine biogeochemistry. J Adv Model Earth Syst. 12(9):e2019MS001812.
  • Reale M, Salon S, Somot S, Solidoro C, Giorgi F, Crise A, Cossarini G, Lazzari P, Sevault F. 2020b. Influence of large-scale atmospheric circulation patterns on nutrient dynamics in the Mediterranean Sea in the extended winter season (October–March) 1961–1999. Clim Res. 82:117–136.
  • Richon C, Dutay JC, Dulac F, Wang R, Balkanski Y, Nabat P, Aumont O, Desboeufs K, Laurent B, Guieu C, et al. 2018a. Modeling the impacts of atmospheric deposition of nitrogen and desert dust-derived phosphorus on nutrients and biological budgets of the Mediterranean Sea. Prog Oceanogr. 163:21–39.
  • Richon C, Dutay JC, Dulac F, Wang R, Balkanski Y. 2018b. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences. 15(8):2499–2524.
  • Richon C, Dutay JC, Bopp L, Vu BL, Orr JC, Somot S, Dulac F. 2019. Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario. Biogeosciences. 16(1):135–165.
  • Salon S, Cossarini G, Bolzon G, Feudale L, Lazzari P, Teruzzi A, Solidoro C, Crise A. 2019. Novel metrics based on biogeochemical argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts. Ocean Sci. 15:997–1022. doi:10.5194/os-15-997-2019.
  • Schroeder K, Josey SA, Herrmann M, Grignon L, Gasparini GP, Bryden HL. 2010. Abrupt warming and salting of the Western Mediterranean deep water: atmospheric forcings and lateral advection. J Geophys Res. 115:C08029. doi:10.1029/2009JC005749.
  • Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d’Alcalá M, Vaqué D, et al. 2010. Plankton in the open Mediterranean Sea: a review. Biogeosciences. 7:1543–1586. doi:10.5194/bg-7-1543-2010.
  • Souvermezoglou Ε, Krasakopoulou Ε, Pavlidou A. 2014. Temporal and spatial variability of nutrients and oxygen in the North Aegean Sea during the last thirty years. Mediterranean Mar Sci. 15(4):805–822.
  • Teruzzi A, Di Biagio V, Feudale L, Bolzon G, Lazzari P, Salon S, Di Biagio V, Coidessa G, Cossarini G. 2021. Mediterranean Sea biogeochemical reanalysis (CMEMS MED-Biogeochemistry, MedBFM3 system) (version 1) [data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_BGC_006_008_MEDBFM3.
  • Ulbrich U, Lionello P, Belušic D, Jacobeit J, Knippertz P, Kuglitsch FG, Leckebusch GC, Luterbacher J, Maugeri M, Maheras P, et al. 2012. Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes. In: Lionello P, editor. The climate of the Mediterranean region. From the past to the future. Amsterdam: Elsevier; p. 301–346.
  • Ullmann A, Fontaine B, Roucou P. 2014. Euro-Atlantic weather regimes and Mediterranean rainfall patterns: present-day variability and expected changes under CMIP5 projections. Int J Climatol. 34(8):2634–2650.
  • Bensoussan N, Chiggiato J, Buongiorno Nardelli B, Pisano A, Garrabou J. 2019. Insights on 2017 marine heat waves in the Mediterranean Sea. In: Copernicus Marine Service Ocean state report, issue 3. J Oper Oceanogr. 12(sup1):s26–s30. doi:10.1080/1755876X.2019.1633075.
  • Berthon J-F, Zibordi G. 2004. Bio-optical relationships for the northern Adriatic Sea. Int J Remote Sens. 25:1527–1532. doi:10.1080/01431160310001592544.
  • Bianchi C, Morri C. 2000. Marine Biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar Pollut Bull. 40:367–376. doi:10.1016/S0025-326X(00)00027-8.
  • Bianchi CN, Morri C, Chiantore M, Montefalcone M, Parravicini V, Rovere A. 2012. Mediterranean Sea biodiversity between the legacy from the past and a future of change. In Life in the Mediterranean Sea: a look at habitat changes. Vol. 1:55. Hauppauge, NY: Nova Science Publishers, Inc.
  • Buongiorno Nardelli B, Tronconi C, Pisano A, Santoleri R. 2013. High and ultra-high resolution processing of satellite sea surface temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens Environ. 129:1–16. doi:10.1016/j.rse.2012.10.012.
  • Cadotte MW, Dinnage R, Tilman D. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology. 93:S223–S233.
  • Cebrian E, Uriz MJ, Garrabou J, Ballesteros E. 2011. Sponge mass mortalities in a warming Mediterranean Sea: are cyanobacteria-harboring species worse off? PLoS One. 6(6):e20–e211.
  • Cerrano C, Bavestrello G, Bianchi CN, et al. 2000. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (northwestern Mediterranean), summer 1999. Ecol Lett. 3:284–293.
  • Coll M, Piroddi C, Steenbeek J, Kaschner K, Lasram BR, Aguzzi F, et al J. 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One. 5(8):e11842. doi:10.1371/journal.pone.0011842.
  • Colella S, Falcini F, Rinaldi E, Sammartino M, Santoleri R. 2016. Mediterranean ocean colour chlorophyll trends. PLoS One. 11(6):e0155756. doi:10.1371/journal.pone.0155756.
  • Cullen J. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll A. Can J Fish Aquat Sci. 39(5):791–803. doi:10.1139/f82-108.
  • Darmaraki S, Somot S, Sevault F, Nabat P. 2019a. Past variability of Mediterranean Sea marine heatwaves. Geophys Res Lett. 46:9813–9823. doi:10.1029/2019GL082933.
  • Darmaraki S, Somot S, Sevault F, Nabat P, Narvaez WDC, Cavicchia L, Djurdjevic V, Li L, Sannino G, Sein DV. 2019b. Future evolution of marine heatwaves in the Mediterranean Sea. Clim Dyn. 53:1371–1392. doi:10.1007/s00382-019-04661-z.
  • Diaz-Almela E, Marba N, Duarte CM. 2007. Consequences of Mediterranean warming events in seagrass (posidonia oceanica) flowering records. Global Change Biol. 13(1):224–235.
  • D’Ortenzio F, Ribera d'Alcala M. 2009. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences. 6:139–148. doi:10.5194/bg-6-139-2009.
  • Escudier R, Clementi E, Omar M, Cipollone A, Pistoia J, Aydogdu A, Drudi M, Grandi A, Lyubartsev V, Lecci R, et al. 2020. Mediterranean Sea physical reanalysis (CMEMS MED-currents) (version 1) [data set]. Copernicus Monitoring Environment Marine Service (CMEMS). Available from: https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1.
  • Frölicher TL, Laufkötter C. 2018. Emerging risks from marine heat waves. Nat Commun. 9:650. doi:10.1038/s41467-018-03163-6.
  • Galli G, Solidoro C, Lovato T. 2017. Marine heat waves hazard 3D maps and the risk for low motility organisms in a warming Mediterranean Sea. Front Mar Sci. 4:136. doi:10.3389/fmars.2017.00136.
  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M, et al. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol. 15:1090–1103. doi:10.1111/j.1365-2486.2008.01823.x.
  • Garrabou J, Gómez-Gras D, Ledoux J-B, Linares C, Bensoussan N, et al. 2019. Collaborative database to track mass mortality events in the Mediterranean Sea. Front Mar Sci. 6. doi:10.3389/fmars.2019.00707.
  • Garrabou J, Perez T, Sartoretto S, Harmelin JG. 2001. Mass mortality event in red coral Corallium rubrum populations in Provence region (France, NW Mediterranean). Mar Ecol Prog Ser. 217:263–272.
  • Haguenauer A, Zuberer F, Ledoux JB, Aurelle D. 2013. Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics. J. Exp. Mar. Biol. Ecol. 449:349-357. doi:10.1016/j.jembe.2013.10.010.
  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, et al. 2016. A hierarchical approach to defining marine heatwaves. Prog Oceanogr. 141:227–238. doi:10.1016/j.pocean.2015.12.014.
  • Huete-Stauffer C, Vielmini I, Palma M, Navone A, Panzalis P, Vezzulli L, Misic C, Cerrano C. 2011. Paramuricea clavata (anthozoa, octocorallia) loss in the marine protected area of tavolara (Sardinia, Italy) due to a mass mortality event. Mar Ecol. 32:107–116.
  • Ibrahim O, Mohamed B, Nagy H. 2021. Spatial variability and trends of marine heat waves in the Eastern Mediterranean Sea over 39 years. J Mar Sci Eng. 9:643. doi:10.3390/jmse9060643.
  • Intergovernmental Panel on Climate Change. 2014. Climate change 2014 mitigation of climate change. doi:10.1017/cbo9781107415416.
  • Kersting DK, Bensoussan N, Linares C. 2013. Long-term responses of the endemic reef-builder cladocora caespitosa to Mediterranean warming. PLoS One. 8:1–12. doi:10.1371/journal.pone.0070820.
  • Lee ZP, Carder KL, Arnone RA. 2002. Deriving inherent optical properties from water color: a multi- band quasi-analytical algorithm for optically deep waters. Appl Opt. 41:5755–5772. doi:10.1364/AO.41.005755.
  • Linares C, Coma R, Diaz D, Zabala M, Hereu B, Dantart L. 2005. Immediate and delayed effects of a mass mortality event on gorgonian population dynamics and benthic community structure in the NW Mediterranean Sea. Mar Ecol Prog Ser. 305:127–137.
  • Liquete C, Piroddi C, Macías D, et al. 2016. Ecosystem services sustainability in the Mediterranean Sea: assessment of status and trends using multiple modelling approaches. Sci Rep. 6:34162. doi:10.1038/srep34162.
  • Marba N, Duarte CM. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biol. 16(8):2366–2375.
  • Martín-López B, Oteros-Rozas E, Cohen-Shacham E, Santos-Martin F, Nieto-Romero M, Carvalho-Santos C, González J, Garcia Llorente M, Klass K, Geijzendorffer IR, et al. 2016. Ecosystem services supplied by Mediterranean Basin ecosystems.
  • Mélin F, Vantrepotte V. 2015. How optically diverse is the coastal ocean? Remote Sens Environ. 160:235–251. doi:10.1016/j.rse.2015.01.023.
  • Mori AS, Furukawa T, Sasaki T. 2013. Response diversity determines the resilience of ecosystems to environmental change. Biol Rev. 88:349–364.
  • Munari C. 2011. Effects of the 2003 European heatwave on the benthic community of a severe transitional ecosystem (Comacchio saltworks, Italy). Mar Pollut Bull. 62(12):2761–2770.
  • Naeem S. 2012. Ecological consequences of declining biodiversity: a biodiversity-ecosystem function (BEF) framework for marine systems. In: M Solan, RJ Aspden, DM Paterson, editors. Marine biodiversity and ecosystem functioning: frameworks, methodologies, and integration. Oxford: Oxford University Press; p. 34–51.
  • Oliver ECJ, Benthuysen JA, Darmaraki S, Donat MG, Hobday AJ, Holbrook NJ, Schlegel RW, Sen Gupta A. 2021. Ann Rev Mar Sci. 13(1):313–342.
  • Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Gupta AS, Hobday AJ, Holbrook NJ, et al. 2018. Longer and more frequent marine heatwaves over the past century. Nat Commun. 9:1324. doi:10.1038/s41467-018-03732-9.
  • Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J. 2000. Mortalité massive d’invertébrés marins: un événement sans précédent en Méditerranée nord-occidentale. Compt Rendus Acad Sci III Sci Vie. 323:853–865.
  • Pisano A, Buongiorno Nardelli B, Tronconi C, Santoleri R. 2016. The new Mediterranean optimally interpolated pathfinder AVHRR SST dataset (1982–2012). Remote Sens Environ. 176:107–116.
  • Pisano A, Marullo S, Artale V, Falcini F, Yang C, Leonelli FE, Santoleri R, Buongiorno Nardelli B. 2020. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 12:132.
  • Pitacco V, Mistri M, Munari C. 2018. Long-term variability of macrobenthic community in a shallow coastal lagoon (Valli di Comacchio, northern Adriatic): Is community resistant to climate changes? Mar. Environ. Res. 137:73–87. doi:10.1016/j.marenvres.2018.02.026.
  • Schiaparelli S, Castellano M, Povero P, Sartoni G, Cattaneo-Vietti R. 2007. A benthic mucilage event in North-Western Mediterranean Sea and its possible relationships with the summer 2003 European heatwave: short-term effects on littoral rocky assemblages. Mar Ecol. 28(3):341–353.
  • Skliris N, Sofianos S, Gkanasos A, Mantziafou A, Vervatis V, Axaopoulos P, Lascaratos A. 2012. Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn. 62:13–30.
  • Storto A, Masina S, Simoncelli S, Iovino D, Cipollone A, Drevillon M, Drillet Y, von Schuckman K, Parent L, Garric G, et al. 2019. The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Clim Dyn. 53:287–312.
  • Thompson RM, Beardall J, Beringer J, Grace M, Sardina P. 2013. Means and extremes: building variability into community-level climate change experiments. Ecology Letters, 16(6):799-806. doi:10.1111/ele.12095.
  • Volpe G, Colella S, Brando VE, Forneris V, Padula FL, Cicco AD, Sammartino M, Bracaglia M, Artuso F, Santoleri R. 2019. Mediterranean ocean colour level 3 operational multi-sensor processing. Ocean Sci. 15(1):127–146. doi:10.5194/os-15-127-2019.
  • Volpe G, Santoleri R, Vellucci V, d'Alcalà MR, Marullo S, d'Ortenzio F. 2007. The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates. Remote Sens. Environ. 107(4):625-638. doi:10.1016/j.rse.2006.10.017.
  • Zveryaev II. 2015. Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature. J Geophys Res Oceans. 120:2813–2825.
  • Akpınar A, Bingölbali B, Van Vledder GP. 2016. Wind and wave characteristics in the Black Sea based on the {SWAN} wave model forced with the {CFSR} winds. Ocean Eng. 126:276–298. doi:10.1016/j.oceaneng.2016.09.026.
  • Akpınar A, Bingölbali B, Van vledder GP. 2017. Long-term analysis of wave power potential in the Black Sea, based on 31-year SWAN simulations. Ocean Eng. 130:482–497.
  • Akpınar A, Jafali H, Rusu E. 2019. Temporal variation of the wave energy flux in hotspot areas of the Black Sea. Sustainability. 11:562.
  • Akpınar A, Kömürcü Mİ. 2012. Wave energy potential along the south-east coasts of the Black Sea. Energy. 42:289–302.
  • Akpınar A, Kömürcü Mİ. 2013. Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Appl Energy. 101:502–512.
  • Álvarez Fanjul E, de Pascual Collar Á, Gómez BP, De Alfonso M, Sotillo MG, Staneva J, Clementi E, Grandi A, Zacharioudaki A, Korres G, et al. 2019. Sea level, sea surface temperature and SWH extreme percentiles: combined analysis from model results and in situ observations. In: Copernicus Marine Service Ocean state report, issue 3. J Oper Oceanogr. 12(Suppl. 1):s31–s39. doi:10.1080/1755876X.2019.1633075.
  • Amarouche K, Akpınar A, Çakmak RE, Houma F, Bachari NEI. 2020. Assessment of storm events along the Algiers coast and their potential impacts. Ocean Eng. 210:107432. doi:10.1016/j.oceaneng.2020.107432.
  • Ardhuin F, Rogers E, Babanin AV, Filipot J-F, Magne R, Roland A, Westhuysen A, van der Queffeulou P, Lefevre J-M, Aouf L, Collard F. 2010. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J Phys Oceanogr. 40(9):1917–1941. doi:10.1175/2010JPO4324.1
  • Arkhipkin VS, Gippius FN, Koltermann KP, Surkova GV. 2014. Wind waves in the Black Sea: results of a hindcast study. Nat Hazards Earth Syst Sci. 14:2883–2897. doi:10.5194/nhess-14-2883-2014.
  • Benetazzo A, Barbariol F, Pezzutto P, Staneva J, Behrens A, Davison S, Bergamasco F, Sclavo M, Cavaleri L. 2021. Towards a unified framework for extreme sea waves from spectral models: rationale and applications. Ocean Eng. 219:108263. doi:10.1016/j.oceaneng.2020.108263.
  • Bidlot J-R, Janssen P, Abdalla S. 2007. A revised formulation of ocean wave dissipation and its model impact (p. 27). https://doi.org/10.21957/m97gmhqze.
  • Bingölbali B, Jafali H, Akpınar A, Bekiroğlu S. 2020. Wave energy potential and variability for the south west coasts of the Black Sea: the WEB-based wave energy atlas. Renew Energy. 154:136–150.
  • Bingölbali, B., Majidi, A.G., Akpınar, A., Inter- and intra-annual wave energy resource assessment in Southwestern Black Sea coast, Renewable Energy, 169, (2021) 809-819.
  • Çalışır E, Soran MB, Akpınar A. 2021. Quality of the ERA5 and CFSR winds and their contribution to wave modelling performance in a semi-closed sea. J Oper Oceanogr. doi:10.1080/1755876X.2021.1911126.
  • Cavaleri L, Barbariol F, Benetazzo A. 2020. Wind–wave modeling: where we are, where to go. J Mar Sci Eng. 8:260. doi:10.3390/jmse8040260.
  • ECMWF. 2019. ECMWF severe event catalogue for evaluation of multi-scale prediction of extreme weather, Technical Memo No. 851, pp. 1–32.
  • ECMWF. 2020. PART VII: ECMWF WAVE MODEL, IFS DOCUMENTATION – Cy47r1 Operational implementation 30 June 2020. https://www.ecmwf.int/sites/default/files/elibrary/2020/Part-VII-ECMWF_Wave_Model.pdf
  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, et al. 2020. The ERA5 global reanalysis. Quart J Royal Meteorol Soc. 146(730):1999–2049.
  • Janssen PAEM, Bidlot J-R. 2018. Progress in operational wave forecasting. Proc IUTAM. 26:14–29. doi:10.1016/j.piutam.2018.03.003.
  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM. 1994. Dynamics and modelling of ocean waves. Cambridge University Press. doi:10.1017/CBO9780511628955.
  • Le Traon PY, Abadie V, Ali A, Aouf L, Artioli Y, Ascione I, Autret E, Aydogdu A, Aznar R, Bahurel P, et al. 2021. The copernicus marine service from 2015 to 2021: six years of achievements. Mercator Océan J. 57:22. doi:10.48670/moi-cafr-n813.
  • Rusu E. 2009. Wave energy assessments in the Black Sea. J Mar Sci Technol. 14:359e72. doi:10.1007/s00773-009-0053-6.
  • Rusu L. 2019. The wave and wind power potential in the western Black Sea. Renew Energy. 139:1146–1158. doi:10.1016/j.renene.2019.03.017.
  • Sartini L, Besio G, Cassola F. 2017. Spatio-temporal modelling of extreme wave heights in the Mediterranean Sea. Ocean Modell. 117:52–69. doi:10.1016/j.ocemod.2017.07.001.
  • Staneva J, Alari V, Breivik O, Bidlot J-R, Mogensen K. 2017. Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dynamics, 67(1):81–191. doi.org/10.1007/s10236-016-1009-0
  • Staneva J, Behrens A, Gayer G, Aouf L. 2019. Synergy between CMEMS products and newly available data from SENTINEL. In: Schuckmann, K., et al. (2019): Copernicus Marine Service Ocean state report, issue 3, chapter 3.3. J Oper Oceanogr. doi:10.1080/1755876X.2019.1633075.
  • Staneva J, Behrens A, Gayer G. 2020a. Predictability of large wave heights in the western Black Sea during the 2018 winter storms. In: Schuckmann, K., et al. (eds): Copernicus Marine Service Ocean state report, issue 4, J Oper Oceanogr. 13. Section 4.7. doi:10.1080/1755876X.2020.1785097
  • Staneva J, Behrens A, Ricker M, Gayer G. 2020b. Black Sea waves reanalysis (CMEMS BS-waves) (version 2) [data set]. Copernicus monitoring environment marine service (CMEMS). doi:10.25423/CMCC/BLKSEA_MULTIYEAR_WAV_007_006.
  • Staneva J, Ricker M, Carrasco Alvarez R, Breivik Ø, Schrum C. 2021. Effects of wave-induced processes in a coupled wave–ocean model on particle transport simulations. Water (Basel). 13:415. doi:10.3390/w13040415.
  • Stoffelen A, Verspeek J, Vogelzang J, Verhoef A. 2017. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. J Sel Topics Appl Earth Ob Rem Sens. 10(5):2123–2134. doi:10.1109/JSTARS.2017.2681806.
  • Valchev NN, Andreeva NK, Valcheva NN. 2013. Assessment of off-shore wave energy in the Black Sea on the basis of long-term wave hindcast. Proceedings of IMAM 2013. 15th international congress of the international maritime association of the mediterranean (IMAM).
  • Van Vledder G, Akpinar A. 2016. Spectral partitioning and swells in the Black Sea. Coastal Eng Proc. 35:21–21. doi:10.9753/icce.v35.waves.21.
