1,881
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Crop residue management to reduce GHG emissions and weed infestation in Central India through mechanized farm operations

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all

References

  • Ghosh D, Singh UP, Ray K, et al. Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network. Span J Agric Res. 2016;14(2):e1003. doi:10.5424/sjar/2016142-8773.
  • Mishra JS, Singh VP. Tillage and weed control effects on productivity of a dry seeded rice– wheat system on a Vertisol in Central India. Soil Till Res. 2012;123:11–20. doi:10.1016/j.still.2012.02.003.
  • Singh PK, Sondhia S, Dubey RP, et al. Adoption and impact assessment of weed management technologies in wheat and greengram under conservation agriculture system in central India. Ind Jour Weed Scie. 2017;49(1):23–28. doi:10.5958/0974-8164.2017.00006.5.
  • Singh H, Raheja A, Sharma R, et al. Happy seeder - a conservation agriculture technology for managing rice residue for central Punjab conditions. Int J Agri Eng. 2013;6(2):355–358.
  • Sidhu HS, Singh M, Singh Y, et al. Development and evaluation of the Turbo Happy Seeder for sowing wheat into heavy rice residues in NW India. Field Crops Res. 2015;184:201–212. doi:10.1016/j.fcr.2015.07.025.
  • Tripathi S, Singh RN, Sharma SK. Quantification and characterization of soil physico-chemical properties influence by wheat (Triticum aestivum) residue burning in India. J Glob Ecol Env. 2015;2(3):155–160.
  • Sidhu HS, Singh M, Humphreys E, et al. The Happy Seeder enables direct drilling of wheat into rice stubble. Aus J Exp Agri. 2007;47(7):844–854. doi:10.1071/EA06225.
  • Gupta R. Agro-environmental revolution in Punjab: case of the happy seeder technology. New Delhi, India: Indian Statistical Institute; 2011. (Discussion paper 11-11; p-30).
  • Jain N, Bhatia A, Pathak H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res. 2014;14(1):422–430. doi:10.4209/aaqr.2013.01.0031.
  • Fagodiya RK, Pathak H, Kumar A, et al. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Sci Rep. 2017a;7:44928. doi:10.1038/srep44928.
  • Carlton R, West J, Smith P, et al. A comparison of GHG emissions from UK field crop production under selected arable systems with reference to disease control. Eur J Plant Pathol. 2012;133(1):333–351. doi:10.1007/s10658-012-9961-0.
  • Vetter SH, Sapkota TB, Hillier J, et al. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agri Eco Env. 2017;237:234–241. doi:10.1016/j.agee.2016.12.024.
  • Ravindra K, Singh T, Mor S. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J Clnr Prod. 2019;208:261–273. doi:10.1016/j.jclepro.2018.10.031.
  • Smith P, Martino D, Cai Z, et al. Greenhouse gas mitigation in agriculture. Phil Tran R Soc B. 2008;363(1492):789–813. doi:10.1098/rstb.2007.2184.
  • Gupta DK, Bhatia A, Kumar A, et al. Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Eco Env. 2016;230:1–9. doi:10.1016/j.agee.2016.05.023.
  • Shyamsundar P, Springer NP, Tallis H, et al. Fields on fire: alternatives to crop residue burning in India. Science. 2019;365(6453):536–538. doi:10.1126/science.aaw4085.
  • Fagodiya RK, Pathak H, Bhatia A, et al. Simulation of maize (Zea mays L.) yield underalternative nitrogen fertilization using InfoCrop-maize model. Bioch Cell Arch. 2017b;17(1):65–71.
  • Fagodiya RK, Pathak H, Bhatia A, et al. Nitrous oxide emission and mitigation frommaize-wheat rotation of upper Indo-Gangetic plains. Carbon Manag. 2019;10(5):489–499. doi:10.1080/17583004.2019.1650579.
  • Malyan SK, Bhatia A, Kumar SS, et al. Mitigation of greenhouse gas intensity bysupplementing with Azolla and moderating the dose of nitrogen fertilizer. Biocatal Agri Biotech. 2019;20:101266. doi:10.1016/j.bcab.2019.101266.
  • Glendining MJ, Dailey AG, Williams AG, et al. Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs? Agri Sys. 2009;99(2-3):117–125. doi:10.1016/j.agsy.2008.11.001.
