980
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Stabilization of organic C in an Indo-Gangetic alluvial soil under long-term manure and compost management in a rice–wheat system

&

References

  • IPCC. Intergovernmental plan on climate change-AR5 climate change 2014: summary mitigation of climate change — IPCC; 2014. Available from: https://www.ipcc.ch/report/ar5/wg3/.
  • Baldock JA, Skjemstad JO. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem. 2000;31(7–8):697–710. doi:10.1016/S0146-6380(00)00049-8.
  • Lal R. Promoting “4 per thousand” and “adapting African agriculture” by south-south cooperation: conservation agriculture and sustainable intensification. Soil Till Res. 2019;188:27–34. doi:10.1016/j.still.2017.12.015.
  • Minasny B, Malone BP, McBratney AB, et al. Soil carbon 4 per mille. Geoderma. 2017;292:59–86. doi:10.1016/j.geoderma.2017.01.002.
  • Benbi DK, Brar JS. A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron Sustain Dev. 2009;29(2):257–265. doi:10.1051/agro:2008070.
  • Jiang G, Zhang W, Xu M, et al. Manure and mineral fertilizer effects on crop yield and soil carbon sequestration: a meta-analysis and modeling across China. Global Biogeochem Cycles. 2018;32(11):1659–1672. doi:10.1029/2018GB005960.
  • Gattinger A, Muller A, Haeni M, et al. Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci USA. 2012;109(44):18226–18231. doi:10.1073/pnas.1209429109.
  • Ågren GI, Bosatta E. Reconciling differences in predictions of temperature response of soil organic matter. Soil Biol Biochem. 2002;34(1):129–132. doi:10.1016/S0038-0717(01)00156-0.
  • Dungait JAJ, Hopkins DW, Gregory AS, et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol. 2012;18(6):1781–1796. doi:10.1111/j.1365-2486.2012.02665.x.
  • Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528(7580):60–68. doi:10.1038/nature16069.
  • Kopittke PM, Dalal RC, Hoeschen C, et al. Soil organic matter is stabilized by organo-mineral associations through two key processes: the role of the carbon to nitrogen ratio. Geoderma. 2020;357:113974. doi:10.1016/j.geoderma.2019.113974.
  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol. 2013;19(4):988–995. doi:10.1111/gcb.12113.
  • Benbi DK, Khosa MK. Effects of temperature, moisture, and chemical composition of organic substrates on C mineralization in soils. Commun Soil Sci Plant Anal. 2014;45(21):2734–2753. doi:10.1080/00103624.2014.950423.
  • Schmidt MWI, Torn MS, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478(7367):49–56. doi:10.1038/nature10386.
  • Berti A, Morari F, Dal Ferro N, et al. Organic input quality is more important than its quantity: C turnover coefficients in different cropping systems. Eur J Agron. 2016;77:138–145. doi:10.1016/j.eja.2016.03.005.
  • Anantha KC, Majumder SP, Badole S, et al. Pools of organic carbon in soils under a long-term rice–rice system with different organic amendments in hot, sub-humid India. Carbon Manage. 2020;11(4):331–339. doi:10.1080/17583004.2020.1783624.
  • Benbi DK, Singh P, Toor AS, et al. Manure and fertilizer application effects on aggregate and mineral-associated organic carbon in a loamy soil under rice-wheat system. Commun Soil Sci Plant Anal. 2016;47(15):1828–1844. doi:10.1080/00103624.2016.1208757.
  • Benbi DK, Toor AS, Kumar S. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant Soil. 2012;360(1–2):145–162. doi:10.1007/s11104-012-1226-3.
  • Bhatt R, Kukal SS, Busari MA, et al. Sustainability issues on rice–wheat cropping system. Int Soil Water Conserv Res. 2016;4(1):64–74. doi:10.1016/j.iswcr.2015.12.001.
  • Government of India-Ministry of Agriculture. Punjab farmers guide. Mechanisation & Technology Division, Department of Agriculture & Cooperation Government of India. 2018. http://farmech.dac.gov.in/FarmerGuide/PB/index1.html.