  • Von Schuckmann K, Le Traon P-Y, Smith N, Pascual A, Djavidnia S, Gattuso J-P, Grégoire M, Nolan G, Aaboe S, Fanjul EÁ, et al. 2020. Copernicus Marine Service Ocean state report, issue 4. J Operat Ocean. 13(suppl. 1):S1–S172. doi:10.1080/1755876X.2020.1785097.
  • WAMDI Group. 1988. The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr. 18(12):1775–1810. doi:10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.
  • Weisse R, Günther H. 2007. Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn. 57:161–172.
  • Aydogdu A, Pinardi N, Özsoy E, Danabasoglu G, Gürses G, Karspeck A. 2018. Circulation of the Turkish straits system under interannual atmospheric forcing. Ocean Sci. 14:999–1019. doi:10.5194/os-14-999.
  • Buongiorno Nardelli B, Colella S, Santoleri R, Guarracino M, Kholod A. 2010. A re-analysis of Black Sea surface temperature. J Mar Sys. 79(1-2):50–64. doi:10.1016/j.jmarsys.2009.07.001.
  • Buongiorno Nardelli B, Tronconi C, Pisano A, Santoleri R. 2013. High and ultra-high resolution processing of satellite sea surface temperature data over Southern European Seas in the framework of MyOcean project. Rem Sens Env. 129:1–16. doi:10.1016/j.rse.2012.10.012.
  • Capet A, Vandenbulcke L, Grégoire M. 2020. A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status. Biogeosciences. 17(24):6507–6525.
  • Coman MA, Griffiths RW, Hughes GO. 2006. Sandström's experiments revisited. J Mar Res. 64:783–796.
  • Dobricic S, Pinardi N. 2008. An oceanographic three-dimensional variational data assimilation scheme. Ocean Modell. 22:89–105.
  • Frajka-Williams, E., Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo, M. P., Cunningham, S. A., Danabasoglu, G., Dong, S., Donohue, K. A., Elipot, S., et al. (2019). Atlantic meridional overturning circulation: observed transport and variability, Front Mar Sci. 6:260. doi:10.3389/fmars.2019.00260
  • Ilıcak M, Vallis GK. 2012. Simulations and scaling of horizontal convection. Tellus A. 64:183377.
  • Ilıcak M, Adcroft A, Griffies SM, Hallberg R. 2012. Spurious dianeutral mixing and the role of momentum closure. Ocean Modell. 45-46:37–58.
  • Ledwell JR, Watson AJ, Law CS. 1998. Mixing of a tracer in the pycnocline. J Geophys Res. 103(C10):21499–21521.
  • Lima L, Aydogdu A, Escudier R, Masina S, Ciliberti SA, Azevedo D, Peneva EL, Causio S, Cipollone A, Clementi E, et al. 2020. Black Sea physical reanalysis (CMEMS BS-Currents) (version 1) [data set]. Copernicus monitoring environment marine service (CMEMS). https://doi.org/10.25423/CMCC/BLKSEA_MULTIYEAR_PHY_007_004.
  • Lima L, Ciliberti SA, Aydoğdu A, Masina S, Escudier R, Cipollone A, Azevedo D, Causio S, Peneva E, Lecci R, et al. 2021. Climate signals in the Black Sea from a multidecadal eddy-resolving reanalysis. Front Mar Sci. doi:10.3389/fmars.2021.710973.
  • Madec G. 2016. NEMO ocean engine. In: Note du Pole de modélisation No. 27, Institut Pierre-Simon Laplace (IPSL), France.
  • Myroshnychenko V. 2020. SeaDataCloud Black Sea temperature and salinity climatology V2. https://doi.org/10.12770/847f1627-f39f-40af-b3b0-a2f6d29ff4dc.
  • Oguz T, Latun VS, Latif MA, Vladimirov VV, Sur HI, Markov AA, Özsoy E, Kotovshchikov BB, Eremeev VV, Ünlüata Ü. 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Res I. 40(8):1597–1612.
  • Özsoy E, Beșiktepe Ş. 1995. Sources of double diffusive convection and impacts on mixing in the Black Sea. Geophys Monogr Ser. 94:261–274.
  • Özsoy E, Ünlüata Ü, Top Z. 1993. The evolution of Mediterranean water in the Black Sea: interior mixing and material transport by double diffusive intrusions. Prog Oceanogr. 31(3):275–320.
  • Özsoy E, Ünlüata Ü. 1997. Oceanography of the Black Sea: a review of some recent results. Earth-Sci Rev 42:231–272.
  • Pinardi N, Cessi P, Borile F, Wolfe CL. 2019. The Mediterranean Sea overturning circulation. J Phys Ocean. 49(7):1699–1721.
  • Sandström JW. 1908. Dynamische versuche mit meerwasser. Annalen der Hydrographie und Maritimen Meteorologie. 36:6–23.
  • Sandström JW. 1916. Meteorologische studien im schwedischen hochgebirge. Göteborgs Kungl Vetenskaps- och Vitterhetssamhälles Handlingar. 17:1–48.
  • Scotti A, White B. 2011. Is horizontal convection really ‘non-turbulent?’ Geophys Res Lett. 38:L21609. doi:10.1029/2011GL049701.
  • Stanev EV. 1990. On the mechanisms of the Black Sea circulation. Earth-Sci Rev. 28:285–319.
  • Stanev EV, Staneva J, Bullister JL, Murray JW. 2004. Ventilation of the Black Sea pycnocline. Parameterization of convection, numerical simulations and validations against observed chlorofluorocarbon data. Deep-Sea Res. 51/12:2137–2169.
  • Stanev EV, Peneva E, Chtirkova B. 2019. Climate change and regional ocean water mass disappearance: case of the Black Sea. J Geophys Res Oceans. 124:4803–4819. doi:10.1029/2019JC015076.
  • Storto A, Dobricic S, Masina S, Di Pietro P. 2011. Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon Weather Rev. 139(3):738–754.
  • Zhang R. 2010. Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys Res Lett. 37:L16703.

References

  • Agusti S, Martinez-Ayala J, Regaudie-de-Gioux A, Duarte CM. 2017. Oligotrophication and metabolic slowing-down of a NW Mediterranean coastal ecosystem. Front Mar Sci. 4:432. doi:10.3389/fmars.2017.00432.
  • Alamanos A, Linnane S. 2021. Estimating SDG indicators in data-scarce areas: the transition to the use of new technologies and multidisciplinary studies. Earth. 2:635–652. doi:10.3390/earth2030037.
  • Anderson DM, Glibert PM, Burkholder JM. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries. 25:704–726. doi:10.1007/BF02804901.
  • Andersen JH, Kallenbach E, Murray C, Ledang AB. 2016. Eutrophication in the Danish parts of the North Sea, Skagerrak and Kattegat 2006–2014. A literature-based status assessment. NIVA Denmark Report. https://brage.bibsys.no/xmlui/handle/11250/2406499.
  • Anderson K, Ryan B, Sonntag W, Kavvada A, Friedl L. 2017. Earth observation in service of the 2030 agenda for sustainable development. Geo Spatial Inf Sci. 20:77–96. doi:10.1080/10095020.2017.1333230.
  • Attila J, Kauppila P, Kallio KY, Alasalmi H, Keto V, Bruun E, Koponen S. 2018. Applicability of earth observation chlorophyll-a data in assessment of water status via MERIS – with implications for the use of OLCI sensors. Remote Sens Environ. 212:273–287. doi:10.1016/j.rse.2018.02.043.
  • Balmer MB, Downing JA. 2011. Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters. 1(2):125–132. doi:10.5268/IW-1.2.366.
  • Baretta-Bekker H, Sell A, Marco-Rius F, Wischnewski J, Walsham P, Malin Mohlin L, Wesslander K, Ruiter H, Gohin F, Enserink L. 2015. The chlorophyll case study in the JMP NS/CS project. Document produced as part of the EU project: ‘Towards joint Monitoring for the North Sea and Celtic Sea’ (Ref: ENV/PP 2012/SEA).
  • Brando VE, Sammartino M, Colella S, Bracaglia M, Di Cicco A, D’Alimonte D, Kajiyama T, Kaitala S, Attila J. 2021. Phytoplankton bloom dynamics in the Baltic Sea using a consistently reprocessed time series of multi-sensor reflectance and novel chlorophyll-a retrievals. Remote Sens. 13:3071.
  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS. 2018. Declining oxygen in the global ocean and coastal waters. Science. 359(6371):eaam7240.
  • Brush MJ, Giani M, Totti C, Testa JM, Faganeli J, Ogrinc N, Kemp MW, Fondi-Umani S. 2020. Eutrophication, harmful algae, oxygen depletion, and acidification. Coastal Ecosystems in Transition: A Comparative Analysis of the Northern Adriatic and Chesapeake Bay, 75–104.
  • Cai W, Hu X, Huang W. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geosci. 4:766–770. doi:10.1038/ngeo1297.
  • Carvalho L, Mackay EB, Cardoso AC, Baattrup-Pedersen A, Birk S, Blackstock KL, Borics G, Borja A, Feld CK, Ferreira MT, et al. 2019. Protecting and restoring Europe’s waters: an analysis of the future development needs of the water framework directive. Sci Total Environ. 658:1228–1238. doi:10.1016/j.scitotenv.2018.12.255.
  • CMEMS OMI catalogue. 2020. ATLANTIC_OMI_HEALTH_OceanColour_anomalies https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=ATLANTIC_OMI_HEALTH_OceanColour_anomalies.
  • Colella S, Falcini F, Rinaldi E, Sammartino M, Santoleri R. 2016. Mediterranean ocean colour chlorophyll trends. PLoS One. 11(6):e0155756.
  • Coppini G, Lyubartsev V, Pinardi N, Colella S, Santoleri R, Christiansen T. 2012. Chl-a trends in European seas estimated using ocean-colour products. Ocean Science Discussions. 9:1481–1518. doi:10.5194/osd-9-1481-2012.
  • Cristina S, Icely J, Goela PC, DelValls TA, Newton A. 2015. Using remote sensing as a support to the implementation of the European Marine Strategy Framework Directive in SW Portugal. Cont Shelf Res. 108:169–177.
  • Duarte CM, Regaudie-de-Gioux A, Arrieta JM, Delgado-Huertas A, Agusti S. 2013. The oligotrophic ocean is heterotrophic. Ann Rev Mar Sci. 5:551–569.
  • Estoque RC. 2020. A review of the sustainability concept and the state of SDG monitoring using remote sensing. Remote Sens. 12:1770. doi:10.3390/rs12111770.
  • Eurostat. 2021. Sustainable development in the European Union. Monitoring report on progress towards the SDGs in an EU context. ISBN 978-92-76-30698-6, Cat. No: KS-03-21-096-EN-N. doi:10.2785/195273.
  • European Environment Agency. 2019a. Marine Messages II’ Navigating the course towards clean, healthy and productive seas through implementation of an ecosystem-based approach. EEA Report No 17/2019 ISSN 1977-8449.
  • European Environment Agency. 2019b. Nutrient enrichment and eutrophication in Europe's seas. Moving towards a healthy marine environment EEA Report No 14/2019 ISSN1977-8449.
  • Friedland R, Macias DM, Cossarini G, Daewel U, Estournel C, Garcia-Gorriz E, Grizzetti B, Grégoire M, Gustafson B, Kalaroni S, et al. 2021. Effects of nutrient management scenarios on marine eutrophication indicators: a Pan-European, multi-model assessment in support of the Marine Strategy Framework Directive. Front Mar Sci. 8. doi:10.3389/fmars.2021.596126.
  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 320(5878):889–892. doi:10.1126/science.1136674.
  • GEO Blue Planet. 2021. Global eutrophication monitoring in support of SDG 14. [accessed 2021 Jul 30]. https://geoblueplanet.org/blue-planet-activities/eutrophication/.
  • Gohin F, Bryère P, Lefebvre A, Sauriau P-G, Savoye N, Vantrepotte V, Bozec Y, Cariou T, Conan P, Coudray S, et al. 2020. Satellite and in situ monitoring of chl-a, turbidity, and total suspended matter in coastal waters: experience of the year 2017 along the French coasts. J Mar Sci Eng. 8(9):665. doi:10.3390/jmse8090665.
  • Gohin F, Saulquin B, Oger-Jeanneret H, Lozac’h L, Lampert L, Lefebvre A, Riou P, Bruchon F. 2008. Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations. Remote Sens Environ. 112:3329–3340.
  • Gohin F, Van der Zande D, Tilstone G, Eleveld MA, Lefebvre A, Andrieux-Loyer F, Blauw AN, Bryère P, Devreker D, Garnesson P, et al. 2019. Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving? Remote Sens Environ. 233:111343. doi:10.1016/j.rse.2019.111343.
  • Groetsch PMM, Simis SGH, Eleveld MA, Peters SWM. 2016. Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014. Biogeosciences. 13(17):4959–4973. doi:10.5194/bg-13-4959-2016.
  • Harvey ET, Kratzer S, Philipson P. 2015. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens Environ. 158:417–430. doi:10.1016/j.rse.2014.11.017.
  • Howarth RW, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D. 2000. Nutrient pollution of coastal rivers, bays and seas. Issues Ecol. 7:1–16.
  • Howarth RW, Marino R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr. 51(1, part 2). doi:10.4319/lo.2006.51.1_part_2.0364.
  • Hutchinson GE. 1969. Eutrophication, past and present. In: Eutrophication: Causes, Consequences, Correctives, p. 17-26. National Academy of Sciences, Washington, DC.
  • Jickells TD. 1998. Nutrient biogeochemistry of the coastal zone. Science. 281:217–222. doi:10.1126/science.281.5374.217.
  • Karydis M, Kitsiou D. 2019. Marine eutrophication: a global perspective. Boca Raton, FL: CRC Press. 193 pp.
  • Malone TC, Newton A. 2020. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Front Mar Sci. 7:670. doi:10.3389/fmars.2020.00670.
  • Masó J, Serral I, Domingo-Marimon C, Zabala A. 2020. Earth observations for sustainable development goals monitoring based on essential variables and driver-pressure-state-impact-response indicators. Int J Digital Earth. 13(2):217–235. doi:10.1080/17538947.2019.1576787.
  • Maúre EDR, Terauchi G, Ishizaka J, Clinton N, DeWitt M. 2021. Globally consistent assessment of coastal eutrophication. Nat Commun. 12:6142. doi:10.1038/s41467-021-26391-9.
  • Nixon SW. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41:199-219.
  • OSPAR ICG-EUT. Axe P, Clausen U, Leujak W, Malcolm S, Ruiter H, Prins T, Harvey ET. (2017). Eutrophication status of the OSPAR Maritime Area. Third integrated report on the eutrophication status of the OSPAR Maritime Area.
  • Pardo S, Sathyendranath S, Platt T. 2021. 2.4 eutrophic and oligotrophic indicators for the North Atlantic Ocean. J Oper Oceanogr. 14(S1):1–185. doi:10.1080/1755876X.2021.1946240.
  • Park Y, Ruddick K, Lacroix G. 2010. Detection of algal blooms in European waters based on satellite chlorophyll data from MERIS and MODIS. Int J Remote Sens. 31:6567–6583.
  • Sathyendranath S, Brewin RJW, Brockmann C, Brotas V, Calton B, Chuprin A, Cipollini P, Couto AB, Dingle J, Doerffer R, et al. 2019. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI). Sensors. 19:4285. doi:10.3390/s19194285.
  • Sathyendranath S, Platt T, Kovač Ž, Dingle J, Jackson T, Brewin RJW, Franks P, Marañón E, Kulk G, Bouman HA. 2020. Reconciling models of primary production and photoacclimation. Appl Opt. 59:C100–C114. doi:10.1364/AO.386252.
  • Schindler DW. 2006. Recent advances in the understanding and management of eutrophication. Limnol Oceanogr. 51:356–363.
  • Smith VH. 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res. 10:126–139. doi:10.1065/espr2002.12.142.
  • Seitzinger S, Mayorga E. 2016. Nutrient inputs from river systems to coastal waters. In IOC-UNESCO and UNEP, editors. Large marine ecosystems: status and trends. United Nations Environment Programme. Chapter 7.3. p. 179–195. http://www.geftwap.org/publications/lmes-technical-report.
  • UNEP. 2021. Understanding the State of the Ocean: a global manual on measuring SDG 14.1.1, SDG 14.2.1 and SDG 14.5.1. Nairobi: UNEP.
  • Van der Zande D, Lavigne H, Blauw A, Prins T, Desmit X, Eleveld M, Gohin F, Pardo S, Tilstone G, Cardoso Dos Santos J. 2019. Enhance coherence in eutrophication assessments based on chlorophyll, using satellite data as part of the EU project ‘Joint monitoring programme of the eutrophication of the North Sea with satellite data’ (Ref: DG ENV/MSFD Second Cycle/2016). Activity 2 Report.
  • Van Meerssche E, Pinckney JL. 2019. Nutrient loading impacts on estuarine phytoplankton size and community composition: community-based indicators of eutrophication. Estuaries Coasts. 42:504–512. doi:10.1007/s12237-018-0470-z.
  • VLIZ. 2019. Maritime boundaries geodatabase: maritime boundaries and exclusive economic zones (200NM), version 11. Flanders Marine Institute. doi:10.14284/386.
  • Wallace RB, Baumann H, Grear JS, Aller RB, Gobler CJ. 2014. Coastal ocean acidification: the other eutrophication problem. Estuarine Coastal Shelf Sci. 148:1–13. doi:10.1016/j.ecss.2014.05.027.
  • Williams PJLB, Quay PD, Westberry TK, Behrenfeld MJ. 2013. The oligotrophic ocean is autotrophic. Ann Rev Mar Sci. 5:535–549.
  • Zingone A, Phlips EJ, Harrison PJ. 2010. Multiscale variability of twenty-two coastal phytoplankton time series: a global scale comparison. Estuaries Coasts. 33:224–229. doi:10.1007/s12237-009-9261-x.
  • Andersen JH, Carstensen J, Conley DJ, Dromph C, Fleming-Lehtinen V, Gustafsson BG, Josefson AB, Norkko A, Villnäs A, Murray C. 2017. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol Rev. 92:135–149. doi:10.1111/brv.12221.
  • Conley DJ, Björck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hietanen S, Kortekaas M, Kuosa H, Meier HEM, et al. 2009. Hypoxia-related processes in the Baltic Sea. Environ Sci Technol. 43(10):3412–3420. doi:10.1021/es802762a.
  • Dalsgaard T, De Brabandere L, Hall POJ. 2013. Denitrification in the water column of the central Baltic Sea. Geochim Cosmochim Acta. 106:247–260. doi:10.1016/j.gca.2012.12.038.
  • Danielsson Å, Papush L, Rahm L. 2008. Alterations in nutrient limitations – scenarios of a changing Baltic Sea. J Mar Sys. 73(3–4):263–283. doi:10.1016/j.jmarsys.2007.10.015.
  • Deutsch B, Forster S, Wilhelm M, Dippner JW, Voss M. 2010. Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics. Biogeosciences. 7(10):3259–3271. doi:10.5194/bg-7-3259-2010.
  • Egge JK, Aksnes DL. 1992. Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser. 83(2–3):281–289. doi:10.3354/meps083281.
  • Farcy P, Durand D, Charria G, Painting SJ, Tamminen T, Collingridge K, Grémare AJ, Delauney L, Puillat I. 2019. Toward a European coastal observing network to provide better answers to science and to societal challenges; the JERICO research infrastructure. Front Mar Sci. 6:529. doi:10.3389/fmars.2019.00529.
  • Fleming-Lehtinen V, Andersen JH, Carstensen J, Łysiak-Pastuszak E, Murray C, Pyhälä M, Laamanen M. 2015. Recent developments in assessment methodology reveal that the Baltic Sea eutrophication problem is expanding. Ecol Indic. 48:380–388. doi:10.1016/j.ecolind.2014.08.022.
  • Fleming-Lehtinen V, Laamanen M, Kuosa H, Haahti H, Olsonen R. 2008. Long-term development of inorganic nutrients and chlorophyll α in the open Northern Baltic Sea long-term development of inorganic nutrients and chlorophyll a in the open Northern Baltic Sea. Ambio. 37:86–92. doi:10.1579/0044-7447.
  • Fleming V, Kaitala S. 2006. Phytoplankton spring bloom intensity index for the Baltic Sea estimated for the years 1992 to 2004. Hydrobiologia. 554:57–65. doi:10.1007/s10750-005-1006-7.
  • García-García LM, Sivyer D, Devlin M, Painting S, Collingridge K, van der Molen J. 2019. Optimizing monitoring programs: a case study based on the OSPAR eutrophication assessment for UK waters. Front Mar Sci. 5:503. doi:10.3389/fmars.2018.00503.
  • Graneli E, Wallstrom K, Larsson U, Graneli W, Elmgren R. 1990. Nutrient limitation of primary production in the Baltic Sea area. Ambio. 19(3):142–151. doi:10.2307/4313680.
  • Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of seawater analysis. 3rd ed. New York: Wiley-VCH.
  • Gustafsson BG, Schenk F, Blenckner T, Eilola K, Meier HEM, Müller-Karulis B, Neumann T, Ruoho-Airola T, Savchuk OP, Zorita E. 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio. 41(6):534–548. doi:10.1007/s13280-012-0318-x.
  • Gustafsson E, Savchuk OP, Gustafsson BG, Müller-Karulis B. 2017. Key processes in the coupled carbon, nitrogen, and phosphorus cycling of the Baltic Sea. Biogeochemistry. 134(3):301–317. doi:10.1007/s10533-017-0361-6.
  • HELCOM. 2017. Manual for marine monitoring in the COMBINE program of HELCOM. Last updated: July 2017. https://helcom.fi/action-areas/monitoring-and-assessment/monitoring-guidelines/combine-manual/.
  • HELCOM. 2018a. State of the Baltic Sea – Second HELCOM holistic assessment, 2011–2016. Baltic Sea Environment Proceedings 155. http://stateofthebalticsea.helcom.fi/pressures-and-their-status/hazardous-substances/.
  • HELCOM. 2018b. HELCOM thematic assessment of eutrophication 2011–2016. Baltic Sea Environment Proceedings 156. http://www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/.
  • Humborg C, Smedberg E, Medina MR, Mörth CM. 2008. Changes in dissolved silicate loads to the Baltic Sea – the effects of lakes and reservoirs. J Mar Sys. 73(3–4):223–235. doi:10.1016/j.jmarsys.2007.10.014.
  • Kahru M, Elmgren R. 2014. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences. 11:3619–3633. doi:10.5194/bg-11-3619-2014.
  • Klais R, Tamminen T, Kremp A, Spilling K, Olli K. 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS One. 6(6):e21567. doi:10.1371/journal.pone.0021567.
  • Kõuts M, Maljutenko I, Elken J, Liu Y, Hansson M, Viktorsson L, Raudsepp U. 2021. Recent regime of persistent hypoxia in the Baltic Sea. Environ Res Commun. 3:075004. doi:10.1088/2515-7620/ac0cc4.
  • Kõuts M, Maljutenko I, Liu Y, Raudsepp U. 2021. 2.5 Nitrate, ammonium and phosphate pools in the Baltic Sea. In: Copernicus Marine Service Ocean State Report, Issue 5. J Oper Oceanogr. 14(suppl. 1). doi:10.1080/1755876X.2021.1946240.
  • Lehtoranta J, Savchuk OP, Elken J, Dahlbo K, Kuosa H, Raateoja M, Kauppila P, Räike A, Pitkänen H. 2017. Atmospheric forcing controlling inter-annual nutrient dynamics in the open Gulf of Finland. J Mar Sys. 171:4–20. doi:10.1016/j.jmarsys.2017.02.001.
  • Murray CJ, Müller-Karulis B, Carstensen J, Conley DJ, Gustafsson BG, Andersen JH. 2019. Past, present and future eutrophication status of the Baltic Sea. Front Mar Sci. 6:2. doi:10.3389/fmars.2019.00002.
  • Ohlendieck U, Stuhr A, Siegmund H. 2000. Nitrogen fixation by diazotrophic cyanobacteria in the Baltic Sea and transfer of the newly fixed nitrogen to picoplankton organisms. J Mar Sys. 25(3–4):213–219. doi:10.1016/S0924-7963(00)00016-6.
  • Olofsson M, Klawonn I, Karlson B. 2021. Nitrogen fixation estimates for the Baltic Sea indicate high rates for the previously overlooked Bothnian Sea. Ambio. 50(1):203–214. doi:10.1007/s13280-020-01331-x.
  • Pilkaityte R, Razinkovas A. 2007. Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic lagoon. Boreal Environ Res. 12(5):551–559.
  • Raateoja M, Kuosa H, Hällfors S. 2011. Fate of excess phosphorus in the Baltic Sea: a real driving force for cyanobacterial blooms? J Sea Res. 65(2):315–321. doi:10.1016/j.seares.2011.01.004.
  • Raateoja M, Hällfors H, Kaitala S. 2018. Vernal phytoplankton bloom in the Baltic Sea: intensity and relation to nutrient regime. J Sea Res. 138:24–33. doi:10.1016/j.seares.2018.05.003.
  • Räike A, Taskinen A, Knuuttila S. 2020. Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite water protection measures. Ambio. 49(2):460–474. doi:10.1007/s13280-019-01217-7.
  • Rantajärvi E. 2003. Alg@line in 2003: 10 years of innovative plankton monitoring and research and operational information service in the Baltic Sea. Meri Report Series of the Finnish Institute of Marine Research. 48.
  • Rantajärvi E, Pitkänen H, Korpinen S, Nurmi M, Ekebom J, Liljaniemi P, Cederberg T, Suomela J, Paavilainen P, Lahtinen T. 2020. Manual for marine monitoring in Finland 2020–2026. Suomen ympäristökeskuksen raportteja. 47 (in Finnish), 219 pages.
  • Rönnberg C, Bonsdorff E. 2004. Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia. 514(2002):227–241. doi:10.1023/B:HYDR.0000019238.84989.7f.
  • Ruokanen L, Kaitala S, Fleming V, Maunula P. 2003. Alg@line-joint operational unattended phytoplankton monitoring in the Baltic Sea. In: Dahlin H, Flemming NC, Nittis K, Petersson SE, editors. Elsevier oceanography series. Vol. 69. Elsevier; p. 519–522. doi:10.1016/S0422-9894(03)80083-1.
  • Savchuk OP. 2018. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Front Mar Sci. 5:1–20. doi:10.3389/fmars.2018.00095.
  • Snoeijs-Leijonmalm P, Schubert H, Radziejewska T. 2017. Biological oceanography of the Baltic Sea. Springer Science & Business Media, Dordrecht.
  • Spilling K, Olli K, Lehtoranta J, Kremp A, Tedesco L, Tamelander T, Klais R, Peltonen H, Tamminen T. 2018. Shifting diatom – dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front Mar Sci. 5:327. doi:10.3389/fmars.2018.00327.
  • Spilling K, Tamminen T, Andersen T, Kremp A. 2010. Nutrient kinetics modeled from time series of substrate depletion and growth: dissolved silicate uptake of Baltic Sea spring diatoms. Mar Biol. 157(2):427–436. doi:10.1007/s00227-009-1329-4.
  • Stal LJ, Albertano P, Bergman B, Von Bröckel K, Gallon JR, Hayes PK, Sivonen K, Walsby AE. 2003. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea – responses to a changing environment. Cont Shelf Res. 23(17–19):1695–1714. doi:10.1016/j.csr.2003.06.001.
  • Tallberg P, Heiskanen AS, Niemistö J, Hall POJ, Lehtoranta J. 2017. Are benthic fluxes important for the availability of Si in the Gulf of Finland? J Mar Sys. 171:89–100. doi:10.1016/j.jmarsys.2017.01.010.
  • Tamminen T, Andersen T. 2007. Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Mar Ecol Prog Ser. 340(1971):121–138. doi:10.3354/meps340121.
  • Wasmund N, Kownacka J, Göbel J, Jaanus A, Johansen M, Jurgensone I, Lehtinen S, Powilleit M. 2017. The diatom/dinoflagellate index as an indicator of ecosystem changes in the Baltic Sea 1. Principle and handling instruction. Front Mar Sci. 4:1–13. doi:10.3389/FMARS.2017.00022.
  • Wasmund N, Nausch G, Feistel R. 2013. Silicate consumption: an indicator for long-term trends in spring diatom development in the Baltic Sea. J Plankton Res. 35(2):393–406. doi:10.1093/plankt/fbs101.
  • Zdun A, Stoń-Egiert J, Ficek D, Ostrowska M. 2021. Seasonal and spatial changes of primary production in the Baltic Sea (Europe) based on in situ measurements in the period of 1993–2018. Front Mar Sci. 7. doi:10.3389/fmars.2020.604532.
  • Andréfouët S, Van Wynsberge S, Kabbadj L, Wabnitz CC, Menkès C, Tamata T, Pahuatini M, Tetairekie I, Teaka I, Scha TA, et al. 2018. Adaptive management for the sustainable exploitation of lagoon resources in remote islands: lessons from a massive El Niño-induced giant clam bleaching event in the Tuamotu atolls (French Polynesia). Environ Conserv. 45(1):30–40.
  • Aswani S, Hamilton RJ. 2004. Integrating indigenous ecological knowledge and customary sea tenure with marine and social science for conservation of bumphead parrotfish (Bolbometopon muricatum) in the Roviana Lagoon, Solomon Islands. Environ Conserv. 31:69–83.
  • Aswani S, Lauer M. 2006. Incorporating fishermen's local knowledge and behavior into geographical information systems (GIS) for designing marine protected areas in Oceania. Hum Organ. 65:81–102.
  • Bambridge T, editor. 2016. The Rahui: legal pluralism in Polynesian traditional management of resources and territories. Canberra: ANU Press.
  • Bambridge T, D’Arcy P, Mawyer A. 2021. Oceanian sovereignty: rethinking conservation in a sea of islands, Pacific conservation biology. CSIRO Publishing. doi:10.1071/PC20026.
  • Bambridge T, Le Meur P-Y. 2018. Savoirs locaux et biodiversité aux îles Marquises: don, pouvoir et perte. Revue D’anthropologie des Connaissances. 12(1):29–55.
  • Behera SK, Doi T, Luo J-J. 2021. 3 – air–sea interaction in tropical Pacific: the dynamics of El Niño/southern oscillation (SKBT-T and EA-SI Behera, editors). Elsevier; p. 61–92. doi:10.1016/B978-0-12-818156-0.00005-8.
  • Bergthaller H, Emmett R, Johns-Putra A, Kneitz A, Lidström S, McCorristine S, Pérez Ramos I, Phillips D, Rigby K, Robin L. 2014. Mapping common ground: ecocriticism, environmental history, and the environmental humanities. Environ Human. 5:261–276.
  • de Boisseson E, Balmaseda M, Mayer M, Zuo H. 2022. Section 3.3: a series of marine heatwave events in the northeast Pacific in 2020, in Copernicus Ocean State Report, issue 6. J Oper Oceanogr, this issue.
  • Castillo KD, Lima FP. 2010. Comparison of in situ and satellite-derived (MODIS-aqua/terra) methods for assessing temperatures on coral reefs. Limnol Oceanogr Methods. 8:107–117.
  • Celliers L, Costa M, Williams D, Rosendo S. 2021. The ‘last mile’ for climate data supporting local adaptation. Global Sustain. 4:E14. doi:10.1017/sus.2021.12.
  • Chambers JM, Wyborn C, Ryan ME, Reid RS, Riechers M, Serban A, Bennett NJ, Cvitanovic C, Fernández-Giménez ME, Galvin KA, Goldstein BE. 2021. Six modes of co-production for sustainability. Nat Sustain. 4:983–996. doi:10.1038/s41893-021-00755-x.
  • Cheype A, Fiat S, Pelletier B, Ganachaud A, Grelet J, Varillon D, Magron F, Hocdé R. 2015. Système d'information de l'observatoire ReefTEMPS: données de température côtière du Pacifique Sud et Sud-Ouest. JDEV 2015: Journées Nationales du DEVeloppement Logiciel de l'Enseignement Supérieur et Recherche, Juin 2015, Bordeaux, France.
  • Chifflet S, Gérard P, Fichez R. 2004. Sciences de la Mer. Biologie Marine N°6. Manuel d'analyses chimiques dans l'eau de mer, Nouméa: IRD, 2004, multigr. (Sciences de la Mer. Biologie Marine. Notes Techniques; 6, 82 pages).
  • Claar DC, Cobb KM, Baum JK. 2020. In situ and remotely sensed temperature comparisons on a central Pacific atoll. Coral Reefs. 38(6):1343–1349.
  • Claudet J, Bopp L, Cheung WWLL, Devillers R, Escobar-Briones E, Haugan P, Heymans JJ, Masson-Delmotte V, Matz-Luck N, Miloslavich P, et al. 2020. A roadmap for using the UN decade of ocean science for sustainable development in support of science, policy, and action. One Earth. 2:34–42.
  • Cocquempot L, Delacourt C, Paillet J, Riou P, Aucan J, Castelle B, Charria G, Claudet J, Conan P, Coppola L, et al. 2019. Coastal ocean and nearshore observation: a French case study. Front Mar Sci. 6(324):17. doi:10.3389/fmars.2019.00324.
  • CMEMS. 2021a. Copernicus marine service ocean monitoring indicator framework: global map of chl-a trend for 1997-2019, GLOBAL_OMI_HEALTH_OceanColour_oligo_spg_area_mean. https://marine.copernicus.eu/access-data/ocean-monitoring-indicators/global-ocean-chlorophyll-trend.
  • CMEMS. 2021b. Global mean sea surface temperature, Copernicus Marine Service (CMEMS) Ocean Monitoring Indicator Framework. https://marine.copernicus.eu/access-data/ocean-monitoring-indicators/global-ocean-anomaly-time-series-sea-surface-temperature.
  • Colglazier EW. 2018. The sustainable development goals: roadmaps to progress. Sci Dipl. 7. http://www.sciencediplomacy.org/editorial/2018/sdg-roadmaps.
  • Cravatte S, Delcroix T, Zhang D, McPhaden M, Jeloup J. 2009. Observed freshening and warming of the western Pacific warm pool. Clim Dyn. doi:10.1007/s00382-009-0526-7.
  • Dandonneau Y, Charpy L. 1985. An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentration. Deep-Sea Res A. 29:953–965.
  • Dayan H, McAdam R, Masina RS, Speich S. 2022. Section 1.7: diversity of marine heatwave trends across the Mediterranean Sea over the last decades, in Copernicus Ocean State Report, issue 6. J Oper Oceanogr, this issue.
  • Devlin M, Smith A, Graves CA, Petus C, Tracey D, Maniel M, Hooper E, Kotra K, Samie E, Loubser D, Lyons BP. 2020. Baseline assessment of coastal water quality, in Vanuatu, South Pacific: insights gained from in-situ sampling. Mar Pollut Bull. 160:111651. doi:10.1016/j.marpolbul.2020.111651.
  • Dornan M, Morgan W, Newton Cain T, Tarte S. 2018. What’s in a term? “Green growth” and the “blue-green economy” in the Pacific islands. Asia Pacific Policy Stud. 5:408–425. doi:10.1002/app5.258.
  • Dupouy C, Frouin R, Tedetti M, Maillard M, Rodier M, Duhamel S, Guidi L, Lombard F, Picheral M, Neveux J, et al. 2018b. Diazotrophic trichodesmium impact on UV VIS radiance and pigment composition in the South West Tropical Pacific. Biogeosciences. 15:5249–5269. doi:10.5194/bg-2017-570.
  • Dupouy C, Lefèvre J, Wattelez G, Martias C, Andreoli R, Lille D. 2018a. A satellite view of corals. A satellite view of lagoons. In: Claude P, editor, Mattio L, trad. New Caledonia: a world of corals. Nouméa: IRD; Solaris; p. 33–38.
  • Dupouy C, Neveux J, Le Bouteiller A. 2004. Spatial and temporal analysis of SeaWIFS sea surface chlorophyll, temperature, winds and sea level anomalies in the South Tropical Pacific Ocean (10°S-25°S, 150°E-180°E). In Proceedings “6th Pan Ocean Remote Sensing Conference”, 29 Nov.–3 Dec., Gayana, Conception (Chili), Gayana 68(2) supl. t.I. Proc. 161-1662004. doi:10.4067/S0717-65382004000200030.
  • Fichez R, Douillet P, Chevillon C, Torréton JP, Aung TH, Chifflet S, Fernandez JM, Gangaiya P, Garimella S, Gérard P, et al. 2006. The Suva lagoon environment: an overview of a joint IRD Camelia research unit and USP study, at the crossroads science and management of the Suva lagoon, Proceedings of a Symposium, USP March 30–Apr 1 2005, The Suva lagoon environment: an overview of a joint IRD Camélia Research Unit and USP study. p. 93–105.
  • Foo SA, Asner GP. 2020. Sea surface temperature in coral reef restoration outcomes. Environ Res Lett. 15:074045.
  • Gassner P, Yakub N, Kaitu’u J, Wendt H, Westerveld L, Macmillan-Lawler M, Davey K, Baker E, Clark M, Fernandes L. 2019. Marine atlas: maximizing benefits for Fiji. GIZ/IUCN/SPREP publication. Secretariat of the Pacific Regional Environment Programme (SPREP), Suva, Fiji.
  • Gomez AM, McDonald KC, Shein K, DeVries S, Armstrong RA, Hernandez WJ, Carlo M. 2020. Comparison of satellite-based sea surface temperature to in situ observations surrounding coral reefs in La Parguera, Puerto Rico. J Mar Sci Eng. 2020(8):453. doi:10.3390/jmse8060453.
  • GOOS. 2002. https://www.goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=29422.
  • Gouriou Y, Delcroix T. 2002. Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000. J Geophys Res. 107:8011.
  • Hau’ofa E. 2000. The ocean in US. In: Hooper A, editor. Culture and sustainable development in the Pacific. Canberra: ANU E Press and Asia Pacific Press; p. 32–43. https://library.oapen.org/bitstream/id/85daac72-ad3a-4f6c-ac8b-e96f7a6b60a0/458927.pdf.
  • Hermes JC, Masumoto Y, Beal LM, Roxy MK, Vialard J, Andres M, Annamalai H, Behera S, D’Adamo N, Doi T, et al. 2019. A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Front Mar Sci. 6:1–21. doi:10.3389/fmars.2019.00355.
  • Heron SF, Maynard JA, van Hooidonk R, Eakin CM. 2016. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci Rep. 6:38402. doi:10.1038/srep38402.
  • Hobday AJ, Hartog JR, Manderson JP, Mills KE, Oliver MJ, Pershing AJ, Siedlecki S. 2019. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J Mar Sci. doi:10.1093/icesjms/fsy210.
  • Holland E, von Schuckmann K, Monier M, Legeais J-F, Prado S, Sathyendranath S, Dupouy C. 2019. The use of Copernicus Marine Service products to describe the state of the tropical western Pacific Ocean around the islands: a case study in: Copernicus Marine Service Ocean State Report, issue 3. J Oper Oceanogr. 12(suppl. 1):s26–s30. doi:10.1080/1755876X.2019.1633075.
  • Holbrook NJ, Scannell HA, Gupta AS, Benthuysen JA, Feng M, Oliver ECJ, Alexander LV, Burrows MT, Donat MG, Hobday AJ, et al. 2019. A global assessment of marine heatwaves and their drivers. Nat Commun. 10:2624. doi:10.1038/s41467-019-10206-z.
  • Hviding E. 2003. Between knowledges: Pacific studies and academic disciplines. Contemp Pac. 15(1):43–73.
  • Hviding E. 2005. Reef and rainforest: an environmental encyclopedia of Marovo Lagoon, Solomon Islands. Paris: UNESCO.
  • IOCCG Report 3. 2000. Remote sensing of ocean colour in coastal, and other optically-complex. Waters. Edited by Shubha Sathyendranath. 140 pp.
  • IOCCG Report 20. 2021. Observation of harmful algal blooms with ocean colour radiometry. In: Bernard S, Kudela R, Robertson Lain L, Pitcher GC, editors, 165 pp.
  • IPCC. 2021. Summary for policymakers. In: MassonDelmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B, editors. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Johannes RE. 1981. Words of the lagoon: fishing and marine lore in the Palau district of Micronesia. Berkeley: University of California Press.
  • Kaiser BA, Hoeberechts M, Maxwell KH, Eerkes-Medrano L, Hilmi N, Safa A, Horbel C, Kim Juniper S, Roughan M, Lowen NT, Short K, et al. 2019. The importance of connected ocean monitoring knowledge systems and communities. Front Mar Sci. 6:1–17. doi:10.3389/fmars.2019.00309.
  • Keen MR, Schwarz A-M, Wini-Simeon L. 2018. Towards defining the blue economy: practical lessons from Pacific Ocean governance. Mar Policy. 88:333–341. doi:10.1016/j.marpol.2017.03.002.
  • Lauer M, Aswani S. 2008. Integrating indigenous ecological knowledge and multi-spectral image classification for marine habitat mapping in Oceania. Ocean Coast Manag. 51(6):495–504. doi:10.1016/j.ocecoaman.2008.04.006.
  • Le Cozannet G, Nicholls R, Hinkel J, Sweet W, McInnes K, Van de Wal R, Slangen ABA, Lowe JA, White K. 2017. Sea level change and coastal climate services: the way forward. J Mar Sci Eng. 5(4):49. doi:10.3390/jmse5040049.
  • Le Traon PY, Ali A, Fanjul EA, Aouf L, Axell L, Aznar R, Ballarotta M, Behrens A, Benkiran M, Bentamy A, et al. 2017. The Copernicus marine environmental monitoring service: main achievements and future prospects. Mercat Ocean J. 56:1–52.
