395
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Determinants of vulnerability of bean growing households to climate variability in Colombia

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 730-742 | Received 16 Oct 2018, Accepted 23 Oct 2019, Published online: 20 Nov 2019

References

  • Abson, D. J., Dougill, A. J., & Stringer, L. C. (2012). Using principal component analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Applied Geography, 35, 515–524. doi: 10.1016/j.apgeog.2012.08.004
  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268–281. doi: 10.1016/j.gloenvcha.2006.02.006
  • Adger, W. N., Agrawal, S., Mirza, M. M. W., Conde, C., O'Brien, K. L., Pulhin, J., … Takahashi, K. (2007). Assessment of adaptation practices, options, constraints and capacity. In M. L. Parry, O. F. Canziani, & J. P. Palutikof, et al (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (pp. 719–743). Cambridge: Cambridge University Press.
  • Aguilar, M., Sierra, J., Ramirez, W., Vargas, O., Calle, Z., Vargas, W., … Barrera Cataño, J. I. (2015). Toward a post-conflict Colombia: Restoring to the future. Restoration Ecology, 23, 4–6. doi: 10.1111/rec.12172
  • Antwi-Agyei, P., Dougill, A. J., Fraser, E. D. G., & Stringer, L. C. (2013). Characterising the nature of household vulnerability to climate variability: Empirical evidence from two regions of Ghana. Environment, Development and Sustainability, 15, 903–926. doi: 10.1007/s10668-012-9418-9
  • Antwi-Agyei, P., Fraser, E. D. G., Dougill, A. J., Stringer, L. C., & Simelton, E. (2012). Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Applied Geography, 32, 324–334. doi: 10.1016/j.apgeog.2011.06.010
  • Baca, M., Läderach, P., Haggar, J., Schroth, G., & Ovalle, O. (2014). An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica. PLoS One, 9, e88463. doi: 10.1371/journal.pone.0088463
  • Beebe, S. (2012). Common bean breeding in the tropics. In Jules Janick (Ed.), Plant breeding reviews (pp. 357–426). Hoboken, NJ: John Wiley & Sons, Inc.
  • Bellon, M. R., Hodson, D., & Hellin, J. (2011). Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proceedings of the National Academy of Sciences, 108, 13432–13437. doi: 10.1073/pnas.1103373108
  • Bernardi, M. (2013). Understanding user needs for climate services in agriculture.
  • Beveridge, L., Whitfield, S., Fraval, S., van Wijk, M., van Etten, J., Mercado, L., … Challinor, A. (2019). Experiences and drivers of food insecurity in Guatemala’s dry corridor: Insights from the integration of ethnographic and household survey data. Frontiers in Sustainable Food Systems, 3. doi: 10.3389/fsufs.2019.00065
  • Blundo Canto, G., Giraldo, D., Gartner, C., Alvarez-Toro, P., & Perez, L. (2016). Mapeo de Actores y Necesidades de Información Agroclimática en los Cultivos de Maíz y Frijol en sitios piloto - Colombia.
  • Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant and Soil, 252, 55–128. doi: 10.1023/A:1024146710611
  • Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and applications. New York: Cambridge University Press.
  • CIAT-MADR. (2015). Logros y retos de la agricultura colombiana frente al cambio climático.
  • Contreras, D., & Contreras, S. (2016). Consequences of the armed conflict as a Stressor of climate change in Colombia. The 6th international Conference of Disaster risk Reduction (IDRC), Davos, Switzerland.
  • Cooper, S. J., & Wheeler, T. (2017). Rural household vulnerability to climate risk in Uganda. Regional Environmental Change, 17, 649–663. doi: 10.1007/s10113-016-1049-5
  • DANE. (2014). Censo Agropecuario Nacional. Departamento Nacional de Estadistica (DANE). Bogota, Colombia.
  • Delaney, A., Chesterman, S., Crane, T., Tamás, P. A., & Ericksen, P. J. (2014). A systematic review of local vulnerability to climate change: In search of transparency, coherence and comparability.
  • Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Patiño, V. H., … Jiménez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS One, 11, e0161620. doi: 10.1371/journal.pone.0161620
  • Eitzinger, A., Läderach, P., Bunn, C., Quiroga, A., Benedikter, A., Pantoja, A., … Bruni, M. (2014). Implications of a changing climate on food security and smallholders’ livelihoods in Bogotá, Colombia. Mitigation and Adaptation Strategies for Global Change, 19, 161–176. doi: 10.1007/s11027-012-9432-0
  • Esquivel, A., Llanos-Herrera, L., Agudelo, D., Prager, S. D., Fernandes, K., Rojas, A., … Ramirez-Villegas, J. (2018). Predictability of seasonal precipitation across major crop growing areas in Colombia. Climate Services, 12, 36–47. doi: 10.1016/j.cliser.2018.09.001
  • FAOSTAT. (2014). Food and agriculture organization of the United Nations. FAOSTAT (Database).
  • FENALCE. (2017). El Cerealista, Revista. Federación Nacional de Cultivadores de Cereales y Leguminosas (FENALCE) Colombia.
  • Feola, G. (2013). What (science for) adaptation to climate change in Colombian agriculture? A commentary on “A way forward on adaptation to climate change in Colombian agriculture: Perspectives towards 2050″ by J. Ramirez-Villegas, M. Salazar, A. Jarvis, C. E. Navarro-Valc. Climatic Change, 119, 565–574. doi: 10.1007/s10584-013-0731-6
  • Feola, G., Agudelo Vanegas, L. A., & Contesse Bamón, B. P. (2015). Colombian agriculture under multiple exposures: A review and research agenda. Climate and Development, 7, 278–292. doi: 10.1080/17565529.2014.934776
  • FEWS NET. (2017). GeoCLIM version 1.1.2.
  • Fraser, E. D. G., Simelton, E., Termansen, M., Gosling, S. N., & South, A. (2013). “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology, 170, 195–205. doi: 10.1016/j.agrformet.2012.04.008
  • Frelat, R., Lopez-Ridaura, S., Giller, K. E., Herrero, M., Douxchamps, S., Djurfeldt, A. A., … Rigolot, C. (2016). Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences, 113, 458–463. doi: 10.1073/pnas.1518384112
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., … Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. doi: 10.1038/sdata.2015.66
  • Gaviria, A. (2002). Household responses to adverse income shocks in Latin America. Revista Desarrollo y Sociedad, 49, 99–127. doi: 10.13043/dys.49.3
  • Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W.-R., Finkenrath, M., & Leal, M. R. (2017). Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia. Renewable and Sustainable Energy Reviews, 73, 159–177. doi: 10.1016/j.rser.2017.01.082
  • Greene, W. H., & Hensher, D. A. (2008). Modeling ordered choices: A primer and recent developments. SSRN Electronic Journal, doi:10.2139/ssrn.1213093.
  • Gutiérrez, M. E., & Espinosa, T. (2010). Vulnerabilidad y adaptación al cambio climático Diagnóstico inicial, avances, vacíos y potenciales líneas de acción en Mesoamérica. Washington, DC: Inter-American Development Bank (IADB).
  • Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The livelihood vulnerability index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Global Environmental Change, 19, 74–88. doi: 10.1016/j.gloenvcha.2008.11.002
  • Hertel, T. W., Burke, M. B., & Lobell, D. B. (2010). The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 20, 577–585. doi: 10.1016/j.gloenvcha.2010.07.001
  • IPCC. (2014). Fifth assessment report - impacts, adaptation and vulnerability.
  • Lampis, A. (2013). Vulnerabilidad y adaptación al cambio climático: Debates acerca del concepto de vulnerabilidad y su medición. Cuadernos de Geografía: Revista Colombiana de Geografía, 22, 17–33.
  • Leichenko, R., & O’Brien, K. (2008). Environmental change and Globalization: Double Exposures. New York: Oxford University Press.
  • Lê, S., Josse, J., & Husson, F. (2008). Factominer: An R package for multivariate analysis. Journal of Statistical Software, 25. doi:10.18637/jss.v025.i01.
  • Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. Bioscience, 61, 183–193. doi: 10.1525/bio.2011.61.3.4
  • Lokonon, B. (2017). Farmers’ vulnerability to climate shocks: Insights from the Niger basin of Benin.
