1,076
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Effect of combined supplementation of tamarind seed husk and soapnut on enteric methane emission in crossbred cattle

, ORCID Icon, , &

References

  • Guan H, Wittenberg KM, Ominski KH, et al. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J Anim Sci. 2006;84:1896–1906. doi: 10.2527/jas.2005-652.
  • Malik PK, Bhatta R, Soren NM, et al. Feed based approaches in enteric methane amelioration. In: Malik PK, Bhatta R, Takahashi J, Kohan RA, Prasad CS editors. Livestock production and climate change, CABI climate change series. CABI, Nosworthy Way, Wallingford, Oxfordshire, UK. Vol. 6, 2015. p. 336–359.
  • Bhatta R, Saravanan M, Baruah L, et al. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J Appl Microbiol. 2015;118:557–564. doi: 10.1111/jam.12723.
  • Bhatta R, Krishnamoorthy U, Mohammed F. Effect of tamarind (Tamarindus indica) seed husk tannins on in vitro rumen fermentation. Anim Feed Sci Tech. 2001;90:143–152. doi: 10.1016/S0377-8401(01)00204-8.
  • McSweeney CS, Palmer B, Bunch R, et al. Effect of the tropical forage Calliandra on microbial protein synthesis and ecology in the rumen. J Applied Microbiol. 2001;90:78–88. doi: 10.1046/j.1365-2672.2001.01220.x.
  • Malik PK, Kolte AP, Bakshi B, et al. Effect of tamarind seed husk supplementation on ruminal methanogenesis, methanogen diversity and fermentation characteristics. Carbon Manage. 2017;8:319–329. doi: 10.1080/17583004.2017.1357403.
  • Lila ZA, Mohammed N, Kanda S, et al. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J Dairy Sci. 2003;86:3330–3336. doi: 10.3168/jds.S0022-0302(03)73935-6.
  • Malik PK, Singhal KK. Influence of supplementation of wheat straw based total mixed ration with saponins on total gas and methane production in vitro. Indian J Anim Sci. 2008;78:987–990.
  • Sirohi SK, Goel N, Singh N. Utilization of saponins, a plant secondary metabolite in enteric methane mitigation and rumen modulation. Ann Res Rev Biol. 2014;4:1–19. doi: 10.9734/ARRB/2014/5323.
  • Jayanegara A, Wina E, Takahashi J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian Australas J Anim Sci. 2014;27:1426–1435. doi: 10.5713/ajas.2014.14086.
  • Agarwal N, Kamra DN, Chaudhary LC, et al. Effect of Sapindus mukorossi extracts on in vitro methanogenesis and fermentation characteristics in buffalo rumen liquor. J Appl Anim Res. 2006;30:1–4. doi: 10.1080/09712119.2006.9706814.
  • Malik PK, Singhal KK. Effect of Lucerne (Medicago sativa) fodder supplementation on nutrient utilization and enteric methane emission in male buffalo calves fed on wheat straw based total mixed ration. Indian J Anim Sci. 2009;79:416–421.
  • McSweeney CS, Ramirez-Restrepo CA. Supplementation with tea saponins and statins to reduce methane emissions from ruminants. North Sydney (NSW): Meat & Livestock Australia Limited; 2015. (Project report (B.CCH.6430)).
  • Bhatta R, Uyeno Y, Tajima K, et al. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J Dairy Sci. 2009;92:5512–5522. doi: 10.3168/jds.2008-1441.
  • Finlay DJ, Esteban G, Clarke KJ, et al. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett. 1994;117:157–162. doi: 10.1111/j.1574-6968.1994.tb06758.x.
  • Hess HD, Kreuzer M, Dı́az TE, et al. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim Feed Sci Technol. 2003;109:79–94. doi: 10.1016/S0377-8401(03)00212-8.
  • ICAR. Nutrient requirements of cattle and buffalo. New Delhi (India): Indian Council of Agricultural Research; 2013. p. 1–59.
  • Johnson K, Huyler M, Westberg H, et al. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ Sci Technol. 1994;28:359–362. doi: 10.1021/es00051a025.
  • Lassey K. Workshop report: SF6 tracer technique guidelines. Palmerston North (New Zealand). Ministry for Primary Industries, Wellington, New Zealand; 2011.
  • AOAC. Official methods of analysis. 17th ed. Arlington (VA): Association of Official Analytical Chemists; 1990.
  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition . J Dairy Sci. 1991;74:3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2.
  • Makkar HPS. Quantification of tannins in tree and shrub foliage—a laboratory manual. Dordrecht (The Netherlands): Kluwer Academic Publishers; 2003.
  • Upadhyay A, Singh DK. Pharmacological effects of Sapindus mukorossi. Rev Inst Med Trop Sao Paulo. 2012;54:273–280. doi: 10.1590/s0036-46652012000500007.