  • Lindstrom E, Gunn J, Fischer A, McCurdy A, Glover LK. 2012. Members, a framework for ocean observing, Paris. doi:10.5270/OceanObs09-FOO.
  • Liu J, Hull V, Godfray HCJ, Tilman D, Gleick P, Hoff H, Pahl-Wostl C, Xu Z, Chung MG, Sun J, Li S. 2018. Nexus approaches to global sustainable development. Nat Sustain. 1:466–476. doi:10.1038/s41893-018-0135-8.
  • Mackenzie B, Celliers L, de Freitas Assad LP, Heymans JJ, Rome N, Thomas JJO, Terrill E. 2019. The role of stakeholders and actors in creating societal value from coastal and ocean observations. Front Mar Sci. 6:137. doi:10.3389/FMARS.2019.00137.
  • Magnan AK, Garschagen M, Gattuso J-P, Hay JE, Hilmi N, Holland E, Isla F, Kofinas G, Losada IJ, Petzold J, et al. 2019. Cross-chapter box 9: integrative cross-chapter box on low-lying islands and coasts. In: Portner H-O, Roberts DC, MassonDelmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM, editors. IPCC special report on the ocean and cryosphere in a changing climate; p. 657–674. https://www.ipcc.ch/srocc/.
  • Máñez Costa M, Shreve C, Carmona M. 2017. How to shape climate risk policies after the Paris agreement? The importance of perceptions as a driver for climate risk management. Earth’s Future. 5:1027–1033. doi:10.1002/2017EF000597.
  • Martinez E, Antoine D, D’Ortenzio F, Gentili B. 2009. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science. 326(5957):1253–1256. doi:10.1126/science.1177012.
  • Mason JG, Alfaro-Shigueto J, Mangel JC, Brodie S, Bograd SJ, Crowder LB, Hazen EL. 2019. Convergence of fishers’ knowledge with a species distribution model in a Peruvian shark fishery. Conserv Sci Practice. 1:e13. doi:10.1111/csp2.13.
  • McNamara KE, Clissold R, Westoby R, Piggott-McKellar AE, Kumar R, Clarke T, Namoumou F, Areki F, Joseph E, Warrick O, et al. 2020. An assessment of community-based adaptation initiatives in the Pacific Islands. Nat Clim Chang. 10:628–639. doi:10.1038/s41558-020-0813-1.
  • Mélin F, Vantrepotte V, Chuprin A, Grant M, Jackson T, Sathyendranath S. 2017. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: a protocol applied to OC-CCI chlorophyll-a data. Remote Sens Environ. 203:139–151. doi:10.1016/j.Rse.2017.03.039.
  • Merchant CJ, Embury O, Bulgin CE, Block T, Corlett GK, Fiedler E, Good SA, Mittaz J, Rayner NA, Berry D. 2019. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci Data. 6:223. doi:10.1038/s41597-019-0236-x.
  • Morgan W. 2021. Large ocean states: Pacific regionalism and climate security in a new era of geostrategic competition. East Asia. doi:10.1007/s12140-021-09377-8.
  • O’Carroll AG, Armstrong EM, Beggs HM, Bouali M, Casey KS, Corlett GK, Dash P, Donlon CJ, Gentemann CL, Høyer JL, Ignatov A, et al. 2019. Observational needs of sea surface temperature. Front Mar Sci. doi:10.3389/fmars.2019.00420.
  • OECD. 2020. Sustainable ocean for all: harnessing the benefits of sustainable ocean economies for developing countries, the development dimension. Paris: Éditions OCDE. doi:10.1787/bede6513-en.
  • Oliver ECJ, Benthuysen JA, Darmaraki S, Donat MG, Hobday AJ, Holbrook NJ, Schlegel RW, Sen Gupta A. 2021. Marine heatwaves. Ann Rev Mar Sci. 13:313–342. doi:10.1146/annurev-marine-032720-095144.
  • Putra RD, Yunianto AH, Prayetno E, Suhana MP, Nusyirwan D, Nugraha S, Ritonga R, Kusuma A, Setyono DED. 2021. AACL Bioflux, 2021. The spatial distribution of potential fishing grounds in Riau Archipelago, identified with MODIS-AQUA, based on monsoon seasons differences. AACL Bioflux. 14:3. http://www.bioflux.com.ro/docs/2021.1383-1395.pdf.
  • Quinn TM, Crowley TJ, Taylor FW, Henin C, Joannot P, Join Y. 1998. A multicentury stable isotope record from a New Caledonia coral: interannual and decadal sea surface temperature variability in the southwest Pacific since 1657 A.D. Paleoceanography. 13(4):412–426. doi:10.1029/98PA00401.
  • Rahimi bin Rosli M. 2017. Identification of fishing ground using local knowledge and remote sensing data [MSc thesis]. eprints.utm.my/id/eprint/78812/1/MohamadRahimiRosliMFGHT2017.pdf.
  • Reid C, Lentz SJ, DeCarlo TM, Cohen AL, Davis KA. 2020. Physical processes determine spatial structure in water temperature and residence time on a wide reef flat. J Geophys Res Oceans. 125(12). doi:10.1029/2020JC016543.
  • Richards P. 1993. Cultivation: knowledge or performance? In: Hobart M, editor. An anthropological critique of development. The growth of ignorance. London: Routledge; p. 61–78.
  • Rölfer L, Winter G, Máñez Costa M, Celliers L. 2020. Earth observation and coastal climate services for small islands. Clim Serv. 18:100168. doi:10.1016/j.cliser.2020.100168.
  • Ryabinin V, Barbière J, Haugan P, Kullenberg G, Smith N, McLean C, Troisi A, Fischer A, Aricò S, Aarup T, et al. 2019. The UN decade of ocean science for sustainable development. Front Mar Sci. 6:470. https://www.frontiersin.org/article/10.3389/fmars.2019.00470.
  • Sathyendranath S, Brewin RJW, Brockmann C, Brotas V, Calton B, Chuprin A, Cipollini P, Couto AB, Dingle J, Doerffer R, et al. 2019. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI). Sensors. 19(19):4285.
  • Schoepf V, Jung MU, McCulloch MT, White NE, Stat M, Thomas L. 2020. Thermally variable, macrotidal reef habitats promote rapid recovery from mass coral bleaching. Front Mar Sci. 7. doi:10.3389/fmars.2020.00245.
  • Sheppard C. 2009. Large temperature plunges recorded by data loggers at different depths on an Indian Ocean atoll: comparison with satellite data and relevance to coral refuges (2009). Coral Reefs. 28:399–403.
  • Singh A, Aung T. 2008. Salinity, temperature and turbidity structure in the Suva Lagoon, Fiji. Am J Environ Sci. 4(4):266–275.
  • Singh GG, Oduber M, Cisneros-Montemayor AM, Ridderstaat J. 2021. Aiding ocean development planning with SDG relationships in small island developing states. Nat Sustain. 4:573–582. doi:10.1038/s41893-021-00698-3.
  • Skern-Mauritzen M, Ottersen G, Handegard NO, Huse G, Dingsr GE, Stenseth NC, Kjesbu OS. 2016. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17:165–175. doi:10.1111/faf.12111.
  • Skirving W, Marsh B, De La Cour J, Liu G, Harris A, Maturi E, Geiger E, Eakin CM. 2020. Coraltemp and the coral reef watch coral bleaching heat stress product suite version 3.1. Remote Sens. 12:3856. doi:10.3390/rs12233856.
  • Smale DA, Wernberg T. 2009. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar Ecol Prog Ser. 387:27–37.
  • Sterling E, Ticktin T, Kipa Kepa M, Cullman G, Alvira D, Andrade P, Wali A. 2017. Culturally grounded indicators of resilience in social-ecological systems. Environ Soc. 8:63–95.
  • Stobart B, Downing N, Buckley R, Teleki K. 2008. Comparison of in situ temperature data from the southern Seychelles with SST data: can satellite data alone be used to predict coral bleaching events? Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 7–11 July, Session number 17.
  • Strang V. 2009. Integrating the social and natural sciences in environmental research: a discussion paper. Environ Dev Sustain. 11:1–18.
  • Sully S, Burkepile DE, Donovan MK, Hodgson G, van Woesik R. 2019. A global analysis of coral bleaching over the past two decades. Nat Commun. 10:1264. doi:10.1038/s41467-019-09238-2.
  • Sun C, Kucharski F, Li J, Jin F-F, Kang I-S, Ding R. 2017. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat Commun. 8:15998. doi:10.1038/ncomms15998.
  • Torréton J-P, Pringault O, Jacquet S, Chifflet S, Moreton B, Panché J-Y, Rodier M, Gérard P, Blanchot J. 2004. Rapport des missions BULA 3 (mars 2002) et BULA 4 (août 2003) dans lagon de Suva (Fidji). Nouméa: IRD, 45 pmultigr (Sciences de la Mer.Biologie marine. Rapports de Missions).
  • Tsing AL. 2012. On nonscalability: the living world is not amenable to precision-nested scales. Common Knowledge. 18(3):505–524.
  • Tsing AL. 2015. The mushroom at the end of the world on the possibility of life in capitalist ruins. Princeton (NJ). Princeton University Press.
  • Van Wynsberge S, Menkes C, Le Gendre R, Passfield T, Andréfouët S. 2017. Are sea surface temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific? Estuar Coast Shelf Sci. 199:117–124.
  • Van Wynsberge S, Le Gendre R, Sangare N, Aucan J, Menkes C, Liao V, Andréfouët S. 2020. Monitoring pearl farming lagoon temperature with global high resolution satellite-derived products: an evaluation using Raroia Atoll, French Polynesia. Mar Pollut Bull. 160:111576. doi:10.1016/j.marpolbul.2020.111576.
  • Vargas-Nguyen V, Kelsey RH, Jordahl H, Nuttle W, Somerville C, Thomas J, Dennison WC. 2020. Using socioenvironmental report cards as a tool for transdisciplinary collaboration. Integr Environ Assess Manag. 16(4):494–507. doi:10.1002/ieam.4243.
  • Varillon D, Fiat S, Magron F, Allenbach M, Hoibian T, de Ramon N'Yeurt A, Ganachaud A, Aucan J, Pelletier B, Hocdé R. 2021. ReefTEMPS: the Pacific Island coastal ocean observation network. Seanoe. doi:10.17882/55128.
  • Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G. 2011. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim Dyn. 36:1881–1896. doi:10.1007/s00382-009-0716-3.
  • Vollbrecht C, Moehlenkamp P, Gove J, Neuheimer AB, McManus MA. 2021. Long-term presence of the island mass effect at Rangiroa Atoll, French Polynesia. Front Mar Sci. 7. doi:10.3389/fmars.2020.595294.
  • Wattelez G, Dupouy C, Mangeas M, Lefèvre J, Touraivane, Frouin R. 2016. A statistical algorithm for estimating chlorophyll concentration in the New Caledonian lagoon. Remote Sens. 8(1):45 (IF: 3.278, open access). doi:10.3390/rs8010045.
  • Whiteside A, Dupouy C, Andreoli R, Singh A. 2021. Investigating the relationship of turbid waters post-cyclone Yasa and chlorophyll plumes South of Fiji [Conference presentation]. Pacific Islands GIS and RS Conference 2021, November 22–23. Port-Vila, Vanuatu.
  • Whittaker KA. 2020. Final report for S.E.A. Woods Hole (MA): Cruise S-288 Sea Education Association. www.sea.edu.
  • WMO. 2017. Ready, climate smart – supporting the 2030 agenda for sustainable development. Geneva. https://public.wmo.int/en/resources/library/bulletin-66-2-weather-ready-climate-smart-supporting-2030-agenda-sustainable.
  • WMO. 2020. WMO state of the global climate in 2020 (WMO-No. 1264). World Meteorological Organization (WMO) WMO- No. 1264.
  • Zhang H, Liu C, Wang C. 2021. Extreme climate events and economic impacts in China: a CGE analysis with a new damage function in IAM. Technol Forecast Soc Change. 169:120765.
  • Andersson HC. 2002. Influence of long-term regional and large-scale atmospheric circulation on the Baltic Sea level. Tellus A Dyn Meteorol Oceanogr. 54(1):76–88.
  • The Climate Change Initiative Coastal Sea Level Team. 2020. Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018. Sci Data. 7:357. doi:10.1038/s41597-020-00694-w.
  • Copernicus Marine In Situ TAC Data Management Team. 2020. Product user manual for multiparameter copernicus in situ TAC (PUM). doi:10.13155/43494.
  • Dieng HB, Cazenave A, Gouzenes Y, Sow BA. 2021. Trends and inter-annual variability of altimetry-based coastal sea level in the Mediterranean Sea: comparison with tide gauges and models. Adv Space Res. doi:10.1016/j.asr.2021.06.022.
  • Frolov S, Baptista A, Wilkin M. 2008. Optimizing fixed observational assets in a coastal observatory. Cont Shelf Res. 28:2644–2658.
  • Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. 2014. Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in neural information processing systems 27 (NIPS 2014). Montreal: Curran Associates, Inc; p. 2672–2680.
  • Grayek S, Staneva J, Schulz-Stellenfleth W, Stanev EV. 2011. Use of FerryBox surface temperature and salinity measurements to improve model based state estimates for the German Bight. J Mar Sys. 88(1):45–59.
  • Gurumurthy S, Kiran Sarvadevabhatla R, Venkatesh Babu R. 2017. Deligan: generative adversarial networks for diverse and limited data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Bangalore, India. p. 166–174.
  • Haid V, Stanev EV, Pein J, Staneva J, Chen W. 2020. Secondary circulation in shallow ocean straits: observations and numerical modeling of the Danish Straits. Ocean Modell. 148:101585.
  • Hordoir R, Höglund A, Pemberton P, Schimanke S. 2018. Sensitivity of the overturning circulation of the Baltic Sea to climate change, a numerical experiment. Clim Dyn. 50(3):1425–1437.
  • Hordoir R, Axell L, Löptien U, Dietze H, Kuznetsov I. 2015. Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea. J Geophys Res Oceans. 120. doi:10.1002/2014JC010642.
  • Hünicke B, Zorita E, Soomere T, Madsen KS, Johansson M, Suursaar Ü. 2015. Recent change—sea level and wind waves. In: The BACC II Author Team, editors. Second assessment of climate change for the Baltic Sea basin. Regional Climate Studies. Springer, Cham. doi:10.1007/978-3-319-16006-1_9.
  • Jacob B, Stanev EV. 2017. Interactions between wind and tidally induced currents in coastal and shelf basins. Ocean Dyn. 67(10):1263–1281.
  • Janjić T, Bormann N, Bocquet M, Carton JA, Cohn SE, Dance SL, Losa SN, Nichols NK, Potthast R, Waller JA, Weston P. 2018. On the representation error in data assimilation. Q J R Metereol Soc. 144(713):1257–1278.
  • Jönsson B, Döös K, Nycander J, Lundberg P. 2008. Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches. J Geophys Res. 113(C3):C03,004.
  • Madsen KS, Høyer JL, Fu W, Donlon C. 2015. Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. J Geophys Res Oceans. 120(9):6405–6418.
  • Madsen KS, Høyer JL, Suursaar Ü, She J, Knudsen P. 2019. Sea level trends and variability of the Baltic Sea from 2D statistical reconstruction and altimetry. Front Earth Sci. 7:243. doi:10.3389/feart.2019.00243.
  • Meier HEM. 1996. Ein regionales modell der westlichen Ostsee mit offenen randbedingungen und datenassimilation [Dissertation]. Kiel: Christian Albrechts University. 117 pp.
  • Passaro M, Müller FL, Oelsmann J, Rautiainen L, Dettmering D, Hart-Davis MG, Abulaitijiang A, Andersen OB, Høyer JL, Madsen KS, et al. 2021. Absolute Baltic Sea level trends in the satellite altimetry era: a revisit. Front Mar Sci. 8:647607. doi:10.3389/fmars.2021.647607.
  • Pemberton P, Löptien U, Hordoir R, Höglund A, Schimanke S, Axell L, Haapala J. 2017. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea. Geosci Model Dev. 10:3105–3123. doi:10.5194/gmd-10-3105-2017.
  • Placke M, Meier HM, Neumann T. 2021. Sensitivity of the Baltic Sea overturning circulation to long-term atmospheric and hydrological changes. J Geophys Res Oceans. 126(3):e2020JC016079.
  • Prandi P, Meyssignac B, Ablain M, Spada G, Ribes A, Benveniste J. 2021. Local sea level trends, accelerations and uncertainties over 1993–2019. Sci Data. 8(1). doi:10.1038/s41597-020-00786-7.
  • Preisendorfer RW, Mobley CD. 1988. Principal component analysis in meteorology and oceanography. Dev Atmos Sci. 17:1–425.
  • Schulz-Stellenfleth J, Stanev EV. 2010. Statistical assessment of ocean observing networks – a study of water level measurements in the German bight. Ocean Modell. 33(3–4):270–282.
  • Stanev EV, Pein J, Grashorn S, Zhang YJ, Schrum C. 2018. Dynamics of the Baltic Sea straits via numerical simulation of exchange flows. Ocean Modell. 131:40–58.
  • Stanev EV, Xi L, Grashorn S. 2015. Physical processes in the transition zone between North Sea and Baltic Sea. numerical simulations and observations. Ocean Modell. 93:56–74.
  • Wübber C, Krauss W. 1979. The two-dimensional seiches of the Baltic Sea. Oceanol Acta. 2:435–446.
  • Zhang YJ, Stanev EV, Grashorn S. 2016. Unstructured-grid model for the North Sea and Baltic Sea: validation against observations. Ocean Modell. 97:91–108.
  • Zhang Z, Stanev EV, Grayek S. 2020. Reconstruction of the basin-wide sea-level variability in the North Sea using coastal data and generative adversarial networks. J Geophys Res Oceans. 125:e2020JC016402.
  • Álvarez Fanjul E, Pascual Collar A, Pérez Gómez B, De Alfonso M, García Sotillo M, Staneva J, Clementi E, Grandi A, Zacharioudaki A, Korres G, et al. 2019. Sea level, sea surface temperature and SWH extreme percentiles: combined analysis from model results and in situ observations, section 2.7, p:31. In: Schuckmann, K., Le Traon, P-Y., Smith, N., Pascual, A., Djavidnia, S., Gattuso, J-P., Grégoire, M., Nolan, G., et al., 2019. Copernicus Marine Service Ocean State Report, Issue 3. J Oper Oceanogr. 12(suppl. 1):S1–S123. doi:10.1080/1755876X.2019.1633075.
  • Alvarez-Fanjul E, Pérez Gómez B, de Alfonso Alonso-Muñoyerro M, Lorente P, García Sotillo M, Lin-Ye J, Aznar Lecocq R, Ruíz Gil de la Serna M, Pérez Rubio S, Clementi E, Coppini G, García-León M, Fernandes M, García Valdecasas J, García Valdecasas JM, D. Santos Muñoz D, Luna Rico MY, Mestres M, Molina R, Tintoré J, Mourre B, Masina S, Mosso C, Reyes E, Santana A., 2022. Western Mediterranean record-breaking storm Gloria: An integrated assessment based on models and observations. J Oper Oceanogr. https://doi.org/10.1080/1755876X.2022.2095169.
  • Amarouche K, Akpinar A. 2021. Increasing trend on stormwave intensity in the Western Mediterranean. Climate. 9:1–17. doi:10.3390/cli9010011.
  • Amarouche K, Akpınar A, Bachari NEI, Çakmak RE, Houma F. 2019. Evaluation of a high-resolution wave hindcast model SWAN for the West Mediterranean basin. Appl Ocean Res. 84:225–241. doi:10.1016/j.apor.2019.01.014.
  • Amarouche K, Bingölbali B, Adem A. 2021. New wind-wave climate records in the Western Mediterranean Sea. Rev Clim Dyn. 55:1899–1922.
  • Amores A, Marcos M, Carrió DS, Gomez-Pujol L. 2020. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat Hazards Earth Syst Sci. 20:1955–1968. doi:10.5194/nhess-20-1955-2020.
  • Besio G, Briganti R, Romano A, Mentaschi L, De Girolamo P. 2017. Time clustering of wave storms in the Mediterranean Sea. Nat Hazards Earth Syst Sci. 17:505–514. doi:10.5194/nhess-17-505-2017.
  • Bitner-Gregersen EM, Eide LI, Hørte T, Skjong R. 2013. Ship and offshore structure design in climate change perspective, Springer Briefs in climate studies. Berlin: Springer. doi:10.1007/978-3-642-34138-0.
  • Camus P, Tomás A, Díaz-Hernández G, Rodríguez B, Izaguirre C, Losada IJ. 2019. Probabilistic assessment of port operation downtimes under climate change. Coast Eng. 147:12–24. doi:10.1016/J.COASTALENG.2019.01.007.
  • Cavicchia L, Von Storch H, Gualdi S. 2014. Mediterranean tropical-like cyclones in present and future climate. J Clim. 27:7493–7501. doi:10.1175/JCLI-D-14-00339.1.