  • Mcnie, E. C. (s). Delivering climate services: Organizational strategies and approaches for producing useful climate-Science information. Weather, Climate, and Society, 5, 14–26. doi: 10.1175/WCAS-D-11-00034.1
  • Motha, R. P. (2007). Development of an agricultural weather policy. Agricultural and Forest Meteorology, 142, 303–313. doi: 10.1016/j.agrformet.2006.03.031
  • Nielsen, JØ, & Reenberg, A. (2010). Temporality and the problem with singling out climate as a current driver of change in a small West African village. Journal of Arid Environments, 74, 464–474. doi: 10.1016/j.jaridenv.2009.09.019
  • Notenbaert, A., Karanja, S. N., Herrero, M., Felisberto, M., & Moyo, S. (2013). Derivation of a household-level vulnerability index for empirically testing measures of adaptive capacity and vulnerability. Regional Environmental Change, 13, 459–470. doi: 10.1007/s10113-012-0368-4
  • O’Brien, K., Eriksen, S., Nygaard, L. P., & Schjolden, A. (2007). Why different interpretations of vulnerability matter in climate change discourses. Climate Policy, 7, 73–88. doi: 10.1080/14693062.2007.9685639
  • O’Brien, K., Eriksen, S., Schjolden, A., & Nygaard, L. P. (2004a). What’s in a word? Conflicting interpretations of vulnerability in climate change research. Oslo, Norway.
  • O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., … West, J. (2004b). Mapping vulnerability to multiple stressors: Climate change and globalization in India. Global Environmental Change, 14, 303–313. doi: 10.1016/j.gloenvcha.2004.01.001
  • Oijen, M. v., Beer, C., Cramer, W., Rammig, A., Reichstein, M., Rolinski, S., & Soussana, J. F. (2013). A novel probabilistic risk analysis to determine the vulnerability of ecosystems to extreme climatic events. Environmental Research Letters, 8, 015032. doi: 10.1088/1748-9326/8/1/015032
  • Opiyo, F. E., Wasonga O, V., & Nyangito, M. M. (2014). Measuring household vulnerability to climate-induced stresses in pastoral rangelands of Kenya: Implications for resilience programming. Pastoralism, 4, 10. doi: 10.1186/s13570-014-0010-9
  • Parker, L., Bourgoin, C., Martinez-Valle, A., & Läderach, P. (2019). Vulnerability of the agricultural sector to climate change: The development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PLoS One, 14, e0213641. doi:10.1371/journal.pone.0213641.
  • R Core Team. (2018). R: A language and environment for statistical computing.
  • Ramirez-Villegas, J., & Khoury, C. K. (2013). Reconciling approaches to climate change adaptation for Colombian agriculture. Climatic Change, 119, 575–583. doi: 10.1007/s10584-013-0792-6
  • Ramirez-Villegas, J., Salazar, M., Jarvis, A., & Navarro-Racines, C. (2012). A way forward on adaptation to climate change in Colombian agriculture: Perspectives towards 2050. Climatic Change, 115, 611–628. doi: 10.1007/s10584-012-0500-y
  • Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. doi: 10.1038/ncomms6989
  • Reed, M. S., Podesta, G., Fazey, I., Geeson, N., Hessel, R., Hubacek, K., … Ritsema, C. (2013). Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options. Ecological Economics, 94, 66–77. doi: 10.1016/j.ecolecon.2013.07.007
  • Reichert, J. M., Rodrigues, M. F., Awe, G. O., Riquelme, U. F., Kaiser, D. R., & Reinert, D. J. (2015). Common bean in highly variable weather conditions, on sandy soils, and food security in a subtropical environment. Food and Energy Security, 4, 219–237. doi: 10.1002/fes3.65
  • Ribot, J. (2010). Vulnerability does not fall from the sky: Toward multiscale, pro-poor climate policy. In R. Mearns, & A. Norton (Eds.), Social dimensions of climate change: Equity and vulnerability in a Warming world (pp. 47–74). Washington, DC: The World Bank.
  • Rios, D., Perez, L., & Giraldo, D. (2017). CCAFS Informe Línea Base de Hogares – Santander, Colombia. Cali, Colombia.