  • Prasad J. A comparison between a rotavator and conventional tillage equipment for wheat-soybean rotations on a vertisol in Central India. Soil Til Res. 1996;37(2–3):191–197. doi:10.1016/0167-1987(95)00510-2.
  • Gupta R, Kienzler K, Martius C, et al. Research prospectus: a vision for sustainable land management research in Central Asia. CGIAR-PFU, Tashkent, Uzbekistan: ICARDA Central Asia and Caucasus Program (Sustainable Agriculture in Central Asia and the Caucasus Series No. 1); 2009.
  • Khambalkar V, Pohare J, Katkhede S, et al. Energy and economic evaluation of farm operations in crop production. J Agri Sci. 2010;2(4):191–200.
  • Fagodiya RK, Pathak H, Bhatia A, et al. Global warming impacts of nitrogen use in agriculture: an assessment for India since 1960. Carbon Manage. 2020;11(3):291–301. doi:10.1080/17583004.2020.1752061.
  • Melander B, Rasmussen IA, Barberi P. Integrating physical and cultural methods of weed control examples from European research. Weed Sci. 2005;53(3):369–381. doi:10.1614/WS-04-136R.
  • Sharma AR, Singh VP. Integrated weed management in conservation agriculture systems. Ind J Weed Sci. 2014;46:23–30.
  • Bajwa AA. Sustainable weed management in conservation agriculture. Crop Prot. 2014;65:105–113. doi:10.1016/j.cropro.2014.07.014.
  • Jat ML, Saharawat YS, Gupta R. Conservation agriculture in cereal systems of south Asia: nutrient management perspectives. Kar J Agri Sci. 2011;24(1):100–105.
  • Friedrich T, Josef K, Amir K. Conservation agriculture in developing countries: the role of mechanization. Paper presented at: Innovation for Sustainable Agricultural Mechanization, Hannover, Germany, November 8, 2009.
  • Kumar V, Jat HS, Sharma PC, et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agri Ecos Env. 2018;252:132–147. doi:10.1016/j.agee.2017.10.006.
  • Parihar CM, Parihar MD, Sapkota TB, et al. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Scie Total Env. 2018;640–641:1382–1392. doi:10.1016/j.scitotenv.2018.05.405.
  • Pratibha G, Srinivas I, Rao KV, et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeonpea– castor systems. Europ J Agronomy. 2015;66:30–40. doi:10.1016/j.eja.2015.02.001.
  • Prathibha G, Srinivas I, Rao KV, et al. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India. Atm Env. 2016;145:239–250. doi:10.1016/j.atmosenv.2016.09.039.
  • Kumar S, Dubey RP, Sondhia S, et al. Annual report 2016–17. Jabalpur, India: ICAR-Directorate of Weed Research; 2017.
  • Gharde Y, Singh PK, Dubey RP, et al. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 2018;107:12–18. doi:10.1016/j.cropro.2018.01.007.
  • Chethan CR, Krishnan AD. Dynamic push–pull strength data generation for agricultural workers to develop manual dryland weeders. Cur Sci. 2017;113(08):1601–1605. doi:10.18520/cs/v113/i08/1601-1605.
  • , Yaduraju NT, Mishra JS. Enhancing farmers’ income through smart weed management. In: Kumar S, Choudhary PP, Bodake P, editors. Proceedings of the Biennial Conference on Doubling Farmers’ Income by 2022: The Role of Weed Science; March 1–3; Udaipur (India). Jabalpur (India): Indian Society of Weed Science; 2017. p. 5–6.
  • Tewari VK, Chethan CR. Mechanization in weed management: Global review. In: Kumar S, Mishra JS, editors. Fifty years of Weed Research in India. Jabalpur (India): Indian Society of Weed Science, Jabalpur; 2018. p. 215–237.
  • Tewari VK, Datta RK, Murthy ASR. Field performance of weeding blades of a manually operated push-pull weeder. J Agril Eng Res. 1993;55(2):129–141. doi:10.1006/jaer.1993.1038.
  • Chethan CR, Chander S, Kumar SP. Dynamic strength based dryland weeders – ergonomic and performance evaluation. Ind Jour Weed Scie. 2018a;50(4):382–387. doi:10.5958/0974-8164.2018.00081.3.