  • Ciavola P, Coco G. 2017. Coastal storms: processes and impacts. First Edition, Wiley-Blackwell, pp. 288. ISBN: 978-1-118-93707-5.
  • de Alfonso M, Lin-Ye J, García-Valdecasas JM, Pérez-Rubio S, Luna MY, Santos-Muñoz D, Ruiz MI, Pérez-Gómez B, Álvarez-Fanjul E. 2021. Storm Gloria: sea state evolution based on in situ measurements and modeled data and its impact on extreme values. Front Mar Sci. 8:1–17. doi:10.3389/fmars.2021.646873.
  • De Leo F, De Leo A, Besio G, Briganti R. 2020. Detection and quantification of trends in time series of significant wave heights: an application in the Mediterranean Sea. Ocean Eng. 202. doi:10.1016/j.oceaneng.2020.107155.
  • Debernard JB, Røed LP. 2008. Future wind, wave and storm surge climate in the Northern Seas: a revisit. Tellus A. 60:427–438. doi:10.1111/j.1600-0870.2008.00312.x.
  • González-Alemán JJ, Pascale S, Gutierrez-Fernandez J, Murakami H, Gaertner MA, Vecchi GA. 2019. Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys Res Lett. 46:1754–1764. doi:10.1029/2018GL081253.
  • Gouldby B, Méndez FJ, Guanche Y, Rueda A, Mínguez R. 2014. A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis. Coast Eng. 88:15–26. doi:10.1016/J.COASTALENG.2014.01.012.
  • Harley M. 2017. Coastal storm definition. In: Coastal Storms. Chichester: John Wiley & Sons; p. 1–21. doi:10.1002/9781118937099.ch1.
  • Harley MD, Turner IL, Kinsela MA, Middleton JH, Mumford PJ, Splinter KD, Phillips MS, Simmons JA, Hanslow DJ, Short AD. 2017. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Sci Rep. 7:6033. doi:10.1038/s41598-017-05792-1.
  • Kirezci E, Young IR, Ranasinghe R, Muis S, Nicholls RJ, Lincke D, Hinkel J. 2020. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci Rep. 10:11629. doi:10.1038/s41598-020-67736-6.
  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P. 1994. Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge. 532 pp. ISBN 0-521-47047-1.
  • Lionello P, Rizzoli PM, Boscolo R. 2006. Mediterranean climate variability, developments in earth and environmental sciences. Elsevier, Elsevier. pp. 488. ISBN 9780080460796.
  • Lobeto H, Menendez M, Losada IJ. 2021. Future behavior of wind wave extremes due to climate change. Sci Rep. 11:7869. doi:10.1038/s41598-021-86524-4.
  • Martzikos NT, Prinos PE, Memos CD, Tsoukala VK. 2021. Statistical analysis of Mediterranean coastal storms. Oceanologia. 63:133–148. doi:10.1016/j.oceano.2020.11.001.
  • Masselink G, Austin M, Scott T, Poate T, Russell P. 2014. Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach. Geomorphology. 226:76–93. doi:10.1016/J.GEOMORPH.2014.07.025.
  • Meucci A, Young IR, Breivik Ø. 2018. Wind and wave extremes from atmosphere and wave model ensembles. J Clim. 31:8819–8842. doi:10.1175/JCLI-D-18-0217.1.
  • Morales-Márquez V, Orfila A, Simarro G, Marcos M. 2020. Extreme waves and climatic patterns of variability in the eastern North Atlantic and Mediterranean basins. Ocean Sci. 16:1385–1398. doi:10.5194/os-16-1385-2020.
  • Reeve DE, Chen Y, Pan S, Magar V, Simmonds DJ, Zacharioudaki A. 2011. An investigation of the impacts of climate change on wave energy generation: the Wave hub, Cornwall, UK. Renew Energy. 36. doi:10.1016/j.renene.2011.02.020.
  • Sartini L, Besio G, Cassola F. 2017. Spatio-temporal modelling of extreme wave heights in the Mediterranean Sea. Ocean Model. 117:52–69. doi:10.1016/j.ocemod.2017.07.001.
  • Spinoni J, Formetta G, Mentaschi L, Forzieri G, Feyen L. 2020. Global warming and windstorm impacts in the EU JRC PESETA IV project-Task 13. doi:10.2760/039014.
  • Timmermans BW, Gommenginger CP, Dodet G, Bidlot JR. 2020. Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophys Res Lett. 47. doi:10.1029/2019GL086880.
  • WAMDI Group, 1988. The WAM model – a third generation ocean wave prediction model. J Phys Oceanogr. 18, 1775–1810. doi:10.1175/1520-0485(1988)018<TWMTGO>2.0.CO;2
  • Weisse R, Günther H. 2007. Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn. 57:161–172. doi:10.1007/s10236-006-0094-x.
  • Young IR, Ribal A. 2019. Multiplatform evaluation of global trends in wind speed and wave height. Science (80-). 364:548–552. doi:10.1126/science.aav9527.
  • Zacharioudaki A, Korres G, Perivoliotis L. 2015. Wave climate of the Hellenic Seas obtained from a wave hindcast for the period 1960–2001. Ocean Dyn. 65:795–816. doi:10.1007/s10236-015-0840-z.
  • Alexander LV, Uotila P, Nicholls N. 2009. Influence of sea surface temperature variability on global temperature and precipitation extremes. J Geophys Res. 114:D18116. doi:10.1029/2009JD012301.
  • Astraldi M, Gasparini GP. 1994. The seasonal characteristics of the circulation in the Tyrrhenian Sea, in seasonal and interannual variability of the Western Mediterranean Sea. Coastal Estuarine Stud Ser. 46:115–134.
  • Bensoussan N, Chiggiato J, Buongiorno Nardelli B, Andrea Pisano A, Garrabou J. 2019. Insights on 2017 Marine heat waves in the Mediterranean Sea. In: Copernicus Marine Service Ocean State Report, Issue 3. J Operat Oceanogra. 12(sup1):s26–s30. doi:10.1080/1755876X.2019.1633075.
  • Buongiorno Nardelli B, Tronconi C, Pisano A, Santoleri R. 2013. High and ultra-high resolution processing of satellite sea surface temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens Environ. 129:1–16. doi:10.1016/j.rse.2012.10.012.
  • Cavole LM, Demko AM, Diner RE, Giddings A, Koester I, Pagniello CMLS, Paulsen M-L, Ramirez-Valdez A, Schwenck SM, Yen NK, Zill ME, Franks PJS. 2016. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography 29(2):273–285. doi:10.5670/oceanog.2016.32.
  • Cheng LJ, Abraham J, Trenberth KE, Fasullo J, Boyer T, et al. 2021. Upper ocean temperatures hit record high in 2020. Adv Atmos Sci. 38(4):523–530. doi:10.1007/s00376-021-0447-x.
  • Collins M, Sutherland M, Bouwer L, Cheong S-M, Frölicher T, Jacot Des Combes H, Koll Roxy M, Losada I, McInnes K, Ratter B, et al. 2019. Extremes, abrupt changes and managing risk. In: Pörtner H-O, Roberts DC, MassonDelmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM, editors, IPCC special report on the ocean and cryosphere in a changing climate. In press. https://www.ipcc.ch/srocc/.
  • Darmaraki S, Somot S, Sevault F, Nabat P. 2019. Past variability of Mediterranean Sea marine heat-waves. Geophys Res Lett. 46:9813–9823. doi:10.1029/2019GL082933.
  • Dittus A, Karoly D, Donat M. 2018. Understanding the role of sea surface temperature-forcing for variability in global temperature and precipitation extremes. Weather Clim Extremes. 21:1–9.
  • Dotzek N, Groenemeijer P, Feuerstein B, Holzer AM. 2009. Overview of ESSL’s severe convective storms research using the European Severe Weather Database (ESWD). Atmos Res. 93:575–586.
  • Elzahaby Y, Schaeffer A. 2019. Observational insight into the subsurface anomalies of marine heatwaves. Front Mar Sci. 6:745. doi:10.3389/fmars.2019.00745.
  • Elzahaby Y, Schaeffer A, Roughan M, Delaux S. 2021. Oceanic circulation drives the deepest and longest marine heatwaves in the East Australian current system. Geophys Res Lett. 48:e2021GL094785. doi:10.1029/2021GL094785.
  • Edwards M, Richardson A. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 430:881–884. doi:10.1038/nature02808.
  • Feng M, Caputi N, Chandrapavan A, Chen M, Hart A, Kangas M. 2020. Multi-year marine cold-spells off the west coast of Australia and effects on fisheries. J Mar Syst. 214:103473. doi:10.1016/j.jmarsys.2020.103473.
  • Frölicher TL, Laufkötter C. 2018. Emerging risks from marine heat waves. Nat Commun. 9:650. doi:10.1038/s41467-018-03163-6.
  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, et al. 2013. Global flood risk under climate change. Nature Clim Change. 3:816–821. doi:10.1038/nclimate1911.
  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, et al. 2016. A hierarchical approach to defining marine heatwaves. Prog Oceanogr. 141:227–238. doi:10.1016/j.pocean.2015.12.014.
  • Hobday AJ, Eric C.J. Oliver, Alex Sen Gupta, Jessica A. Benthuysen, Michael T. Burrows, Markus G. Donat, Neil J. Holbrook, et al. 2018. Categorizing and Naming MARINE HEATWAVES. Oceanography 31(2):162–73. https://www.jstor.org/stable/26542662.
  • Holbrook NJ, Sen Gupta A, Oliver ECJ, Hobday AJ, Benthuysen JA, Scannell HA, Smale DA, Wernberg T. 2020. Keeping pace with marine heatwaves. Nat Rev Earth Environ. 1:482–493. doi:10.1038/s43017-020-0068-4.
  • IPCC AR5. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pachauri RK and Meyer LA, editors. Geneva: IPCC; 151 pp. https://www.ipcc.ch/report/ar5/.
  • IPCC AR6. 2021. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte VP, Zhai A, Pirani SL, Connors C, Péan S, Berger N, et al., editors. Cambridge University Press. in press. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/.
  • IPCC SRCCL. 2019. IPCC special report on climate change and land. Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO et al., editors. in press. https://www.ipcc.ch/srccl/.
  • IPCC SROCC. 2020. IPCC special report on the ocean and cryosphere in a changing climate. Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, et al., editors. in press. https://www.ipcc.ch/srocc/.
  • Jacox MG, Hazen EL, Bograd SJ. 2016. Optimal environmental conditions and anomalous ecosystem responses: constraining bottom-up controls of phytoplankton biomass in the California current system. Sci. Rep. 6:27612. doi:10.1038/srep27612
  • Keeling RE, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Ann Rev Mar Sci. 2:199–229. doi:10.1146/annurev.marine.010908.163855.
  • Kendall M. 1962. Rank correlation methods. New York (NY): Hafner Publishing Company.
  • Krauzig N, Falco P, Zambianchi E. 2020. Contrasting surface warming of a marginal basin due to large-scale climatic patterns and local forcing. Sci Rep. 10:17648. doi:10.1038/s41598-020-74758-7.
  • Kundzewicz ZW, Krysanova V, Dankers R, Hirabayashi Y, Kanae S, et al. 2017. Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrol Sci J. 62(1):1–14. doi:10.1080/02626667.2016.1241398.
  • Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R. 2002. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim. 15(16):2233–2256. doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.
  • Lebeaupin C, Ducrocq V, Giordani H. 2006. Sensitivity of torrential rain events to the sea surface temperature based on high-resolution numerical forecasts. J Geophys Res. 111:D12110. doi:10.1029/2005JD006541.
  • Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. 2020. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. 10:1116–1123. doi:10.1038/s41558-020-00918-2.
  • Lirman D, Schopmeyer S, Manzello D, Gramer LJ, Precht WF, et al. 2011. Severe 2010 cold-water event caused unprecedented mortality to corals of the Florida reef tract and reversed previous survivorship patterns. PLoS One. 6(8):Article e23047. doi:10.1371/journal.pone.0023047.
  • Liu F, Lu J, Luo Y, Huang Y, Song F. 2020. On the oceanic origin for the enhanced seasonal cycle of SST in the midlatitudes under global warming. J Clim. 33(19):8401–8413. https://journals.ametsoc.org/view/journals/clim/33/19/jcliD200114.x.
  • Mann H. 1945. Nonparametric tests against trend. Econometrica. 13(3):245–259.
  • Marbà N, Duarte CM. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology, 16:2366-2375. doi:10.1111/j.1365-2486.2009.02130.x
  • Marullo S, Santoleri R, Bignami F. 1994. The surface characteristics of the Tyrrhenian Sea: historical satellite data analysis. In seasonal and interannual variability of the western Mediterranean Sea. Coast Estuarine Stud. 46:135–154.
  • Messmer M, Gómez-Navarro JJ, Raible CC. 2017. Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes. Earth Syst Dynam. 8:477–493. doi:10.5194/esd-8-477-2017.
  • Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang FS, Holland DS, Lehuta S, Nye JA, Sun JC, Thomas AC, Wahle RA. 2013. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography. 26(2):191–195.
  • Myhre G, Alterskjær K, Stjern CW, Hodnebrog Ø, Marelle L, Samset BH, Sillmann J, Schaller N, Fischer E, Schulz M, Stohl A. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep. 9:16063. doi:10.1038/s41598-019-52277-4.
  • Olita A, Sorgente R, Natale S, Gaberšek S, Ribotti A, Bonanno A, Patti B. 2007. Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3:273–289. doi:10.5194/os-3-273-2007.
  • Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Sen Gupta A. 2018. Longer and more frequent marine heatwaves over the past century. Nat Commun. 9(1):1324. doi:10.1038/s41467-018-03732-9.
  • Oliver ECJ. 2019. Mean warming not variability drives marine heatwave trends. Clim Dyn. 53:1653–1659. doi:10.1007/s00382-019-04707-2.
  • Parmesan C, Root TL, Willig MR. 2000. Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc. 81:443–450.
  • Pastor F, Estrela MJ, Penarrocha D, Millán MM. 2001. Torrential rains on the Spanish Mediterranean coast: Modelling the effects of the sea surface temperature. J. Appl. Meteorol. 40:1180–1195. doi:10.1175/1520-0450(2001)0401180:trotsm2.0.CO;2.
  • Pastor F, Valiente J, Palau J. 2018. Sea surface temperature in the Mediterranean: trends and spatial patterns (1982–2016). Pure Appl Geophys. 11:4017–4029.
  • Pisano A, Buongiorno Nardelli B, Tronconia C, Santoleria R. 2016. The new Mediterranean optimally interpolated pathfinder AVHRR SST dataset (1982–2012). Remote Sens Environ. 176:107–116. doi:10.1016/j.rse.2016.01.019.
  • Pisano A, Marullo S, Artale V, Falcini F, Yang C, Leonelli FE, Santoleri R, Buongiorno Nardelli B.. 2020. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 12(1):132. doi:10.3390/rs12010132.
  • Poulain PM, Zambianchi E. 2007. Surface circulation in the central Mediterranean Sea as deduced from Lagrangian drifters in the 1990s. Cont Shelf Res. 27(7):981–1001.
  • Rebora N, Molini L, Casella E, Comellas A, Fiori E, Pignone F, Siccardi F, Silvestro F, Tanelli S, Parodi A. 2013. Extreme rainfall in the Mediterranean: what can we learn from observations? J Hydrometeorol. 14:906–922.
  • Rinaldi E, Buongiorno Nardelli B, Zambianchi E, Santoleri R, Poulain PM. 2010. Lagrangian and Eulerian observations of the surface circulation in the Tyrrhenian Sea. J Geophys Res Oceans. 115(7):C04024.
  • Rivett I, Fraschetti S, Lionello P, Zambianchi E, Boero F. 2014. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS One. 9:e115655. doi:10.1371/journal.pone.0115655.
  • Schaeffer A, Roughan M. 2017. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys Res Lett. 44(10):5025–5033.
  • Schlegel RW, Oliver ECJ, Wernberg T, Smit AJ. 2017. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog Oceanogr. 151:189–205. doi:10.1016/j.pocean.2017.01.004.
  • Smale DA, Wernberg T, Oliver ECJ, Thomsen M, Harvey BP, Straub SC, Burrows MT, Alexander LV, Benthuysen JA, Donat MG, Feng M. 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat Clim Chang. 9:306–312. doi:10.1038/s41558-019-0412-1.
  • Smith K, Woodward A, Campbell-Lendrum D, Chadee D, Honda Y, et al. 2014. IPCC AR5 climate change 2014: impacts, adaptation, and vulnerability Ch. 11. Cambridge: Cambridge University Press; p. 709–754.
  • Szekeres P, Eliason EJ, Lapointe D, Donaldson MR, Brownscombe JW, Cooke SJ. 2016. On the neglected cold side of climate change and what it means to fish. Clim Res. 69:239–245. doi:10.3354/cr01404.
  • Taszarek M, Allen JT, Brooks HE, Pilguj N, Czernecki B. 2021. Differing trends in United States and European severe thunderstorm environments in a warming climate. Bull Am Meteorol Soc. 102(2):E296–E322. doi:10.1175/BAMS-D-20-0004.1.
  • Trenberth K, Fasullo J, Shepherd T. 2015. Attribution of climate extreme events. Nat Clim Change. 5(8):725–730.
  • UNEP/MAP. 2012. State of the Mediterranean marine and coastal environment. United Nations Environment Programme/ Mediterranean action plan (Barcelona convention, Athens).
  • Vignudelli S, Cipollini P, Astraldi M, Gasparini GP, Manzella GMR. 2000. Integrated use of altimeter and in situ data for understanding the water exchanges between the Tyrrhenian and Ligurian seas. J Geophys Res. 105:19649–19663.
  • Volosciuk C, Maraun D, Semenov V, Tilinina N, Gulev S, Latif M. 2016. Rising Mediterranean Sea surface temperatures amplify extreme summer precipitation in Central Europe. Sci Rep. 6:32450.
  • Wakelin S, Townhill B, Engelhard G, Holt J, Renshaw R. 2021. Marine heatwaves and cold-spells, and their impact on fisheries in the North Sea. In: Copernicus Marine Service Ocean State Report, Issue 5. J Operat Oceanogr. 14(sup1):s140–s148. doi:10.1080/1755876X.2021.1946240.
  • Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech. 36:281–314.
  • Béjaoui B, Ottaviani E, Barelli E, Ziadi B, Dhib A, Lavoie M, Gianluca C, Turki S, Solidoro C, Aleya L. 2018. Machine learning predictions of trophic status indicators and plankton dynamic in coastal lagoons. Ecol Indic. 95:765–774.
  • Cossarini G, Feudale L, Teruzzi A, Bolzon G, Coidessa G, Solidoro C, DiBIagio V, Amadio C, Lazzari P, Brosich A, Salon S. 2021. High-resolution reanalysis of the Mediterranean Sea biogeochemistry (1999–2019). Front Mar Sci. 8:741486. doi:10.3389/fmars.2021.741486.
  • Geider RJ, Maclntyre HL, Kana TM. 1998. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr. 43(4):679–694.
  • Jamar BM, Winter DF, Banse K, Anderson GC, Lam RK. 1977. A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean off the North-Western U.S. coasts. Deep-Sea Res. 24:753–773.
  • Lazzari P, Solidoro C, Ibello V, Salon S, Teruzzi A, Béranger K, Colella S, Crise A. 2012. Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. Biogeosciences. 9(1):217–233.
  • Libralato S, Solidoro C. 2009. Bridging biogeochemical and food web models for an end-to-end representation of marine ecosystem dynamics: the Venice lagoon case study. Ecol Modell. 220(21):2960–2971.
  • Mann KH, Lazier JRN. 2006. Dynamic of marine ecosystems. Blackwell. doi:10.1002/97811186879.
  • Peck MA, Arvanitidis C, Butenschön M, Canu DM, Chatzinikolaou E. 2018. Projecting changes in the distribution and productivity of living marine resources: a critical review of the suite of modelling approaches used in the large European project VECTORS. Estuarine Coastal Shelf Sci. 201:40–55.
  • Rose KA, Allen JI, Artioli Y, Barange M, Blackford J, Carlotti F, Cropp R. 2010. End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar Coast Fish. 2(1):115–130.
  • Sverdrup HU. 1953. On conditions for the vernal blooming of phytoplankton. ICES J Mar Sci. 18(3):287–295.
  • Vollenweider RA, Giovanardi F, Montanari G, Rinaldi A. 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics. 9:329–357. doi:10.1002/(SICI)1099-095X(199805/06)9:<329::AID-ENV308>3.0.CO;2-9.

References

  • Alvarez-Fanjul E, Alfonso M, Ruiz MI, Lopez JD, Rodriguez I. 2003. Real time monitoring of Spanish coastal waters: the deep-water network. Proceedings of the 3rd EuroGOOS Conference. Elsevier Oceanography Series, Vol. 69, p. 398–402. doi:10.1016/S0422-9894(03)80066-1.
