2,532
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Diversification of rice growing areas in Eastern India with integrated soil–crop system management for GHGs mitigation and higher productivity

, &

References

  • Hoegh-Guldberg O, Jacob D, Taylor M, et al. Impacts of 1.5 °C global warming on natural and human systems. In: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC; 2018.
  • Singh AK, Barman D, Behera MS, et al. Impact of climate change on productivity of tropical rice-wheat-jute system under long term fertilizer management in alluvial soils. Int J Curr Microbiol Appl Sci. 2018;7(11):1623–1632. doi:10.20546/ijcmas.2018.711.184.
  • IPCC, et al. Summary for policymakers. In: Solomon S, Qin D, Manning M, editors. Climate change 2007: the physical science basis, contribution of working group I to the forth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2007.
  • Islam N, Palash P. Predicting the El nino and La nino impact on the coastal zones at the Bay of bengal and the likelihood of weather patterns in Bangladesh. Model Earth Syst Environ. 2020;6(3):1823–1839. doi:10.1007/s40808-020-00793-y.
  • Singh AK, Chakraborti M, Datta M. Improving rice-based cropping pattern through soil moisture and integrated nutrient management in mid-tropical plain zone of Tripura, India. Rice. Sci. 2014;21(5):299–304. doi:10.1016/S1672-6308(13)60190-0.
  • Alam MK, Bell RW, Biswas WK. Decreasing the carbon footprint of an intensive rice-based cropping system using conservation agriculture on the Eastern gangetic plains. J Clean Prod. 2019; 218:259–272. doi:10.1016/j.jclepro.2019.01.328.
  • FAO. Fertilizer use by crop in India. First version, published by FAO, Rome; 2005. http://www.fao.org/docrep/009/a0257e/A0257E05.htm.
  • Pathak H, Jain N, Bhatia A, et al. Carbon foot prints of Indian food items. Agric Ecosyst Environ. 2010;139(1-2):66–73. doi:10.1016/j.agee.2010.07.002.
  • FAO. FAOSTAT database collections. Food and Agriculture Organization of the United Nations.534 Rome; 2021. Available from: http://faostat.fao.org
  • Nayak AK, Gangwar B, Shukla AK, et al. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice-wheat system in indo gangetic plains of India. Field Crops Res. 2012; 127:129–139. doi:10.1016/j.fcr.2011.11.011.
  • Bhattacharyya P, Neogi S, Roy KS, et al. Tropical low land rice ecosystem is a net carbon sink. Agric Ecosyst Environ. 2014;189:127–135. doi:10.1016/j.agee.2014.03.013.
  • Swain C, Bhattacharyya P, Singh N, et al. Net ecosystem methane and carbon dioxide exchange in relation to heat and carbon balance in lowland tropical rice. Ecol Eng. 2016; 95:364–374. doi:10.1016/j.ecoleng.2016.06.053.
  • Niveta J, Rachana D, Dubey DS, et al. Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic plains. Paddy Water Environ. 2013; 12(3):355–363.
  • Suryavanshi P, Singh YV, Prasanna R, et al. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 2013;11(1-4):321–329. doi:10.1007/s10333-012-0323-5.
  • Singh AK. Conservation agriculture approaches for reducing carbon footprints. In Saha R, Barman D, Behera MS, editors. Conservation agriculture and climate change: Impact and adaptation. New Delhi: New India Publishing House; 2021.
  • Harker KN, O'Donovan JT, Irvine RB, et al. Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley. Weed Sci. 2009;57(3):326–337. doi:10.1614/WS-08-165.1.
  • NAAS. Improving productivity of rice fallows. Policy Paper No. 64. New Delhi: National Academy of Agricultural Sciences; 2013.
  • Verma A, Tyagi L, Yadav S, et al. Temporal changes in N2O efflux from cropped and fallow agricultural fields. Agric Ecosyst Environ. 2006;116(3-4):209–215. doi:10.1016/j.agee.2006.02.005.
  • Datta A, Rao KS, Santra SC, et al. Greenhouse gas emissions from rice based cropping systems: economic and technologic challenges and opportunities. Mitig Adapt Strateg Glob Change. 2011;16(5):597–615. doi:10.1007/s11027-011-9284-z.
  • Kutcher HR, Brandt SA, Smith EG, et al. Blackleg disease of canola mitigated by resistant cultivars and four-year crop rotations in Western Canada. Can. J Plant Pathol. 2013;35(2):209–221. doi:10.1080/07060661.2013.775600.
  • Mhango WG, Snapp SS, Phiri GYK. Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi. Renew Agric Food Syst. 2013;28(3):234–244. doi:10.1017/S1742170512000178.
  • Yang X, Gao W, Zhang M, et al. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China plain. J Clean Prod. 2014; 76:131–139. doi:10.1016/j.jclepro.2014.03.063.