  • Filípek J, Dvořák R. Determination of the volatile fatty acid content in the rumen liquid: comparison of gas chromatography and capillary isotachophoresis. Acta Vet Brno. 2009;78:627–633. doi: 10.2754/avb200978040627.
  • Conway EJ. Micro-diffusion analysis and volumetric error. 4th ed. London: Crossby Lockwood and Son Ltd.; 1957. p. xviii + 465.
  • Hungate RE. The rumen and its microbes. New York (NY): Academic Press; 1966. p. 1–533.
  • Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques. 2004;36:808–812. doi: 10.2144/04365ST04.
  • Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol. 2007;62:313–322. doi: 10.1111/j.1574-6941.2007.00394.x.
  • Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol. 2006;58:572–582. doi: 10.1111/j.1574-6941.2006.00190.x.
  • Wang B, Neue HU, Samonte HP. Effect of cultivar difference (’IR72’, “IR65598” and “Dular”) on methane emission. Agric Ecosyst Environ. 1997;62:31–40. doi: 10.1016/S0167-8809(96)01115-2.
  • IBM Corp. IBM SPSS statistics for windows, version 21.0. Armonk (NY): IBM Corp. 2012.
  • Alves TP, Dall-Orsoletta AC, Ribeiro-Filho H. The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production and methane emission in a tropical pasture. Trop Anim Health Prod. 2017;49:1663–1668. doi: 10.1007/s11250-017-1374-9.
  • Gemeda BS, Hassen A. The potential of tropical tannin rich browses in reduction of enteric methane. Approaches Poult Dairy Vet Sci. 2018;2: 1-9. doi: 10.31031/APDV.2018.02.000538.
  • Widiawati Y, Puastuti W. The effect of condensed tannin and saponin in reducing methane produced during rumen digestion of agricultural byproducts. Proceedings of International Seminar on Livestock Production and Veterinary Technology. Ministry of Agriculture, Republic of Indonesia, Bali, Indonesia; 2016. DOI:http://dx.doi.org/10.14334/Proc.Intsem.LPVT-2016-p.139-146.
  • Malik PK, Singhal KK, Deshpande SB. Effect of saponin rich Lucerne fodder supplementation on rumen fermentation, bacterial and protozoal population in buffalo bulls. Indian J Anim Sci. 2009;79:912–916.
  • Malik PK, Kolte AP, Baruah L, et al. Enteric methane mitigation in sheep through leaves of selected tanniniferous tropical tree species. Livstock Sci. 2017;200:29–34. doi: 10.1016/j.livsci.2017.04.001.
  • Bhatta R, Krishnamoorthy U, Mohammed F. Effect of feeding tamarind (Tamarindus indica) seed husk as a source of tannin on dry matter intake, digestibility of nutrients and production performance of crossbred dairy cows in mid-lactation. Anim Feed Sci Tech. 2000;83:67–74. doi: 10.1016/S0377-8401(99)00118-2.
  • Tavendale MH, Meagher LP, Pacheco D, et al. Methane production from in vitro rumen incubations with lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Tech. 2005;123–124:403–419. doi: 10.1016/j.anifeedsci.2005.04.037.
  • Carulla JE, Kreuzer M, Machmüller A, et al. Supplementation of acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust J Agric Res. 2005;56:961–970. doi: 10.1071/AR05022.
  • Puchala R, Min BR, Goetsch AL, et al. The effect of a condensed tannin-containing forage on methane emission by goats. J Anim Sci. 2005;83:182–186. doi: 10.2527/2005.831182x.
  • Becker K, Makkar H. Effects of dietary tannic acid and quebracho tannin on growth performance and metabolic rates of common carp (Cyprinus carpio L.). Aquaculture. 1999;175:327–335. doi: 10.1016/S0044-8486(99)00106-4.
  • Waghorn GC, Ulyatt MJ, John A, et al. The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. Br J Nutr. 1987;57:115–126. doi: 10.1079/BJN19870015.
  • Gerlach K, Pries M, Sudekum KH. Effect of condensed tannin supplementation on in vivo nutrient digestibilities and energy values of concentrates in sheep. Small Rumin Res. 2018;161:57–62. doi: 10.1016/j.smallrumres.2018.01.017.
  • Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric. 2006;86:2010–2037. doi: 10.1002/jsfa.2577.
  • Kamra DN, Pawar M, Singh B. Effect of plant secondary metabolites on rumen methanogens and methane emissions by ruminants. In: Patra AK, editors. Dietary phytochemicals and microbes. Dordrecht (The Netherlands): Springer Netherlands; 2012. p. 351–370.
  • Saxena D, Pal R, Dwivedi AK, et al. Characterization of sapindosides in Sapindus mukorosii saponin (reetha saponin) and quantitative determination of sapindoside B. J Sci Res. 2003;63:181–186.