  • Álvarez-Fanjul E, Pérez-Gomez B, Rodríguez I. 2001. Nivmar: a storm surge forecasting system for Spanish waters. Sci Mar. 65:145–154. doi:10.3989/scimar.2001.65s1145.
  • Alvarez-Fanjul E, Sotillo MG, Gómez BP, Valdecasas JG, Rubio SP, Lorente P, Dapena ÁR, Marco IM, Luna Y, et al. 2018. Operational oceanography at the service of the ports. In: Chassignet E., Pascual A., Tintoré J., Verron J., editors. New frontiers in operational oceanography. GODAE OceanView; p. 729–736. doi:10.17125/gov2018.ch27.
  • Beckers JVL, Sprokkereef E, Roscoe KL. 2008. Use of Bayesian model averaging to determine uncertainties in river discharge and water level forecasts. Proceedings of the 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability; 2008 May 6–8; Toronto, Ontario, Canada.
  • Bengtsson L, Andrae U, Aspelien T, Batrak Y, Calvo J, de Rooy W, Gleeson E, Hansen-Sass B, Homleid M, Hortal M, et al. 2017. HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP system. Mon Wea Rev. doi:10.1175/MWR-D-16-0417.1.
  • de Alfonso M, Lin-Ye J, García-Valdecasas JM, Pérez-Rubio S, Luna MY, Santos-Muñoz D, Ruiz MI, Pérez-Gómez B, Álvarez-Fanjul E. 2021. Storm Gloria: sea state evolution based on in situ measurements and modeled data and its impact on extreme values. Front Mar Sci. 8:646873. doi:10.3389/fmars.2021.646873.
  • Günther H, Hasselmann S, Janssen P. 1992. The WAM model cycle 4 (No. DKRZ-TR–4 (REV. ED.)). Deutsches Klimarechenzentrum (DKRZ).
  • Juza M, Mourre B, Renault L, Gómara S, Sebastián K, Lora S, Beltran JP, Frontera B, Garau B, Troupin C, et al. 2016. SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea. J Oper Oceanogr. 9:s155–s166.
  • Lellouche J-M, Le Galloudec O, Drévillon M, Régnier C, Greiner E, Garric G, Ferry N, Desportes C, Testut C-E, Bricaud C, et al. 2013. Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci. 9:57–81.
  • Lellouche J-M, Greiner E, Le Galloudec O, Garric G, Regnier C, Drevillon M, Benkiran M, Testut C-E, Bourdalle-Badie R, et al. 2018. Recent updates on the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high resolution system. Ocean Sci Discuss. doi:10.5194/os-2018-15.
  • Lin-Ye J, García-León M, Gràcia V, Sánchez-Arcilla A. 2016. A multivariate statistical model of extreme events: an application to the Catalan coast. Coastal Eng. 117:138–156.
  • Lorente P, Lin-Ye J, García-León M, Reyes E, Fernandes M, Sotillo MG, Espino M, Ruiz MI, Gracia V, Perez S, et al. 2021. On the performance of high frequency radar in the Western Mediterranean during the record-breaking storm Gloria. Front Mar Sci. 8:645762. doi:10.3389/fmars.2021.645762.
  • Mourre B, Aguiar E, Juza M, Hernandez-Lasheras J, Reyes E, Heslop E, Escudier R, Cutolo E, Ruiz S, Mason E, et al. 2018. Assessment of high-resolution regional ocean prediction systems using multi-platform observations: illustrations in the Western Mediterranean Sea. In: Chassignet E., Pascual A., Tintoré J., Verron J., editors. New frontiers in operational oceanography. GODAE Ocean View; p. 663–694. doi:10.17125/gov2018.ch24.
  • Pérez-Gómez B. 2014. Design and implementation of an operational sea level monitoring and forecasting system for the Spanish coast [master thesis]. University of Cantabria. http://hdl.handle.net/10902/5876.
  • Pérez-Gómez B, García-León M, García-Valdecasas J, Clementi E, Mösso Aranda C, Pérez-Rubio S, Masina S, Coppini G, Molina-Sánchez R, Muñoz-Cubillo A, et al. 2021. Understanding sea level processes during Western Mediterranean storm Gloria. Front Mar Sci. 8:647437. doi:10.3389/fmars.2021.647437.
  • Pérez González I, Pérez-Gómez B, Sotillo MG, Álvarez-Fanjul E. 2017. Towards a new sea level forecast system in Puertos del Estado. Extended proceedings. 8th EuroGOOS Conference. 3–5 Oct 2017; Bergen, Norway.
  • Pérez-Gómez B, Pérez González I, Sotillo MG, Álvarez-Fanjul E. 2019. Retos de los sistemas de observación y predicción en los riesgos asociados al nivel del mar. Ribagua. doi:10.1080/23863781.2019.1595212.
  • Pinardi N, Coppini G. 2010. Operational oceanography in the Mediterranean Sea: the second stage of development. Ocean Sci. 6:263–267. doi:10.5194/os-6-263-2010.
  • Pugh DT. 1996. Tides, surges and mean sea-level. Chichester: John Wiley & Sons. 486 pp.
  • Rex DF. 1950. Blocking action in the middle troposphere and its effect upon regional climate. Tellus. 2(4):275–301.
  • Rodríguez M, Bono F, Rovira M, Susana U. 2020. Effects of storm Gloria in Spain: ‘recovery will be very tough’. El País. https://english.elpais.com/elpais/2020/01/23/inenglish/1579766516_152337.html.
  • Shchepetkin AF, McWilliams JC. 2005. The regional oceanic modeling system (ROMS): a split explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell. 9:347–404.
  • Sotillo MG, Mourre B, Mestres M, Lorente P, Aznar R, García-León M, Liste M, Santana A, Espino M, Álvarez-Fanjul E. 2021. Evaluation of the operational CMEMS and coastal downstream ocean forecasting services during the storm Gloria (January 2020). Front Mar Sci. 8:644525. doi:10.3389/fmars.2021.644525.
  • Aaboe S, Lind S, Hendricks S, Down EJ, Lavergne T, Ricker R. 2021. Sea-ice and ocean conditions surprisingly normal in the Svalbard-Barents Sea region after large sea-ice inflows in 2019. In: Copernicus Marine Service Ocean state report, issue 5. J Oper Oceanogr. 14(Suppl. 1). doi:10.1080/1755876X.2021.194240.
  • Alkama R, Koffi EN, Vavrus SJ, Diehl T, Francis JA, Stroeve J, Forzieri G, Vihma T, Cescatti A. 2020. Wind amplifies the polar sea ice retreat. Environ Res Lett. 15:124022.
  • Antoine D, Morel A. 1996. Oceanic primary production: 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochem Cycles. 10(1):43–55.
  • Arrigo KR, van Dijken GL. 2015. Continued increases in Arctic Ocean primary production. Prog Oceanogr. 136:60–70.
  • Ciavarella A, Cotterill D, Stott P, et al. 2021. Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change 166, 9 (2021). doi:10.1007/s10584-021-03052-w
  • Comiso JC, Meier WN, Gersten R. 2017. Variability and trends in the Arctic Sea ice cover: results from different techniques. J Geophys Res Oceans. 122(8):6883–6900.
  • ESOTC. 2020. European state of the climate 2020, Copernicus climate change service. Full report. climate.copernicus.eu/ESOTC/2020
  • Good S, Fiedler E, Mao C, Martin MJ, Maycock A, Reid R, Roberts-Jones J, Searle T, Waters J, While J, Worsfold M. 2020. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12:720. doi:10.3390/rs12040720.
  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, et al. 2020. The ERA5 global reanalysis. Q J R Meteorol Soc. 146:1999–2049.
  • IPCC. 2019. Summary for policymakers. In: IPCC special report on the ocean and cryosphere in a changing climate. Pörtner H-O, Roberts DC, MassonDelmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM, editors. In press.
  • Ivanov V, Alexeev V, Koldunov NV, Repina I, Sandø AB, Smedsrud LH, Smirnov A. 2016. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. J Phys Oceanogr. 46:1437–1455.
  • Landrum L, Holland MM. 2020. Extremes become routine in an emerging new Arctic. Nature Clim Change. 10:1108–1115.
  • Lavergne T, Eastwood S, Teffah Z, Schyberg H, Breivik L-A. 2010. Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic, J. Geophys. Res., 115:C10032. doi:10.1029/2009JC005958.
  • Lavergne T, Macdonald Sørensen A, Kern S, Tonboe R, Notz D, Aaboe S, Bell L, Dybkjær G, Eastwood S, Gabarro C, Heygster G, Anne Killie M, Brandt Kreiner M, Lavelle J, Saldo R, Sandven S, Pedersen LT. 2019. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13(1), 49–78. doi:10.5194/tc-13-49-2019.
  • Lewis KM, Van Dijken GL, Arrigo KR. 2020. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science. 369(6500):198–202. doi:10.1126/science.aay8380.
  • Onarheim I, Eldevik T, Smedsrud LH, Stroeve JC. 2018. Seasonal and regional manifestation of Arctic Sea ice loss. J Clim. 31(12):4917–4932.
  • OSI SAF SII. 2020. EUMETSAT ocean and sea ice satellite application facility, sea ice index 1979-onwards (v2.1, 2020), OSI-420. [accessed 2021 May 20]. Data visualised on OSI SAF web page: https://osisaf-hl.met.no/v2p1-sea-ice-index.
  • Overland J, Dunlea E, Box JE, Corell R, Forsius M, Kattsov V, Olsen MS, Pawlak J, Reiersen L-O, Wang M. 2019. The urgency of Arctic change. Polar Sci. 21:6–13.
  • Overland JE, Wang M. 2020. The 2020 Siberian heat wave. Int J Climatol. 41:E2341–E2346. doi:10.1002/joc.6850
  • Peters H, Gregg MC, Toole JM. 1989. Meridional variability of turbulence through the equatorial undercurrent. J Geophys Res. 94:18003–18009.
  • Pnyushkov AV, Polyakov IV, Alekseev GV, Ashik IM, Baumann TM, Carmack EC, Ivanov VV, Rember R. 2021. A steady regime of volume and heat transports in the eastern Arctic Ocean in the early 21st century. Front Mar Sci. 8:705608. doi:10.3389/fmars.2021.705608.
  • Polyakov IV, Bhatt US, Walsh JE, Abrahamsen EP, Pnyushkov AV, Wassmann PF. 2013a. Recent oceanic changes in the Arctic in the context of long-term observations. Ecol Appl. 23(8):1745–1764.
  • Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. doi:10.1126/science.aai8204.
  • Polyakov IV, Pnyushkov AV, Rember R, Padman L, Carmack EC, Jackson JM. 2013. Winter convection transports Atlantic Water heat to the surface layer in the eastern Arctic Ocean. J Phys Oceanogr. 43:2142–2155.
  • Polyakov IV, Pnyushkov AV, Timokhov LA. 2012. Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J Clim. 25:8362–8370.
  • Polyakov IV, Rippeth TP, Fer I, Alkire MB, Baumann TM, Carmack EC, Ingvaldsen R, Ivanov VV, Janout M, Lind S, et al. 2020. Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean. J Clim. 33:8107–8123.
  • Polyakov IV, Rippeth TP, Fer I, Baumann TM, Carmack EC, Ivanov VV, Janout M, Padman L, Pnyushkov AV, Rember R. 2020. Intensification of near-surface currents and shear in the eastern Arctic Ocean. Geophys Res Lett. 46:e2020GL089469. doi:10.1029/2020GL089469.
  • Ricker R, Hendricks S, Kaleschke L, Tian-Kunze X, King J, Haas C. 2017. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere. 11:1607–1623. doi:10.5194/tc-11-1607-2017.
  • Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A. 2012. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci. 8(4):633–656.
  • Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE. 2007. The large-scale energy budget of the Arctic, J. Geophys. Res., 112:D11122. doi:10.1029/2006JD008230.
  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM. 2009. The emergence of surface-based Arctic amplification. Cryosphere. 3:11–19.
  • Stroeve J, Notz D. 2018. Changing state of Arctic sea ice across all seasons. Environ Res Lett. 13:103001.
  • Xie JP, Counillon F, Bertino L, Tian-Kunze X, Kaleschke L. 2016. Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system. Cryosphere. 10(6):2745–2761.
  • Amaya DJ, Miller AJ, Xie SP, Kosaka Y. 2020. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat Commun. 11:1903. doi:10.1038/s41467-020-15820-w.
  • Bond NA, Cronin MF, Freeland H, Mantua N. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett. 42:3414–3420. doi:10.1002/2015GL063306
  • Collins M, Sutherland M, Bouwer L, Cheong S-M, Frölicher T, Jacot Des Combes H, Koll Roxy M, Losada I, McInnes K, Ratter B, et al. 2019. Extremes, abrupt changes and managing risk. In: IPCC special report on the ocean and cryosphere in a changing climate. Pörtner H-O, Roberts DC, MassonDelmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM, editors. in press.
  • Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W. 2012. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ. doi:10.1016/j.rse.2010.10.0172011
  • Earl E. 2019. Stock decline leads to historic shutdown for Gulf P-cod. Alaska Journal of Commerce. https://www.alaskajournal.com/2019-12-11/stock-decline-leads-historic-shutdown-gulf-p-cod.
  • Ferriss B, Zador S. 2021. Ecosystem status report 2020: Gulf of Alaska. Resource Ecology and Fisheries Management, Alaska Fisheries Science Center, NOAA. From https://apps-afsc.fisheries.noaa.gov/REFM/docs/2020/GOAecosys.pdf.
  • Gasparin F, Mignot A, Perruche C. 2020. The resurgence of the North Pacific marine heatwave in 2018. Section 4.3 of von Schuckmann and co-authors (2020) Copernicus Marine Service ocean state report, issue 4. J Oper Oceanogr. 13(Suppl. 1):S1–S172. doi:10.1080/1755876X.2020.1785097
  • Gentemann CL, Fewings MR, García-Reyes M. 2017. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys Res Lett. 44:312–319. doi:10.1002/2016GL071039
  • Good S, Fiedler E, Mao C, Martin MJ, Maycock A, Reid R, Roberts-Jones J, Searle T, Waters J, While J, Worsfold M. 2020. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12(4):720. doi:10.3390/rs12040720
  • Harvey C, Garfield T, Williams G, Tolimieri N. 2021. California current ecosystem status report, 2021. A report of the NOAA CCIEA team to the Pacific Fishery Management Council, March 10, 2021. https://www.pcouncil.org/documents/2021/02/i-1-a-iea-team-report-1.pdf/.
  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, et al. 2020. The ERA5 global reanalysis. Q J R Meteorol Soc. 146:1999–2049. doi:10.1002/qj.3803.
  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver EC, Benthuysen JA, Burrows MT, Donat MG, Feng M, Holbrook NJ. 2016. A hierarchical approach to defining marine heatwaves. Prog Oceanogr. 141:227–238. doi:10.1016/j.pocean.2015.12.014
  • Hobday AJ, Spillman CM, Eveson P, Hartog JR, Zhang X, Brodie S. 2018a. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front Mar Sci. doi:10.3389/fmars.2018.00137
  • Hobday AJ, Spillman CM, Paige Eveson J, Hartog JR. 2018b. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish Oceanogr. 25:45–56. doi:10.1111/fog.12083
  • Holbrook NJ, Scannell HA, Sen Gupta A, et al. 2019. A global assessment of marine heatwaves and their drivers. Nat Commun. 10:2624. doi:10.1038/s41467-019-10206-z
  • Ishii M, Fukuda Y, Hirahara H, Yasui S, Suzuki T, Sato K. 2017. Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA. 13:163–167. doi:10.2151/sola.2017-030.
  • Johnson SJ, Stockdale TN, Ferranti L, Balmaseda MA, Molteni F, Magnusson L, Tietsche S, Decremer D, Weisheimer A, Balsamo G, et al. 2019. SEAS5: the new ECMWF seasonal forecast system. Geosci Model Dev. 12:1087–1117. doi:10.5194/gmd-12-1087-2019
  • Kharin VV, Zwiers FW. 2003. On the ROC score of probability forecasts. J Clim. 16(24):4145–4150. doi:10.1175/1520-0442(2003)016<4145:OTRSOP>2.0.CO;2
  • Laurel BJ, Rogers LA. 2020. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can J Fish Aquat Sci. 77(4):644–650. doi:10.1139/cjfas-2019-0238
  • Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. 2020. Increasing ocean stratification over the past half-century. Nat Clim Change. 10(12):1116–1123.
  • Loeb NG, Doelling DR, Wang H, Su W, Nguyen C, Corbett JG, Liang L, Mitrescu C, Rose FG, Kato S. 2018. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-Atmosphere (TOA) Edition-4.0 data product. J Clim. 31(2):895–918. [accessed 2021 Jun 15]. https://journals.ametsoc.org/view/journals/clim/31/2/jcli-d-17-0208.1.xml.
  • Madec G. 2008. NEMO ocean engine. France, Institut Pierre-Simon Laplace (IPSL), 300pp. (Note du Pole de Modélisation 27).
  • Mayer M, Haimberger L, Edwards JM, Hyder P. 2017. Toward consistent diagnostics of the coupled atmosphere and ocean energy budgets. J Clim. 30(22):9225–9246. [accessed 2021 Jun 21]. https://journals.ametsoc.org/view/journals/clim/30/22/jcli-d-17-0137.1.xml.
  • Mayer J, Mayer M, Haimberger L. 2021. Consistency and homogeneity of atmospheric energy, moisture, and mass budgets in ERA5. J Clim. 34(10):3955–3974. [accessed 2021 Jun 21]. https://journals.ametsoc.org/view/journals/clim/34/10/JCLI-D-20-0676.1.xml.
  • McAdam R, Masina S, Balmaseda MA, Gualdi S, Mayer M, Senan R. 2022. Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems. Clim Dyn. 58(11):3334–3350.
  • Mogensen KS, Balmaseda MA, Weaver A. 2012. The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. Technical report 668. Reading: ECMWF. https://www.ecmwf.int/sites/default/files/elibrary/2012/11174-nemovar-ocean-data-assimilation-system-implemented-ecmwf-ocean-analysis-system-4.pdf.
  • Oliver EC, Benthuysen JA, Darmaraki S, Donat MG, Hobday AJ, Holbrook NJ, Schlegel RW, Gupta AS. 2020. Marine heatwaves. Ann Rev Mar Sci. 13:313–342.
  • Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Sen Gupta A, Hobday AJ, Holbrook NJ. 2018. Longer and more frequent marine heatwaves over the past century. Nat Commun. 9:1324. doi:10.1038/s41467-018-03732-9
  • Peterson WT, Bond N, Robert M. 2016. The Blob (part three): going, going, gone? PICES Press. 24:46–48. www.pices.int/publications/pices_press/volume24/PPJan2016.pdf.
  • Rogers LA, Wilson MT, Duffy-Anderson JT, Kimmel DG, Lamb JF. 2021. Pollock and ‘the Blob’: impacts of a marine heatwave on Walleye Pollock early life stages. Fish Oceanogr. 30:142–158. doi:10.1111/fog.12508.
  • Scannell HA, Johnson GC, Thompson L, Lyman JM, Riser SC. 2020. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys Res Lett. 47:e2020GL090548. doi:10.1029/2020GL090548.
  • Titchner HA, Rayner NA. 2014. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J Geophys Res Atmos. 119:2864–2889. doi:10.1002/2013JD020316.
  • Trainer VL, Kudela RM, Hunter MV, Adams NG, McCabe RM. 2020. Climate extreme seeds a new domoic acid hotspot on the US west coast. Front Clim. 2:23. doi:10.3389/fclim.2020.571836.
  • Trenberth KE, Fasullo JT. 2017. Atlantic meridional heat transports computed from balancing Earth's energy locally. Geophys Res Lett. 44(4):1919–1927.
  • Weaver AT, Deltel C, Machu E, Ricci S, Daget N. 2005. A multivariate balance operator for variational ocean data assimilation. Q J R Meteorol Soc. 131:3605–3625. doi:10.1256/qj.05.119.
  • Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M. 2019. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15:779–808. doi:10.5194/os-15-779-2019.
  • The BACC II Author Team. 2015. Second assessment of climate change for the Baltic Sea basin. Regional climate studies. Berlin: Springer Verlag, 501 pp. doi:10.1007/978-3-319-16006-1.
  • Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, et al. 2015. The ocean reanalyses intercomparison project (ORA-IP). J Oper Oceanogr. 8(sup1):s80–s97. doi:10.1080/1755876X.2015.1022329.
  • Bholowalia P, Kumar A. 2014. EBK-means: a clustering technique based on elbow method and K-means in WSN. Int J Comput Appl. 105:17–24.
  • Brewer PG, Peltzer ET. 2016. Ocean chemistry, ocean warming, and emerging hypoxia. J Geophys Res Oceans. 121(5):3659–3667. doi:10.1002/2016JC011651.
  • Dahlgren P, Landelius T, Kallberg P, Gollvik S. 2016. A high resolution regional reanalysis for Europe Part 1: 3-dimensional reanalysis with the regional HIgh Resolution Limited Area Model (HIRLAM). Q J Roy Meteor Soc. 698:2119–2131. doi:10.1002/qj.2807.