  • Ministry of Agriculture-Farmers Welfare. Promotion of agricultural mechanisation for in-situ management of crop residue in states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi.  2019.
  • Benbi DK. Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Sci Total Environ. 2018;644:611–623. doi:10.1016/j.scitotenv.2018.07.018.
  • Thind HS, Sharma S, Singh Y, et al. Rice–wheat productivity and profitability with residue, tillage and green manure management. Nutr Cycl Agroecosyst. 2019;113(2):113–125. doi:10.1007/s10705-018-09967-8.
  • Silva JR, Silva DJ, Gava CAT, et al. Carbon in humic fractions of organic matter in soil treated with organic composts under mango cultivation. Revista Brasileira de Ciencia Do Solo. 2016;40:e0150095. doi:10.1590/18069657rbcs20150095.
  • Spaccini R, Piccolo A. Soil organic carbon stabilization in compost amended soils. In: Global symposium on soil organic carbon, March 21–23. Vol. 2. Rome Italy: FAO, 2017.
  • Leifeld J, Siebert S, Kögel-Knabner I. Kögel-Knabner I. Changes in the chemical composition of soil organic matter after application of compost. Eur J Soil Sci. 2002;53(2):299–309. doi:10.1046/j.1351-0754.2002.00453.x.
  • Ngo PT, Rumpel C, Doan TT, et al. Effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biol Biochem. 2012;50:214–220. doi:10.1016/j.soilbio.2012.02.037.
  • Kumar K, Prihar SS, Gajri PR. Determination of root distribution of wheat by auger sampling. Plant Soil. 1993;149(2):245–253. doi:10.1007/BF00016615.
  • Hirte J, Leifeld J, Abiven S, et al. Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agric Ecosyst Environ. 2018;265:556–566. doi:10.1016/j.agee.2018.07.010.
  • Goering HK, Van Soest P. Forage fiber analyses: (apparatus, reagents, procedures, and some applications). Washington, DC: Agricultural Research Service, U.S. Dept. of Agriculture; 1970. Available from: https://catalyst.library.jhu.edu/catalog/bib_4172452.
  • Jackson M. Soil chemical analysis. Englewood Cliffs, NJ: Prentice-Hall, INC; 1964.
  • Silveira ML, Comerford NB, Reddy KR, et al. Characterization of soil organic carbon pools by acid hydrolysis. Geoderma. 2008;144(1–2):405–414. doi:10.1016/j.geoderma.2008.01.002.
  • Benbi DK, Richter J. A critical review of some approaches to modelling nitrogen mineralization. Biol Fertil Soils. 2002;35(3):168–183. doi:10.1007/s00374-002-0456-6.
  • Benbi DK, Brar K, Toor AS, et al. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere. 2015;25(4):534–545. doi:10.1016/S1002-0160(15)30034-5.
  • Abrar MM, Xu M, Shah SAA, et al. Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Sci Total Environ. 2020; 723:138181. doi:10.1016/j.scitotenv.2020.138181.
  • Singh P, Benbi DK. Nutrient management effects on organic carbon pools in a sandy loam soil under rice-wheat cropping. Arch Agron Soil Sci. 2018;64(13):1879–1891. doi:10.1080/03650340.2018.1465564.
  • Dai S, Wang J, Cheng Y, et al. Effects of long-term fertilization on soil gross N transformation rates and their implications. J Integr Agric. 2017;16(12):2863–2870. doi:10.1016/S2095-3119(17)61673-3.
  • Malhi SS, Nyborg M, Solberg ED, et al. Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada. Biol Fertil Soils. 2011;47(7):785–800. doi:10.1007/s00374-011-0587-8.
  • Seufert V, Ramankutty N, Foley JA. Comparing the yields of organic and conventional agriculture. Nature. 2012;485(7397):229–232. doi:10.1038/nature11069.
  • Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol Biochem. 2014;68:A4–A9. doi:10.1016/j.soilbio.2013.06.014.
  • Sodhi GPS, Beri V, Benbi DK. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil till Res. 2009;103(2):412–418. doi:10.1016/j.still.2008.12.005.