  • Voutquenne L, Lavaud C, Massiot G, et al. Structure-activity relationships of haemolytic saponins. Pharma Biol. 2002;40:253–262. doi: 10.1076/phbi.40.4.253.8470.
  • Sharma A, Sati SC, Sati OP, et al. Triterpenoid saponins from the pericarps of Sapindus mukorossi. J Chem. 2013;2013:1–5. doi: 10.1155/2013/613190.
  • Ramirez-Restrepo CA, O’Neil CJ, Lopez VN, et al. Tropical cattle methane emissions: the role of natural statins supplementation. Anim Prod Sci. 2014;54:1294–1299. doi: 10.1071/AN14246.
  • Dinda B, Debnath S, Mohanta BC, et al. Naturally occurring triterpenoid saponins. Chem Biodivers. 2010;7:2327–2580. doi: 10.1002/cbdv.200800070.
  • Newbold CJ, Lassalas B, Jouany JP. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol. 1995;21:230–234.
  • Belanche A, Fuente G, de la Newbold CJ. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol. 2014;90:663–677. doi: 10.1111/1574-6941.12423.
  • Hristov AN, McAllister TA, Van Herk FH, et al. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J Anim Sci. 1999;77:2554–2563. doi: 10.2527/1999.7792554x.
  • Malik PK, Singhal KK, Deshpande SB. Effect of Lucerne fodder (first cut) supplementation on in vitro methane production, fermentation pattern and protozoal counts. Indian J Anim Sci. 2010; 80:998–1002.
  • Holtshausen L, Chaves AV, Beauchemin KA, et al. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci. 2009;92:2809–2821. doi: 10.3168/jds.2008-1843.
  • Jayanegara A, Goel G, Makkar HPS, et al. Reduction in methane emissions from ruminants by plant secondary metabolites: effects of polyphenols and saponins. In: Odongo NE, Garcia M, Viljoen GJ, editors. Sustainable improvement of animal production and health. Rome (Italy): Food and Agriculture Organization of the United Nations; 2010. p. 151–157.
  • Yogianto Y, Sudarman A, Wina E, et al. Supplementation effects of tannin and saponin extracts to diets with different forage to concentrate ratio on in vitro rumen fermentation and methanogenesis. J Indones Trop Anim Agric. 2014;39:144–151.
  • Yuliana P, Laconi EB, Wina E, et al. Extraction of tannins and saponins from plant sources and their effects on in vitro methanogenesis and rumen fermentation. J Indones Trop Anim Agri. 2014;39:91–97.
  • Makkar HPS, Blummel M, Becker K. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J Sci Food Agric. 1995;69:481–493. doi: 10.1002/jsfa.2740690413.
  • Gunun P, Gunun N, Cherdthong A, et al. In vitro rumen fermentation and methane production as affected by rambutan peel powder. J Appl Anim. Res. 2018;46:626–631. doi: 10.1080/09712119.2017.1371608.
  • Anantasook N, Wanapat M. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian Australas J Anim Sci. 2012;25:325–334. doi: 10.5713/ajas.2011.11131.
  • Anantasook N, Wanapat M, Cherdthong A. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers. J Anim Physiol Anim Nutr. 2014;98:50–55. doi: 10.1111/jpn.12029.
  • Anantasook N, Wanapat M, Cherdthong A, et al. Effect of tannins and saponins in Samanea saman on rumen environment, milk yield and milk composition in lactating dairy cows. J Anim Physiol Anim Nutr. 2015;99:335–344. doi: 10.1111/jpn.12198.
  • Barry TM. Condensed tannins: their role in ruminant protein and carbohydrate digestion and possible effects upon the rumen ecosystem. In: Nolan JV, Leng RA, Demeyer DI, editors. Roles of protozoa and fungi in ruminant digestion. Armidale (NSW): Penambul Books; 1989. p. 102–145.
  • Morgavi DP, Martin C, Jouany J-P, et al. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br J Nutr. 2012;107:388–397. doi: 10.1017/S0007114511002935.
  • Zhou M, Chung YH, Beauchemin KA, et al. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J Appl Microbiol. 2011;111:1148–1158. doi: 10.1111/j.1365-2672.2011.05126.x.
  • Rira M, Morgavi DP, Archimède H, et al. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. J Anim Sci. 2015;93:334–347. doi: 10.2527/jas.2014-7961.
  • Shinkai T, Kobayashi Y. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl Environ Microbiol. 2007;73:1646–1652. doi: 10.1128/AEM.01896-06.
  • Asanuma N, Iwamoto M, Hino T. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci. 1999;82:780–787. doi: 10.3168/jds.S0022-0302(99)75296-3.
  • Kurihara Y, Eadie JM, Hobson PN, et al. Relationship between bacteria and ciliate protozoa in the sheep rumen. J Gen Microbiol. 1968;51:267–288. doi: 10.1099/00221287-51-2-267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.