  • Ruiz Agudelo, C. A., Bonilla Uribe, O., & Andres Páez, C. (2015). The vulnerability of agricultural and livestock systems to climate variability: using dynamic system models in the Rancheria upper basin (Sierra Nevada de Santa Marta).
  • Selvaraju, R., Gommes, R., & Bernardi, M. (2011). Climate science in support of sustainable agriculture and food security. Climate Research, 47, 95–110. doi: 10.3354/cr00954
  • Sietz, D., Mamani Choque, S. E., & Lüdeke, M. K. B. (2012). Typical patterns of smallholder vulnerability to weather extremes with regard to food security in the Peruvian Altiplano. Regional Environmental Change, 12, 489–505. doi: 10.1007/s10113-011-0246-5
  • Silva, J. A., Eriksen, S., & Ombe, Z. A. (2010). Double exposure in Mozambique’s Limpopo River Basin. Geographical Journal, 176, 6–24. doi: 10.1111/j.1475-4959.2009.00343.x
  • Simelton, E., Fraser, E., Termansen, M., Forster, P. M., & Dougill, A. J. (2009). Typologies of crop-drought vulnerability: An empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environmental Science & Policy, 12(4), 438–452. doi: 10.1016/j.envsci.2008.11.005
  • Simelton, E., Quinn, C. H., Batisani, N., Dougill, A. J., Dyer, J. C., Fraser, E. D. G., … Stringer, L. C. (2013). Is rainfall really changing? Farmers’ perceptions, meteorological data, and policy implications. Climate and Development, 123–138. doi: 10.1080/17565529.2012.751893
  • StataCorp. (2013). Stata statistical software: Release 13.
  • Stern, R. D., & Cooper, P. J. M. (2011). Assessing climate risk and climate change using rainfall data: A case study from Zambia. Experimental Agriculture, 47, 241–266. doi: 10.1017/S0014479711000081
  • Taylor, M. (2014). The political Ecology of climate change adaptation. Routledge.
  • Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20, 3313–3328. doi: 10.1111/gcb.12581
  • Turbay, S., Nates, B., Jaramillo, F., Vélez, J. J., & Ocampo, O. L. (2014). Adaptación a la variabilidad climática entre los caficultores de las cuencas de los ríos Porce y Chinchiná, Colombia. Investigaciones Geográficas, Boletín del Instituto de Geografía, 2014, 95–112. doi:10.14350/rig.42298.
  • Urruty, N., Tailliez-Lefebvre, D., & Huyghe, C. (2016). Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agronomy for Sustainable Development, 36, 15. doi: 10.1007/s13593-015-0347-5
  • Van Etten, J., de Sousa, K., Aguilar, A., Barrios, M., Coto, A., Dell’Acqua, M., … Kiros, A. Y. (2019). Crop variety management for climate adaptation supported by citizen science. Proceedings of the National Academy of Sciences, 116, 4194–4199. doi: 10.1073/pnas.1813720116
  • Vermeulen, S. J., Challinor, A. J., Thornton, P. K., Campbell, B. M., Eriyagama, N., Vervoort, J. M., … Nicklin, K. J. (2013). Addressing uncertainty in adaptation planning for agriculture. Proceedings of the National Academy of Sciences, 110, 8357–8362. doi: 10.1073/pnas.1219441110
  • Villegas-González, P. A., Ramos-Cañón, A. M., González-Méndez, M., González-Salazar, R. E., & De Plaza-Solórzano, J. S. (2017). Territorial vulnerability assessment frame in Colombia: Disaster risk management. International Journal of Disaster Risk Reduction, 21, 384–395. doi: 10.1016/j.ijdrr.2017.01.003
  • Wiréhn, L., Danielsson, Å, & Neset, T.-S. S. (2015). Assessment of composite index methods for agricultural vulnerability to climate change. Journal of Environmental Management, 156, 70–80. doi: 10.1016/j.jenvman.2015.03.020
  • Wood, S. A., Jina, A. S., Jain, M., Kristjanson, P., & DeFries, R. S. (2014). Smallholder farmer cropping decisions related to climate variability across multiple regions. Global Environmental Change, 25, 163–172. doi: 10.1016/j.gloenvcha.2013.12.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.