  • Benbi DK, Senapati N. Soil aggregation and carbon and nitrogen stabilization in relation to residue and manure application in rice-wheat systems in northwest India. Nutr Cycl Agroecosyst. 2010;87(2):233–247. doi:10.1007/s10705-009-9331-2.
  • Dignac MF, Houot S, Francou C, et al. Pyrolytic study of compost and waste organic matter. Org Geochem. 2005;36(7):1054–1071. doi:10.1016/j.orggeochem.2005.02.007.
  • Bell LW, Sparling B, Tenuta M, et al. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland. Agric Ecosyst Environ. 2012;158:156–163. doi:10.1016/j.agee.2012.06.006.
  • Chai Y, Ma S, Zeng X, et al. Long-term fertilization effects on soil organic carbon stocks in the irrigated desert soil of NW China. J Plant Nutr Soil Sci. 2015;178(4):622–630. doi:10.1002/jpln.201400172.
  • Christensen BT. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci. 2001;52(3):345–353. doi:10.1046/j.1365-2389.2001.00417.x.
  • Tong X, Xu M, Wang X, et al. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena. 2014;113:251–259. doi:10.1016/j.catena.2013.08.005.
  • Rasse DP, Rumpel C, Dignac MF. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil. 2005;269(1-2):341–356. doi:10.1007/s11104-004-0907-y.
  • Kopittke PM, Hernandez-Soriano MC, Dalal RC, et al. Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Glob Chang Biol. 2018;24(4):1762–1770. doi:10.1111/gcb.14009.
  • Jindo K, Chocano C, Melgares de Aguilar J, et al. Impact of compost application during 5 years on crop production, soil microbial activity, carbon fraction, and humification process. Commun Soil Sci Plant Anal. 2016;47(16):1907–1919. doi:10.1080/00103624.2016.1206922.
  • Tegelaar EW, De Leeuw JW, Holloway PJ. Some mechanisms of flash pyrolysis of naturally occurring higher plant polyesters. J Anal Appl Pyrolysis. 1989;15(C):289–295. doi:10.1016/0165-2370(89)85041-7.
  • Chefetz B, Hatcher PG, Hadar Y, et al. Chemical and biological characterization of organic matter during composting of municipal solid waste. J Environ Qual. 1996;25(4):776–785. doi:10.2134/jeq1996.00472425002500040018x.
  • Kögel-Knabner I. Analytical approaches for characterizing soil organic matter. Org Geochem. 2000;31(7–8):609–625. doi:10.1016/S0146-6380(00)00042-5.
  • Yan D, Wang D, Yang L. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biol Fertil Soils. 2007;44(1):93–101. doi:10.1007/s00374-007-0183-0.
  • Tian J, Lou Y, Gao Y, et al. Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biol Fertil Soils. 2017;53(5):523–532. doi:10.1007/s00374-017-1189-x.
  • Jha P, Lakaria BL, Biswas AK, et al. Effects of carbon input on soil carbon stability and nitrogen dynamics. Agric Ecosyst Environ. 2014;189:36–42. doi:10.1016/j.agee.2014.03.019.
  • Paul EA, Collins HP, Leavitt SW. Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma. 2001;104(3–4):239–256. doi:10.1016/S0016-7061(01)00083-0.
  • Schwendenmann L, Pendall E. Response of soil organic matter dynamics to conversion from tropical forest to grassland as determined by long-term incubation. Biol Fert Soils. 2008;44(8):1053–1062. doi:10.1007/s00374-008-0294-2.
  • Skjemstad JO, Le Feuvre RP, Prebble RE. Turnover of soil organic matter under pasture as determined by 13C natural abundance. Soil Res. 1990;28(2):267–276. doi:10.1071/SR9900267.
  • Benbi DK, Yadav SK. decomposition and carbon sequestration potential of different rice-residue-derived by-products and farmyard manure in a sandy loam soil. Commun Soil Sci Plant Anal. 2015;46(17):2201–2211. doi:10.1080/00103624.2015.1069322.
  • Fließbach A, Mäder P. Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem. 2000;32(6):757–768. doi:10.1016/S0038-0717(99)00197-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.