96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biological and computational evaluation of novel benzofuranyl derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors

, , , & ORCID Icon
Pages 1075-1085 | Received 13 Jan 2024, Accepted 04 Apr 2024, Published online: 30 May 2024

References

  • Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993;31:911. doi:10.1016/0301-0082(93)90040-Y
  • Puopolo T, Liu C, Ma H, et al. Inhibitory effects of cannabinoids on acetylcholinesterase and butyrylcholinesterase enzyme activities. Med Cannabis Cannabinoids. 2022;5:1:85–94. doi:10.1159/000524086
  • Kucukoglu K, Gul Hİ, Taslimi P, et al. Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg Chem. 2019;86:316–321. doi:10.1016/j.bioorg.2019.02.008
  • Jasiecki J, Wasąg B. Butyrylcholinesterase protein ends in the pathogenesis of Alzheimer's disease could BCHE genotyping be helpful in Alzheimer's therapy?. Biomolecules. 2019;9:10:592. doi:10.3390/biom9100592
  • Ağırgöl BA, Yılmaz U, İşleten F, et al. Serum bütirilkolinesteraz aktivitesinin ameliyat öncesi anksiyete ve lipit düzeyleriyle i̇lişkisi. Turk J Biochem. 2008;33:1:9–13.
  • Karaytuğ MO, Balcı N, Türkan F, et al. Piperazine derivatives with potent drug moiety as efficient acetylcholinesterase, butyrylcholinesterase, and glutathione S-transferase inhibitors. Biochem Mol Toxicol. 2022;37(2):e23259. doi:10.1002/jbt.23259
  • Mushtaq G, Greig NH, Khan JA, et al. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and Type 2 diabetes mellitus. CNS Neurol Disord Drug Targets. 2014;13(8):1432–1439. doi:10.2174/1871527313666141023141545
  • Özil M, Balaydın HT, Şentürk M. Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one's aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorg Chem. 2019;86:705–713. doi:10.1016/j.bioorg.2019.02.045
  • Chen Z, Huang J, Yang S, et al. Role of cholinergic signaling in Alzheimer's disease. Molecules. 2022;27(6):1816. doi:10.3390/molecules27061816
  • Küçükoğlu K, Gül Hİ, Taslimi P, et al. Supuran CT, investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg Chem. 2019;86:316–321. doi:10.1016/j.bioorg.2019.02.008
  • Karuppiah V, Sun W, Li Z. Chapter 13: natural products of actinobacteria derived from marine organisms. Stud Nat Prod Chem. 2016;48:417–446. doi:10.1016/B978-0-444-63602-7.00013-8
  • Nguyen SS, Ferreira AJ, Long ZG, et al. Butenolide synthesis from functionalized cyclopropenones. Org Lett. 2019;21:8695–8699. doi:10.1021/acs.orglett.9b03298
  • Csende F. Comparative intramolecular dehydrative lactonization of 4-oxocarboxylic acids. Arkivoc. 2006;4:174–180. doi:10.3998/ark.5550190.0007.615
  • Nallasivam JL, Fernandes RA. A concise synthesis of ()-incrustoporin and its analogues by Pd-catalyzed Suzuki-Miyaura coupling from γ-Vinyl-γ-butyrolactone. ChemistrySelect. 2016;1:5137–5140. doi:10.1002/slct.201601379
  • Roach JS, LeBlanc P, Lewis NI, et al. Characterization of a dispiroketal spirolide subclass from Alexandrium ostenfeldii. J Nat Prod. 2009;72:1237–1240. doi:10.1021/np800795q
  • Huang SX, Yang LB, Xiao WL, et al. Novel highly oxygenated nortriterpenoids with unusual skeletons isolated from Schisandra chinensis. Chem Eur J. 2007;13:4816–4822. doi:10.1002/chem.200700346
  • Wang YZ, Tang CP, Dien PH, et al. Alkaloids from the roots of Stemona saxorum. J Nat Prod. 2007;70:1356–1359. doi:10.1021/np070099o
  • Fraga BM. Natural sesquiterpenoids. Nat Prod Rep. 2002;19:650–672. doi:10.1039/b108977n
  • Crossthwaite AJ, Bigot A, Camblin P, et al. The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. J Pestic Sci. 2017;42(3):67–83. doi:10.1584/jpestics.D17-019
  • Seki T, Satake M, Mackenzie L, et al. A new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett. 1995;36:7093–7096. doi:10.1016/0040-4039(95)01434-J
  • Cho CS, Kim JU, Choi HJ. Synthesis of alkyl 2,5-dihydro-5-oxofuran-2-carboxylates via palladium-catalyzed carbonylative cyclization of β-bromovinyl aldehydes in alcohols. J Organomet Chem. 2008;693:3677–3680. doi:10.1016/j.jorganchem.2008.09.014
  • Lee HK, Cho CS. Palladium-catalyzed carbonylative cyclizationof 3-bromoallyl alcohols leading to furan-2(5H)-ones. Appl Organometal Chem. 2012;26(8):406–409. doi:10.1002/aoc.2864