  • Chethan CR, Singh PK, Chander S, et al. Use of efficient weeding tools to reduce farmers’ drudgery. Ind Farm. 2018b;68(11):24–28.
  • Chethan CR, Singh PK, Dubey RP, et al. Herbicide application in agriculture: nozzle selection and effective application. Ind Farm. 2018c;68(12):28–30.
  • Singh PK, Dubey RP, Chethan CR, et al. Weed management in pulses under mechanized farming. In: Khare D, Nahatkar SB, Shrivastava AK, et al. editors. Farm mechanization for production. Jodhpur (India): Scientific publishers; 2018. p. 147–162.
  • Google.co.in [Internet]. India: Google maps; 2020. Available from: https://www.google.com/maps/d/edit?mid=1FBXzUYimPILCz_oN1Fx-ajmDp0WbASMz&ll=23.664626483169968%2C79.55686642223554&z=10
  • Streets DG, Bond TC, Carmichael GR, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res. 2003;108(D21):8809. doi:10.1029/2002JD003093.
  • Eggleston HS, Buendia L, Miwa K, et al. IPCC Guidelines for National Greenhouse Gas Inventories. IGES, Japan: Institute for Global Environmental Strategies, The Intergovernmental Panel on Climate Change (IPCC); 2006. (IPCC 2006, ISBN 4-88788-032-4).
  • Yang S, He H, Lu S, et al. Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmos Env. 2008;42(9):1961–1969. doi:10.1016/j.atmosenv.2007.12.007.
  • Kanabkaew T, Oanh NTK. Development of spatial and temporal emission inventory for crop residue field burning. Environ Model Assess. 2011;16(5):453–464. doi:10.1007/s10666-010-9244-0.
  • Li X, Wang S, Duan L, et al. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Env Sci Tech. 2007;41(17):6052–6058. doi:10.1021/es0705137.
  • Sahai S, Sharma C, Singh DP, et al. A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in India. Atmos Env. 2007;41(39):9173–9186. doi:10.1016/j.atmosenv.2007.07.054.
  • Zhang H, Hu D, Chen J, et al. Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. Environ Sci Technol. 2011;45(13):5477–5482. doi:10.1021/es1037904.
  • Koopmans A, Koppejan J. Agricultural and forest residues - Generation, utilization and availability. Paper presented at: Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, January 6–10; 1997.
  • Gadde B, Menke C, Wassmann R. Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenergy. 2009;33(11):1532–1546. doi:10.1016/j.biombioe.2009.07.018.
  • Saran G, Ahlawat IPS, Yaduraju NT. Agronomic terminology. 5th rev. ed. New Delhi: Indian Society of Agronomy; 2009.
  • Mahmood A, Ihsan MZ, Khaliq A, et al. Crop residues mulch as organic weed management strategy in maize. Clean – Soil Air Water. 2015;43(9999):1–8.
  • Saini JP, Angiras NN. Evaluation of ethoxysulfuron against broad-leaved weeds and sedges in direct seeded puddled rice. Ind J Weed Sci. 2002;34:36–38.
  • Singh S, Singh H, Narwal S, et al. Evaluation of Alkomba and tank mixture of Almix C Bulachlor for control of weeds in transplanted rice. Ind J Weed Sci. 2003;35:24–26.
  • Chhokar RS, Sharma RK, Jat GR, et al. Effect of tillage and herbicides on weeds and productivity of wheat under rice-wheat growing system. Crop Prot. 2007;26(11):1689–1696. doi:10.1016/j.cropro.2007.01.010.
  • Bhattacharyya R, Das TK, Sudhishri S, et al. Conservation agriculture effects on soil organic carbon accumulation and crop productivity under a rice–wheat cropping system in the western Indo-Gangetic Plains. Eur J Agr. 2015;70:11–21. doi:10.1016/j.eja.2015.06.006.
  • Google.co.in [Internet]. India: Google maps; 2020. Available from: https://www.google.com/maps/d/edit?mid=1FBXzUYimPILCz_oN1Fx-ajmDp0WbASMz&ll=23.664626483169968%2C79.55686642223554&z=10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.