  • Gröger M, Dieterich C, Meier MHE, Schimanke S. 2015. Thermal air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf. Tellus A Dyn Meteorol Oceanogr. 67(1):26911. doi:10.3402/tellusa.v67.26911.
  • Haavisto N, Tuomi L, Roiha P, Siiriä SM, Alenius P, Purokoski T. 2018. Argo floats as a novel part of the monitoring the hydrography of the Bothnian Sea. Front Mar Sci. 5:324. doi:10.3389/fmars.2018.00324.
  • Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning. Data mining, inference, and prediction. Springer, New York. 745 pp.
  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, et al. 2020. The ERA5 global reanalysis. Q J R Metereol Soc. 146(730):1999–2049.
  • Holland E, von Schuckmann K, Monier M, Legeais J-F, Prado S, Sathyendranath S, Dupouy C. 2019. The use of Copernicus Marine Service products to describe the state of the tropical western Pacific Ocean around the islands: a case study. In: Copernicus Marine Service Ocean State Report, Issue 3. J Oper Oceanogr. 12(suppl. 1):s43–s48. doi:10.1080/1755876X.2019.1633075
  • Hordoir R, Axell L, Höglund A, Dieterich C, Fransner F, Gröger M, Liu Y, Pemberton P, Schimanke S, Andersson H, et al. 2019. Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications. Geosci Model Dev. 12:363–386. doi:10.5194/gmd-12-363-2019
  • IOC, SCOR and IAPSO. 2010. The international thermodynamic equation of seawater – 2010: calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. [accessed 2021 October 11]. http://www.TEOS-10.org.
  • IPCC. 2019. IPCC special report on the ocean and cryosphere in a changing climate. Pörtner H-O, Roberts DC, MassonDelmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM, editors. Geneva: IPCC. https://www.ipcc.ch/srocc/.
  • IPCC. 2021. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. MassonDelmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, and Zhou B, editors. Cambridge University Press. In Press.
  • Jain AK. 2010. Data clustering: 50 years beyond K-means. Pattern Recognit Lett. 31:651–666. doi:10.1016/j.patrec.2009.09.011
  • Jakobsson M, Stranne C, O'Regan M, Greenwood SL, Gustafsson B, Humborg C, Weidner E. 2019. Bathymetric properties of the Baltic Sea. Ocean Sci. 15(4):905–924. doi:10.5194/os-15-905-2019
  • Juzbašić A, Kryjov VN, Ahn JB. 2021. On the anomalous development of the extremely intense positive Arctic Oscillation of the 2019–2020 winter. Environ Res Lett. 16(5):055008. doi:10.1088/1748-9326/abe434.
  • Kärnä T, Ljungemyr P, Falahat S, Ringgaard I, Axell L, Korabel V, Murawski J, Maljutenko I, Lindenthal A, Jandt-Scheelke S, et al. 2021. Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea. Geosci Model Dev. 14(9):5731–5749. doi:10.5194/gmd-14-5731-2021.
  • Kotta J, Herkül K, Jaagus J, Kaasik A, Raudsepp U, Alari V, Arula T, Haberman J, Järvet A, Kangur K, et al. 2018. Linking atmospheric, terrestrial and aquatic environments: regime shifts in the Estonian climate over the past 50 years. PLoS One. 13(12):e0209568. doi:10.1371/journal.pone.0209568.
  • Landelius T, Dahlgren P, Gollvik S, Jansson A, Olsson E. 2016. A high resolution regional reanalysis for Europe Part 2: 2D analysis of surface temperature, precipitation and wind. Q J Roy Meteor Soc. 142:2132–2142. doi:10.1002/qj.2813.
  • Lawrence ZD, Perlwitz J, Butler AH, Manney GL, Newman PA, Lee SH, Nash ER. 2020. The remarkably strong Arctic stratospheric polar vortex of winter 2020: links to record-breaking Arctic Oscillation and ozone loss. J Geophys Res Atmos. 125(22):e2020JD033271. doi:10.1029/2020JD033271.
  • Lee SH, Lawrence ZD, Butler AH, Karpechko AY. 2020. Seasonal forecasts of the exceptional northern hemisphere winter of 2020. Geophys Res Lett. 47(21):e2020GL090328. doi:10.1029/2020GL090328.
  • Liblik T, Lips U. 2019. Stratification has strengthened in the Baltic Sea – an analysis of 35 years of observational data. Front Earth Sci. 7:174. doi:10.3389/feart.2019.00174.
  • Liblik T, Naumann M, Alenius P, Hansson M, Lips U, Nausch G, Tuomi L, Wesslander K, Laanemets J, Viktorsson L. 2018. Propagation of impact of the recent major Baltic inflows from the eastern Gotland basin to the Gulf of Finland. Front Mar Sci. 5:222. doi:10.3389/fmars.2018.00222.
  • Lien VS, Aaboe S, Down EJ, Bertino L, Hendricks S, Lavergne T, Xie J, Mangin A, Bretagnon M. 2022. Oceanic response to the 2020 Siberian heatwave: Copernicus Marine Service Ocean State Report. J Oper Oceanogr. Accepted.
  • Lima L, Peneva E, Ciliberti S, Masina S, Lemieux B, Storto A, Chtirkova B. 2020. Ocean heat content in the Black Sea. In: Copernicus Marine Service Ocean State Report, Issue 4. J Oper Oceanogr. 13(suppl. 1):s41–s48. doi:10.1080/1755876X.2020.1785097.
  • Maljutenko I, Raudsepp U. 2019. Long-term mean, interannual and seasonal circulation in the Gulf of Finland — the wide salt wedge estuary or gulf type ROFI. J Mar Sys. 195:1–19. doi:10.1016/j.jmarsys.2019.03.004.
  • Meyssignac B, Boyer T, Zhao Z, Hakuba MZ, Landerer FW, Stammer D, Köhl A, Kato S, L’ecuyer T, Ablain M, et al. 2019. Measuring global ocean heat content to estimate the Earth energy imbalance. Front Mar Sci. 6:432. doi:10.3389/fmars.2019.00432.
  • Meier HEM. 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuarine. Coastal Shelf Sci. 74(4):610–627. doi:10.1016/j.ecss.2007.05.019.
  • Meier HEM, Döscher R, Halkka A. 2004. Simulated distributions of Baltic Sea-ice in warming climate and consequences for the winter habitat of the Baltic ringed seal. Ambio. 33(4–5):249–256. doi:10.1579/0044-7447-33.4.249.
  • Millero FJ, Perron G, Desnoyers JE. 1973. Heat capacity of seawater solutions from 5° to 35°C and 0.5 to 22‰ chlorinity. J Geophys Res. 78(21):4499–4507. doi:10.1029/jc078i021p04499.
  • Nerger L, Hiller W, Schröter J. 2005. A comparison of error subspace Kalman filters. Tellus A Dyn Meteorol Oceanogr. 57:715–735. doi:10.3402/tellusa.v57i5.14732.
  • Niskanen T, Vainio J, Eriksson P, Heiler I. 2009. Maximum extent of the Baltic Sea ice recalculated for the period 1971–2008. Rep Ser Geophys. 61:164–167.
  • Overland JE, Wang M. 2021. The 2020 Siberian heat wave. Int J Climatol. 41:E2341–E2346. doi:10.1002/joc.6850.
  • Palmer MD, Roberts CD, Balmaseda M, Chang Y-S, Chepurin G, Ferry N, Fujii Y, Good SA, Guinehut S, Haines K, et al. 2017. Ocean heat content variability and change in an ensemble of ocean reanalyses. Clim Dyn. 49:909–930. doi:10.1007/s00382-015-2801-0.
  • Pemberton P, Löptien U, Hordoir R, Höglund A, Schimanke S, Axell L, Haapala J. 2017. Sea-ice evaluation of NEMONordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea. Geosci Model Devel. 10:3105–3123. doi:10.5194/gmd-10-3105-2017.
  • Raudsepp U. 2001. Interannual and seasonal temperature and salinity variations in the Gulf of Riga and corresponding saline water inflow from the Baltic proper. Nord Hydrol. 32:135–160. doi:10.2166/nh.2001.0009.
  • Raudsepp U, Legeais J-F, She J, Maljutenko I, Jandt S. 2018. Baltic inflows. In: Copernicus Marine Service Ocean State Report, Issue 2. J Oper Oceanogr. 11(suppl. 1):s106–s110. doi:10.1080/1755876X.2018.1489208.
  • Raudsepp U, Maljutenko I. 2022. A method for assessment of the general circulation model quality using K-means clustering algorithm: a case study with GETM v2.5. Geosci Model Dev. 15:535–551. doi:10.5194/gmd-15-535-2022.
  • Raudsepp U, Uiboupin R, Laanemäe K, Maljutenko I. 2020. Geographical and seasonal coverage of sea ice in the Baltic Sea. In: Copernicus Marine Service Ocean State Report, Issue 4. J Oper Oceanogr. 13(Suppl. 1):s115–s121. doi:10.1080/1755876X.2020.1785097.
  • Raudsepp U, Uiboupin R, Maljutenko I, Hendricks S, Ricker R, Liu Y, Iovino D, Peterson KA, Zuo H, Lavergne T, et al. 2019. Combined analysis of cryosat-2/SMOS sea ice thickness data with model reanalysis fields over the Baltic Sea. In: Copernicus Marine Service Ocean State Report, Issue 3. J Oper Oceanogr. 12(Suppl. 1):s73–s79. doi:10.1080/1755876X.2019.1633075.
  • Thamdrup B, Fleischer S. 1998. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquat Microb Ecol. 15(2):191–199. doi:10.3354/ame015191.
  • Tomczyk AM, Bednorz E, Szyga-Pluta K. 2021. Changes in air temperature and snow cover in winter in Poland. Atmosphere. 12:68. doi:10.3390/atmos12010068.
  • Trombetta T, Vidussi F, Mas S, Parin D, Simier M, Mostajir B. 2019. Water temperature drives phytoplankton blooms in coastal waters. PLoS One. 14(4):e0214933. doi:10.1371/journal.pone.0214933.
  • Uotila P, Vihma T, Haapala J. 2015. Atmospheric and oceanic conditions and the extremely low Bothnian Bay Sea ice extent in 2014/2015. Geophys Res Lett. 42(18):7740–7749. doi:10.1002/2015GL064901.
  • von Schuckmann K, Cheng L, Palmer MD, Hansen J, Tassone C, Aich V, Adusumilli S, Beltrami H, Boyer T, Cuesta-Valero FJ, et al. 2020. Heat stored in the Earth system: where does the energy go? Earth Syst Sci Data. 12:2013–2041. doi:10.5194/essd-12-2013-2020.
  • von Schuckmann K, Le Traon P-Y, Smith N, Pascual A, Djavidnia S, Gattuso J-P, Grégoire M, Nolan G. 2019. Copernicus Marine Service Ocean State report. J Oper Oceanogr. 12(suppl. 1):s1–s123. doi:10.1080/1755876X.2019.1633075.
  • von Schuckmann K, Storto A, Simoncelli S, Raj RP, Samuelsen A, Collar A, Sotillo MG, Szerkely T, Mayer M, Peterson KA, et al. 2018. Ocean heat content. In: Copernicus Marine Service Ocean State Report, issue 2. J Oper Oceanogr. 11(Suppl. 1):s1–s142. doi:10.1080/1755876X.2018.1489208.
  • Yuan C, Yang H. 2019. Research on K-value selection method of K-means clustering algorithm. J Multidiscip Sci J. 2:226–235. doi:10.3390/j2020016.
  • Bellafiore D, Umgiesser G. 2010. Hydrodynamic coastal processes in the north Adriatic investigated with a 3D finite element model. Ocean Dynam. 60:255–273.
  • Buongiorno Nardelli B, Tronconi C, Pisano A, Santoleri R. 2013. High and ultra-high resolution processing of satellite sea surface temperature data over southern European seas in the framework of MyOcean project. Rem Sens Env. 129:1–16. doi:10.1016/j.rse.2012.10.012.
  • Cavicchia L, von Storch H, Gualdi S. 2014. A long-term climatology of medicanes. Clim Dyn. 43(5–6):1183–1195.
  • Chai F, Wang Y, Xing X, Yan Y, Xue H, Wells M, Boss E. 2021. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences. 18:849–859. doi:10.5194/bg-18-849-2021.
  • Clementi E, Aydogdu A, Goglio AC, Pistoia J, Escudier R, Drudi M, Grandi A, Mariani A, Lyubartsev V, Lecci R, et al. 2021. Mediterranean Sea physical analysis and forecast (CMEMS MED-Currents, EAS6 system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). doi:10.25423/CMCC/MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS6.
  • Coppini G, Clementi E, Cossarini G, Korres G, Drudi M, Amadio C, Aydogdu A, Agostini P, Bolzon G, Cretí S, et al. 2021. The Copernicus Marine Service ocean forecasting system for the Mediterranean Sea. Extended abstract submitted to EuroGOOS Conference 2021.
  • Cossarini G, Lazzari P, Solidoro C. 2015. Spatiotemporal variability of alkalinity in the Mediterranean Sea. Biogeosciences. 12(6):1647–1658.
  • Emanuel K. 2005. Genesis and maintenance of Mediterranean hurricanes. Adv Geosci. 2:217–220.
  • Federico I, Pinardi N, Coppini G, Oddo P, Lecci R, Mossa M. 2017. Coastal ocean forecasting with an unstructured grid model in the Southern Adriatic and Northern Ionian seas. Nat Hazards Earth Syst Sci. 17:45–59.
  • Feudale L, Bolzon G, Lazzari P, Salon S, Teruzzi A, Di Biagio V, Coidessa G, Cossarini G. 2021. Mediterranean Sea biogeochemical analysis and forecast (CMEMS MED-biogeochemistry, MedBFM3 system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). doi:10.25423/CMCC/MEDSEA_ANALYSISFORECAST_BGC_006_014_MEDBFM3.
  • Fita L, Flaounas E. 2018. Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q J Roy Meteorol Soc. 144:1028–1044. doi:10.1002/qj.3273.
  • Fita L, Romero R, Luque A, Emanuel K, Ramis C. 2007. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Natural Hazards Earth Sys Sci. 7(1):41–56. doi:10.5194/nhess-7-41-2007.
  • Flaounas E, Gray SL, Teubler F. 2021. A process-based anatomy of Mediterranean cyclones: from baroclinic lows to tropical-like systems. Weather Clim Dyn. 2:255–279. doi:10.5194/wcd-2-255-2021.
  • Gaertner MÁ, González-Alemán JJ, Romera R, et al. 2018. Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution. Clim Dyn. 51:1041–1057. doi:10.1007/s00382-016-3456-1.
  • González-Alemán JJ, Pascale S, Gutierrez-Fernandez J, Murakami H, Gaertner MA, Vecchi GA. 2019. Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys Res Lett. 46:1754–1764. doi:10.1029/2018GL081253.
  • IPCC. 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. In: H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegría, M Nicolai, A Okem, J Petzold, B Rama, NM Weyerm, editors. Cambridge, UK: Cambridge University Press, 755 pp. https://doi.org/10.1017/9781009157964
  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P. 1994. Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge UK.
  • Korres G, Ravdas M, Zacharioudaki A, Denaxa D, Sotiropoulou M. 2021. Mediterranean Sea waves analysis and forecast (CMEMS MED-Waves, MedWAΜ3 system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). doi:10.25423/CMCC/MEDSEA_ANALYSISFORECAST_WAV_006_017_MEDWAM3.
  • Lazzari P, Solidoro C, Ibello V, Salon S, Teruzzi A, Béranger K, Colella S, Crise A. 2012. Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. Biogeosciences. 9:217–233.
  • Lazzari P, Solidoro C, Salon S, Bolzon G. 2016. Spatial variability of phosphate and nitrate in the Mediterranean Sea: a modelling approach. Deep Sea Res I. 108:39–52.
  • Lin I, Liu WT, Wu C-C, Wong GTF, Hu C, Chen Z, Liang W-D, Yang Y, Liu K-K. 2003. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys Res Lett. 30(13):1718. doi:10.1029/2003GL017141.
  • Madec G, the NEMO team. 2016. NEMO ocean engine: version 3.6 stable. Note du Pole de modelisation, Institut Pierre-Simon Laplace N 27. ISSN No 1288-1619. https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.
  • Masters J, Henson B. 2020. A slew of weather events – including two named storms troubling Europe – pose challenges far and wide. Yale Climate Connections. https://yaleclimateconnections.org/2020/09/a-slew-of-weather-events-including-two-named-storms-troubling-europe-pose-challenges-far-and-wide/.
  • Menkes CE, Lengaigne M, Lévy M, Ethé C, Bopp L, Aumont O, Vincent E, Vialard J, Jullien S. 2016. Global impact of tropical cyclones on primary production. Global Biogeochem Cycles. 30:767–786. doi:10.1002/2015GB00521.
  • Miglietta MM, Rotunno R. 2019. Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q J Roy Meteorol Soc. 145:1444–1460. doi:10.1002/qj.3503.
  • Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J. 2013. A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Amer Meteor Soc. 94:529–547. doi:10.1175/BAMS-D-11-00154.1.
  • Price JF. 1983. Internal wave wake of a moving storm. Part I: scales, energy budget, and observations. J Phys Oceanogr. 13:949–965.
  • Price JF, Sanford TB, Forristall GZ. 1991. Ocean response to a hurricane, Part II: data tabulations and numerical modeling. Technical Report. Woods Hole Oceanographic Institution.
  • Romero R, Emanuel K. 2013. Medicane risk in a changing climate. J Geophys Res Atmos. 118:5992–6001. doi:10.1002/jgrd.50475.
  • Salon S, Cossarini G, Bolzon G, Feudale L, Lazzari P, Teruzzi A, Solidoro C, Crise A. 2019. Marine ecosystem forecasts: skill performance of the CMEMS Mediterranean Sea model system. Ocean Sci Discuss. 1–35. doi:10.5194/os-2018-145.
  • Smart D. 2020. Medicane ‘Ianos’ over the central Mediterranean 14–20 September 2020. Weather. 75(11). doi:10.1002/wea.3871.
  • Tous M, Romero R, Ramis C. 2013. Surface heat fluxes influence on medicane trajectories and intensification. Atmos Res. doi:10.1016/j.atmosres.2012.05.022.
  • Tous M, Zappa G, Romero R, Shaffrey L, Vidale PL. 2016. Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model. Clim Dyn 47:1913–1924. doi:10.1007/s00382-015-2941-2
  • Trotta F, Federico I, Pinardi N, Coppini G, Causio S, Jansen E, Iovino D, Masina S. 2021. A relocatable ocean modeling platform for downscaling to shelf- coastal areas to support disaster risk reduction. Front Mar Sci. 8:317. doi:10.3389/fmars.2021.642815.
  • Umgiesser G, Canu DM, Cucco A. 2004. A finite element model for the Venice lagoon. Development, set up, calibration and validation. J Mar Sys. 51(1–4):123–145. doi:10.1016/j.jmarsys.2004.05.009.
  • U.S. Department of Agriculture. 2020. Weekly weather and crop bulletin. 107(38). https://www.usda.gov/oce/weather-drought-monitor.
  • Vichi M, Lovato T, Butenschön M, Tedesco L, Lazzari P, Cossarini G, Masina S, Pinardi N, Solidoro C, Zavatarelli M. 2020. The biogeochemical flux model (BFM): equation description and user manual. BFM version 5.2. BFM Report series N. 1, Release 1.2, June 2020, Bologna, Italy, p. 104. http://bfm-community.eu.
  • Walsh K. 2013. The archaeology of mediterranean landscapes: human-environment interaction from the neolithic to the roman period. Cambridge, Cambridge University Press. doi:10.1017/CBO9781139024921
  • WAMDI Group. 1988. The WAM model – a third generation ocean wave prediction model. J Phys Oceanogr. 18:1775–1810. doi:10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.
  • Zekkos D, Zalachoris G, Alvertos AE, Amatya PM, Blunts P, Clark M, Dafis S, Farmakis I, Ganas A, Hille M, et al. 2020. The September 18–20 2020 Medicane Ianos impact on Greece – Phase I reconnaissance report. Geotechnical Extreme Events Reconnaissance Report, GEER-068. https://doi.org/10.18118/G6MT1T.
  • Adloff F, Somot S, Sevault F, Jordà G, Aznar R, Déqué M, Herrmann M, Marcos M, Dubois C, Padorno E, et al. 2015. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn. 45(9–10):2775–2802. doi:10.1007/s00382-015-2507-3.
  • Alexander MA, Scott JD, Friedland KD, Mills KE, Nye JA, Pershing AJ, Thomas AC. 2018. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elementa. doi:10.1525/elementa.191.
  • Darmaraki S, Somot S, Sevault F, Nabat P. 2019a. Past variability of Mediterranean Sea marine heatwaves. Geophys Res Lett. 46:9813–9823. doi:10.1029/2019GL082933.