  • Atmaca U. Efficient and one-pot synthesis of novel sulfamates from carboxylic acids. Tetrahedron. 2019;75(34):130467. doi:10.1016/j.tet.2019.130467
  • Atmaca U. A novel approach for the synthesis of β-keto esters: one-pot reaction of carboxylic acids with chlorosulfonyl isocyanate. Arkivoc. 2020;6:220–227. doi:10.24820/ark.5550190.p011.209
  • Atmaca U, Aksoy M, Öztekin A. A safe alternative synthesis of primary carbamates from alcohols; in vitro and in silico assessments as an alternative acetylcholinesterase inhibitors. Biomol Struct Dyn. 2022;41(17):8191–8200. doi:10.1080/07391102.2022.2134209
  • Mahmoodi NO, Salehpour M. Direct synthesis of γ-substituted phthalides by cyclization of benzyl radicals generated from o-(Arylmethyl)benzoic acids. Russ J Org Chem. 2003;39(12):1760–1763. doi:10.1023/B:RUJO.0000019740.66204.fa
  • Sut S, Dall'Acqua S, Zengin G, et al. Novel signposts on the road from natural sources to pharmaceutical applications: a combinative approach between LC-DAD-MS and offline LC-NMR for the biochemical characterization of two hypericum species (H. montbretii and H. origanifolium). Plants. 2023;12(3):648. doi:10.3390/plants12030648
  • Ellman GL, Courtney D, Andres V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. doi:10.1016/0006-2952(61)90145-9
  • Turhan K, Pektaş B, Türkan F, et al. Novel benzo[b]xanthene derivatives: bismuth (III) triflate-catalyzed one-pot synthesis, characterization, and acetylcholinesterase, glutathione S-transferase, and butyrylcholinesterase inhibitory properties. Arch Pharm. 2020;353(8):e2000030. doi:10.1002/ardp.202000030
  • Gerlits O, Ho KY, Cheng X, et al. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem-Biol. 2019;309:108698. doi:10.1016/j.cbi.2019.06.011
  • Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nat. 1996;384(6610):644–648. doi:10.1038/384644a0
  • Martínez-Rosell G, Giorgino T, De Fabritiis G. PlayMolecule ProteinPrepare: a web application for protein preparation for molecular dynamics simulations. J Chem Inf Model. 2017;57(7):1511–1516. doi:10.1021/acs.jcim.7b00190
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. doi:10.1002/jcc.20084
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. doi:10.1002/jcc.21256
  • Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56(3):658–666. doi:10.1021/ja01318a036
  • Küçükoğlu K, Gül Hİ, Taslimi P, et al. Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg Chem. 2019;86:316–321. doi:10.1016/j.bioorg.2019.02.008
  • Tokalı FS, Taslimi P, Usanmaz H, et al. Synthesis, characterization, biological activity and molecular docking studies of novel Schiff bases derived from thiosemicarbazide. Biochemical and computational approach. J Mol Struct. 2021;1231:129666. doi:10.1016/j.molstruc.2020.129666
  • Kuzu B, Tan M, Taslimi P, et al. Mono- or di-substituted imidazole derivatives for inhibition of acetylcholine and butyrylcholine esterases. Bioorg Chem. 2019;86:187–196. doi:10.1016/j.bioorg.2019.01.044
  • Taslimi P, Turhan K, Türkan F, et al. Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-Pyrazolo[1,2-b]phthalazine-5,10-dione derivatives: synthetic analogues for the treatment of Alzheimer's disease and diabetes mellitus. Bioorg Chem. 2020;97:103647. doi:10.1016/j.bioorg.2020.103647
  • SiteMap. New York, NY: Schrödinger, LLC; 2020. www.schrodinger.com/citations/
  • Gumpeny RS. Acetylcholinesterase inhibitors (galantamine, rivastigmine, and donepezil). NeuroPsychopharmacotherapy. 2022;2709–2721. doi:10.1007/978-3-319-56015-1_418-1
  • Kaplan D, Ordentlich A, Barak D, et al. Does “butyrylization” of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Biochem. 2001;40(25):7433–7445. doi:10.1021/bi010181x
  • Lushchekina S, Nemukhin A, Varfolomeev S, et al. Understanding the non-catalytic behavior of human butyrylcholinesterase silent variants: comparison of wild-type enzyme, catalytically active Ala328Cys mutant, and silent Ala328Asp variant. Chem-Biol Interact. 2016;259:223–232. doi:10.1016/j.cbi.2016.04.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.