  • Darmaraki S, Somot S, Sevault F, Nabat P, Cabos Narvaez WD, Cavicchia L, Djurdjevic V, Li L, Sannino G, Sein DV. 2019b. Future evolution of marine heatwaves in the Mediterranean Sea. Clim Dyn. 53(3–4):1371–1392. doi:10.1007/s00382-019-04661-z.
  • Frölicher TL, Laufkötter C. 2018. Emerging risks from marine heat waves. Nat Commun. 9:650. doi:10.1038/s41467-018-03163-6.
  • Garrabou J. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol. 15:1090–1103.
  • Hayashida H, Matear RJ, Strutton PG. 2020. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glb Chg Bio. 26(9):4800–4811. doi:10.1111/gcb.15255.
  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, Benthuysen JA, Burrows MT, Donat MG, Feng M, et al. 2016. A hierarchical approach to defining marine heatwaves. Prog Oceanogr. 141:227–238. doi:10.1016/j.pocean.2015.12.014.
  • Hobday AJ, Oliver ECJ, Sen Gupta A, Benthuysen JA, Burrows MT, Donat MG, Holbrook NJ, Moore PJ, Thomsen MS, Wernberg T, Smale DA. 2018. Categorizing and naming marine heatwaves. Oceanography 31(2). doi:10.5670/oceanog.2018.205.
  • Holbrook NJ, Scannell HA, Sen Gupta A, Benthuysen JA, Feng M, Oliver ECJ, Alexander LV, Burrows MT, Donat MG, Hobday AJ, et al. 2019. A global assessment of marine heatwaves and their drivers. Nat Commun. 10(1):1–13. doi:10.1038/s41467-019-10206-z.
  • Holbrook NJ, Sen Gupta A, Oliver ECJ, Hobday AJ, Benthuysen JA, Scannell HA, Smale DA, Wernberg T. 2020. Keeping pace with marine heatwaves. Nat Rev Earth Environ. 1(9):482–493. doi:10.1038/s43017-020-0068-4.
  • Jansen E, Pimentel S, Tse W-H, Denaxa D, Korres G, Mirouze I, Storto A. 2019. Using canonical correlation analysis to produce dynamically based and highly efficient statistical observation operators. Ocean Sci. 15:1023–1032. doi:10.5194/os-15-1023-2019.
  • Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate-change experiments: events, not trends. Front Ecol Environ. 5:365–374.
  • Kawai Y, Wada A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J Oceanogr. 63(5):721–744.
  • Mavrakis A, Kapsali A, Tsiros IX, Pantavou K. 2021. Air quality and meteorological patterns of an early spring heatwave event in an industrialized area of Attica, Greece. Euro-Mediterr J Environ Integr. 6:25. doi:10.1007/s41207-020-00237-0.
  • Mavrakis AF, Tsiros IX. 2018. The abrupt increase in the Aegean Sea surface temperature during the June 2007 southeast Mediterranean heatwave-a marine heatwave event? Weather. 74:201–207.
  • Merchant CJ, Filipiak MJ, Le Borgne P, Roquet H, Autret E, Piollé J-F, Lavender S. 2008. Diurnal warm-layer events in the western Mediterranean and European shelf seas. Geophys Res Lett. 35:L04601. doi:10.1029/2007GL033071.
  • Olita A, Sorgente R, Natale S, Ribotti A, Bonanno A, Patti B. 2007. Effects of the 2003 European heatwave on the central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3(2):273–289.
  • Oliver ECJ, Burrows MT, Donat MG, Sen Gupta A, Alexander LV, Perkins-Kirkpatrick SE, Benthuysen JA, Hobday AJ, Holbrook NJ, Moore PJ, et al. 2019. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front Mar Sci. 6:734. doi:10.3389/fmars.2019.00734.
  • Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Gupta AS, Hobday AJ, et al. 2018. Longer and more frequent marine heatwaves over the past century. Nat Commun. 9(1):1–12. doi:10.1038/s41467-018-03732-9.
  • Pastor F, Valiente JA, Khodayar S. 2020. A warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 12(17):2687. doi:10.3390/rs12172687.
  • Pisano A, Marullo S, Artale V, Falcini F, Yang C, Leonelli FE, Santoleri R, Buongiorno Nardelli B. 2020. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 12:132. doi:10.3390/rs12010132.
  • Plecha SM, Soares PMM. 2019. Global marine heatwave events using the new CMIP6 multi-model ensemble: from shortcomings in present climate to future projections. Environ Res Lett. 15(12):124058. doi:10.1088/1748-9326/abc847.
  • Sen Gupta A, Thomsen M, Benthuysen JA, Hobday AJ, Oliver E, Alexander LV, Burrows MT, Donat MG, Feng M, Holbrook NJ, et al. 2020. Drivers and impacts of the most extreme marine heatwave events. Sci Rep. 10:19359. doi:10.1038/s41598-020-75445-3.
  • Smale DA, Wernberg T, Oliver ECJ, Thomsen M, Harvey BP, Straub SC, Burrows MT, Alexander LV, Benthuysen JA, Donat MG, et al. 2019 Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature. doi:10.1038/s41558-019-0412-1.
  • Soto-Navarro J, Jordá G, Amores A, Cabos W, Somot S, Sevault F, Macías D, Djurdjevic V, Sannino G, Li L, et al. 2020. Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble. Clim Dyn. 54(3–4):2135–2165. doi:10.1007/s00382-019-05105-4.
  • Sparnocchia S, Schiano ME, Picco P, Bozzano R, Cappelletti A. 2006. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann Geophys. 24:443–452. doi:10.5194/angeo-24-443-2006.
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Dufoisjane F, Fulton CJ, Hovey RK, Harvey ES, et al. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science. 353(6295):169–172. doi:10.1126/science.aad8745.
  • Batistić M, Garić R, Jasprica N, Ljubimir S, Mikuš J. 2019. Bloom of the heterotrophic dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy, 1921 and tunicates Salpa fusiformis Cuvier, 1804 and Salpa maxima Forskål, 1775 in the open southern Adriatic in 2009. J Mar Biol Assoc U K. 99:1049–1058. doi:10.1017/S0025315418001029.
  • Beg Paklar G, Vilibić I, Grbec B, Matić F, Mihanović H, Džoić T, Šantić D, Šestanović S, Šolić M, Ivatek-Šahdan S, Kušpilić G, et al. 2020. Record-breaking salinities in the middle Adriatic during summer 2017 and concurrent changes in the microbial food web. Prog Oceanogr. 185:102345. doi:10.1016/j.pocean.2020.102345.
  • Bensi M, Cardin V, Rubino A, Notarstefano G, Poulain PM. 2013. Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012. J Geophys Res Oceans. 118. doi:10.1002/2013JC009432.
  • Bensi M, Velaoras D, Meccia V-L, Cardin V. 2016. Effects of the Eastern Mediterranean Sea circulation on the thermohaline properties as recorded by fixed deep-ocean observatories. Deep-Sea Res I. 1–13. doi:10.1016/j.dsr.2016.02.015.
  • Bessieres L, Rio MH, Dufau C, Boone C, Pujol M. 2013. Ocean state indicators from MyOcean altimeter products. Ocean Sci. 9:545–560.
  • Carlucci R, Maiorano P, Sion L, D'Onghia G, Tursi A. 2016. The sustainability of fishing in the southern Adriatic and Northern Ionian seas. In: Caligiuri A, editor. Governance of the Adriatic and Ionian marine space: papers of the International Association of the Law of the Sea. Napoli: Editoriale Scientifica; p. 149–159.
  • Civitarese G, Gačić M, Eusebi Borzelli GL, Lipizer M. 2010. On the impact of the bimodal oscillating system (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian seas (eastern Mediterranean). Biogeosciences. 7:3987–3997. doi:10.5194/bg-7-3987-2010.
  • Conkright ME, Levitus S, O'Brien TD, Boyer TP, Stephens C, Johnson DR, Baranova OK, Antonov JI, Gelfeld RD, Rochester J, Forgy C. 1998. World ocean database 1998. Version 1.2. National Oceanographic Data Center Internal Rep. 14. Silver Spring (MD): Ocean Climate Laboratory, National Oceanographic Data Center, 114 pp.
  • Gačić M, Civitarese G, Eusebi Borzelli GL, Kovacevic V, Poulain PM, Theocharis A, Menna M, Catucci A, Zarokanellos N. 2011. On the relationship between the decadal oscillations of the Northern Ionian Sea and the salinity distributions in the Eastern Mediterranean. J Geophys Res. 116:C12002. doi:10.1029/2011JC007280.
  • Gačić M, Civitarese G, Kovacevic V, Ursella L, Bensi M, Menna M, Cardin V, Poulain P-M, Cosoli S, Notarstefano G, Pizzi C. 2014. Extreme winter 2012 in the Adriatic: an example of climatic effect on the BiOS rhythm. Ocean Sci. 10:513–522. doi:10.5194/os-10-513-2014.
  • Gačić M, Civitarese G, Miserocchi S, Cardin V, Crise A, Mauri E. 2002. The open-ocean convection in the Southern Adriatic: a controlling mechanism of the spring phytoplankton bloom. Cont Shelf Res. 22:1897–1908.
  • Gačić M, Eusebi Borzelli GL, Civitarese G, Cardin V, Yari S. 2010. Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophys Res Lett. 37:L09608. doi:10.1029/2010GL043216.
  • Gačić M, Schroeder K, Civitarese G, Cosoli S, Vetrano A, Eusebi Borzelli GL. 2013. Salinity in the Sicily channel corroborates the role of the Adriatic-Ionian Bimodal Oscillating System (BiOS) in shaping the decadal variability of the Mediterranean overturning circulation. Ocean Sci. 9:83–90. doi:10.5194/os-9-83-2013.
  • Gačić M, Ursella L, Kovačević V, Menna M, Malačič V, Bensi M, Negretti ME, Cardin V, Orlic M, Sommeria J, et al. 2021. Impact of the dense water flow over the sloping bottom on the open-sea circulation: Laboratory experiments and the Ionian Sea (Mediterranean) example. Ocean Sci. 17:975–996. doi:10.5194/os-17-975-2021.
  • Garcia HE, Boyer TP, Locarnini RA, Baranova OK, Zweng MM. 2018. World Ocean Database 2018: user’s manual (prerelease). A.V. Mishonov, Technical ed. Silver Spring, (MD): NOAA.
  • Grodsky SA, Reul N, Bentamy A, Vandemark D, Guimbard S. 2019. Eastern Mediterranean salinification observed in satellite salinity from SMAP mission. J Mar Syst. 198:103190.
  • Kalimeris A, Kassis D. 2020. Sea surface circulation variability in the Ionian-Adriatic Seas. Prog Oceanogr. 189:102454. doi:10.1016/j.pocean.2020.102454.
  • Kokkini Z, Mauri E, Gerin R, Poulain PM, Simoncelli S, Notarstefano G. 2020. On the salinity structure in the South Adriatic as derived from float and glider observations in 2013–2016. Deep-Sea Res II. 171:104625. doi:10.1016/j.dsr2.2019.07.013.
  • Kokkini Z, Notarstefano G, Poulain PM, Mauri E, Gerin R, Simoncelli S. 2018. Unusual salinity pattern in the South Adriatic Sea. J Oper Oceanogr. 11(Suppl. 1):S1–S142, in von Schuckmann et al., 2018.
  • Lipizer M, Partescano E, Rabitti A, Giorgetti A, Crise A. 2014. Qualified temperature, salinity and dissolved oxygen climatologies in changing Adriatic Sea. Ocean Sci. 10:771–797. doi:10.5194/os-10-771-2014.
  • Mauri E, Menna M, Garić R, Batistić M, Libralato S, Notarstefano G, Martellucci R, Gerin R, Pirro A, Hure M, Poulain PM. 2021. Recent changes of the salinity distribution and zooplankton community in the South Adriatic Pit. J Oper Oceanogr. 14:S1–185, in von Schuckmann et al., 2021. doi:10.1080/1755876X.2021.1946240.
  • Menna M, Gačić M, Martellucci R, Notarstefano G, Fedele G, Mauri E, Gerin R, Poulain P-M. Climatic, Decadal, and Interannual Variability in the Upper Layer of the Mediterranean Sea Using Remotely Sensed and In-Situ Data. Remote Sensing. 2022;14(6):1322. https://doi.org/10.3390/rs14061322
  • Menna M, Gerin R, Notarstefano G, Mauri E, Bussani A, Pacciaroni M, Poulain PM. 2021. On the circulation and thermohaline properties of the Eastern Mediterranean Sea. Front Mar Sci. 8:903. doi:10.3389/fmars.2021.671469.
  • Menna M, Reyes Suarez NC, Civitarese G, Gačić M, Poulain PM, Rubino A. 2019. Decadal variations of circulation in the central Mediterranean and its interactions with the mesoscale gyres. Deep Sea Res-Oceans II. 164:12–24. doi:10.1016/j.dsr2.2019.02.004.
  • Mihanović H, Vilibić I, Šepić J, Matić F, Ljubešić Z, Mauri E, Gerin R. 2021. Observation, preconditioning and recurrence of exceptionally high salinities in the Adriatic Sea. Front Mar Sci. 8:834. doi:10.3389/fmars.2021.672210.
  • Notarstefano G, Menna M, Legeais JF. 2019. Reversal of the Northern Ionian circulation in 2017. J Oper Oceanogr. 12:S108, in von Schuckmann et al., 2019. doi:10.1080/1755876X.2019.1633075.
  • Ozer T, Gertman I, Kress N, Silverman J, Herut B. 2017. Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Glob Planet Change. 151:60–67. doi:10.1016/j.gloplacha.2016.04.001.
  • Pinardi N, Cessi P, Borile F, Wolfe CLP. 2019. The Mediterranean Sea overturning circulation. J Phys Oceanogr. 49(7):1699–1721. doi:10.1175/JPO-D-18-0254.1.
  • Poulain PM, Cushman-Roisin B. 2001. Chapter 3: circulation. In: Cushman-Roisin B, editor. Physical oceanography of the Adriatic Sea – past, present and future. Dordrecht: Kluwer Academic Publishers; p. 67–109.
  • Reale M, Salon S, Crise A, Farneti R, Mosetti R, Sannino G. 2017. Unexpected covariant behaviour of the Aegean and Ionian seas in the period 1987–2008 by means of a nondimensional sea surface height index. J Geophys Res Ocean. 122:8020–8033. doi:10.1002/2017JC012983.
  • Rubino A, Gačić M, Bensi M, Kovačević V, Malačič V, Menna M, Negretti ME, Sommeria J, Zanchettin D, Barreto RV, et al. 2020. Experimental evidence of long-term oceanic circulation reversals without wind influence in the North Ionian Sea. Sci Rep. 10:1905. doi:10.1038/s41598-020-57862-6.
  • Schroeder K, Chiggiato J, Josey SA, Borghini M, Aracri S, Sparnocchia S. 2017. Rapid response to climate change in a marginal sea. Sci Rep. 7:4065. doi:10.1038/s41598-017-04455-5.
  • Shabrang L, Menna M, Pizzi C, Lavigne H, Civitarese G, Gačić M. 2016. Long-term variability of the southern Adriatic circulation in relation to North Atlantic Oscillation. Ocean Sci. 12:233–241. doi:10.5194/os-12-233-2016.
  • Taburet G, Sanchez-Roman A, Ballarotta M, Pujol MA, Legeais JF, Fournier F, Faugere Y, Dibarboure G. 2019. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci. 15:1207–1224. doi:10.5194/os-15-1207-2019.
  • Vilibić I, Šepić J, Proust N. 2013. Observational evidence of a weakening of thermohaline circulation in the Adriatic Sea. Clim Res. 55:217–225.
  • Yari S, Kovačević V, Cardin V, Gačić M, Bryden L. 2012. Direct estimate of water, heat, and salt transport through the Strait of Otranto. J Geophys Res Ocean. 117:C09009. doi:10.1029/2012JC007936.
  • Bakun A. 1973. Coastal upwelling indices, west coast of North America, 1946-71.
  • Bakun A. 1990. Global climate change and intensification of coastal ocean upwelling. Science. 247(4939):198–201. doi:10.1126/science.247.4939.198
  • Bakun A. 1992. Global greenhouse effects, multi-decadal wind trends and potential impacts on coastal pelagic fish populations. ICES Mar Sci Symp. 195:316–325.
  • Bakun A, Field DB, Redondo-Rodriguez ANA, Weeks SJ. 2010. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glb Chg Bio. 16(4):1213–1228.
  • Bindoff NL, Cheung WW, Kairo JG, Arístegui J, Guinder VA, Hallberg R, Hilmi NJM, Jiao N, Karim MS, Levin L, O’Donoghue S. 2019. Changing ocean, marine ecosystems, and dependent communities. IPCC special report on the ocean and cryosphere in a changing climate, p. 477–587.
  • Bonino G, Di Lorenzo E, Masina S, Iovino D. 2019. Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci Rep. 9(1):1–14.
  • Bonino G, Lovecchio E, Gruber N, Münnich M, Masina S, Iovino D. 2021. Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system. Biogeosciences. 18(8):2429–2448.
  • Chavez FP, Messié MA. 2009. Comparison of eastern boundary upwelling ecosystems. Prog Oceanogr. 83:80–96.
  • Ciappa AC. 2019. The summer upwelling of the eastern Aegean Sea detected from MODIS SST scenes from 2003 to 2015. Int J Remote Sens. 40(8):3105–3117.
  • Cropper TE, Hanna E, Bigg GR. 2014. Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012. Deep Sea Res Part I. 86:94–111.
  • Di Lorenzo E. 2015. The future of coastal ocean upwelling. Nature. 518(7539):310–311.
  • Dobricic S, Pinardi N. 2008. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model. 22(3–4):89–105.
  • Garca-Reyes M, Sydeman WJ, Schoeman DS, Rykaczewski RR, Black BA, Smit AJ, Bograd SJ. 2015. Under pressure: climate change, upwelling, and eastern boundary upwelling ecosystems. Front Mar Sci. 2:109.
  • Göktürk OM, Çevik S, Toque N, Hordoir R, Nagy H, Özsoy E. 2014. Effects of the Etesian wind regime on coastal upwelling, floods and forest fires in the seas of the old world. J Black Sea/Mediterranean Environ. 117.
  • Jacox MG, Bograd SJ, Hazen EL, Fiechter J. 2015. Sensitivity of the California current nutrient supply to wind, heat, and remote ocean forcing. Geophys Res Lett. 42:5950–5957.
  • Jacox MG, Edwards CA, Hazen EL, Bograd SJ. 2018. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the US West Coast. J Geophys Res Oceans. 123(10):7332–7350.
  • Lima L, Aydoğdu A, Escudier R, Masina S, Ciliberti SA, Azevedo D, Peneva EL, Causio S, Cipollone A, Clementi E, et al. 2020. Black sea physical reanalysis (CMEMS BS-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). doi:10.25423/CMCC/BLKSEA_MULTIYEAR_PHY_007_004.
  • Lima L, Ciliberti SA, Aydoğdu A, Masina S, Escudier R, Cipollone A, Azevedo D, Causio S, Peneva E, Lecci R, et al. 2021. Climate signals in the Black Sea from a multidecadal eddy-resolving reanalysis. Front Mar Sci. 8:710973.
  • Lovecchio E, Gruber N, Münnich M. 2018. Mesoscale contribution to the long-range offshore transport of organic carbon from the Canary upwelling system to the open North Atlantic. Biogeosciences. 15(16):5061–5091.
  • Miranda PMA, Alves JMR, Serra N. 2013. Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Clim Dyn. 40(11–12):2813–2824.
  • Pauly D, Christensen V. 1995. Primary production required to sustain global series. Nature. 374:255–257.
  • Rusu L, Raileanu AB, Onea F. 2018. A comparative analysis of the wind and wave climate in the Black Sea along the shipping routes. Water. 10(7):924.
  • Stanev EV, Peneva E, Chtirkova B. 2019. Climate change and regional ocean water mass disappearance: case of the Black Sea. J Geophys Res Oceans. 124(7):4803–4819.
  • Storto A, Dobricic S, Masina S, Di Pietro P. 2011. Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon Weather Rev. 139(3):738–754.
  • Sur H, Özsoy E, Ibrayev R. 2000. Chapter 16 Satellite-derived flow characteristics of the Caspian Sea. In D B T -E O S Halpern, editor. Satellites, oceanograghy and society (Vol. 63, pp. 289–297). Elsevier. https://doi.org/10.1016/S0422-9894(00)80017-3
  • Sur HI, Özsoy E, Ünlüata Ü. 1994. Boundary current instabilities, upwelling, shelf mixing and eutrophication processes in the Black Sea. Prog Oceanogr. 33(4):249–302.
  • Tuzhilkin VS, Kosarev AN. 2005. Thermohaline structure and general circulation of the Caspian Sea waters. In: Kostianoy AG, Kosarev AN, editors. The Caspian Sea environment. Berlin: Springer; p. 33–57. https://doi.org/10.1007/698_5_003