  • Manna MC, Swarup A, Wanjari RH, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under Sub-humid and semi-arid tropical India. Field Crops Res. 2005;93(2-3):264–280. doi:10.1016/j.fcr.2004.10.006.
  • Hati KM, Swarup A, Dwivedi AK, et al. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of Central India after 28 years of continuous cropping, fertilization and manuring. Agric Ecosyst Environ. 2007;119(1-2):127–134. doi:10.1016/j.agee.2006.06.017.
  • Pathak H, Wassmann R. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients. Agric Syst. 2007;94(3):807–825. doi:10.1016/j.agsy.2006.11.015.
  • Singh AK, Behera MS, Mazumdar SP, et al. Soil carbon sequestration in long-term fertilization under jute-rice-wheat agro-ecosystem. Commun Soil Sci Plan. 2019;50(6):739–748. doi:10.1080/00103624.2019.1589483.
  • Singh AK, Mukesh K, Mitra S. Carbon footprint and energy use in jute and allied fibre production. Indian J Agric Sci. 2018; 88:1305–1311.
  • Rajagopal K, Sanyal T. Sustainable infrastructure development including limited life geosynthetics Proceedings of Geosynthetics Asia. Bangkok; 2012.
  • Kirkegaard J, Christen O, Krupinsky J, et al. Break crop benefits in temperate wheat production. Field Crops Res. 2008;107(3):185–195. doi:10.1016/j.fcr.2008.02.010.
  • Miller PR, Gan Y, McConkey BG, et al. Pulse crops for the Northern great plains. Agron J. 2003;95(4):980–986. doi:10.2134/agronj2003.9800.
  • Singh AK, Roy ML, Ghorai AK. Optimize fertilizer use management through soil health assessment: saves money and the environment. Int J Curr Microbiol Appl Sci. 2020;9(6):322–330. doi:10.20546/ijcmas.2020.906.042.
  • Yang C, Hamel C, Gan Y, et al. Pyrosequencing reveals how pulses influence rhizobacterial communities with feedback on wheat growth in the semiarid prairie. Plant Soil. 2013;367(1-2):493–505. doi:10.1007/s11104-012-1485-z.
  • Cruz AF, Hamel C, Yang C, et al. Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation. Phytochemistry. 2012;78:72–80. https:// doi:10.1016/j.phytochem.2012.03.003.
  • Gan Y, Liang C, Chai Q, et al. Improving farming practices reduces the carbon footprint of spring wheat production. Nat Commun. 2014;5:5012–5012. doi:10.1038/ncomms6012.
  • Berry PM, Kindred DR, Paveley ND. Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathol. 2008;57(6):1000–1008. doi:10.1111/j.1365-3059.2008.01899.x.
  • Elsgaard L, Olesen JE, Hermansen JE, et al. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark. Acta Agr Scand B-S P. 2013;63(3):219–230. doi:10.1080/09064710.2012.751451.
  • Syp A, Jarosz Z, Faber A, et al. Greenhouse gas emissions from winter wheat cultivation for bioethanol production in Poland. J Food Agril. 2012;10:1169–1172.
  • Brock P, Madden P, Schwenke G, et al. Greenhouse gas emissions profile for 1 tonne of wheat produced in Central zone (east) New South Wales: a life cycle assessment approach. Crop Pasture Sci. 2012;63(4):319–329. doi:10.1071/CP11191.
  • Gan Y, Liang C, Wang X, et al. Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Res. 2011;122(3):199–206. doi:10.1016/j.fcr.2011.03.020.
  • Robertson GP, Grace PR. Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. Environ Dev Sustain. 2004;6(1/2):51–63. doi:10.1023/B:ENVI.0000003629.32997.9e.
  • NARP. Agro-climatic zone specific research: Indian perspective under NARP. New Delhi: ICAR; 1979.
  • Chapagain T, Yamaji E. The effects of irrigation method, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan. Paddy Water Environ. 2010;8(1):81–90. doi:10.1007/s10333-009-0187-5.
  • Ghorai AK, Kundu DK, Kumar S, et al. Gunny bag based soil columns for crop diversification in rice field to enhance livelihood security of land scarce farmers. Curr Sci. 2020;119(7):1190–1195. doi:10.18520/cs/v119/i7/1190-1195.
  • Cassman KGS, Peng S, Olk DC, et al. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 1998;56(1-2):7–39. doi:10.1016/S0378-4290(97)00140-8.
  • FAO. CROPWAT ver. 8.0, water resources development and management service of FAO. Rome (Italy): Food and Agriculture Organisation; 2009. Available from: http://www.fao.org
  • FAO. ETo calculator ver. 3.2, land and water digital media series no. 36. Rome (Italy): Food and Agriculture Organisation; 2012. Available from: http://www.fao.org
  • Soltani A, Rajabi MH, Zeinali E, et al. Energy inputs and greenhouse gases emissions in wheat production in gorgan Iran energy. Energy. 2013; 50:54–61. doi:10.1016/j.energy.2012.12.022.
  • Singh S, Singh S, Pannu CJS, et al. Energy input and yield relations for wheat in different agro-climatic zones of the Punjab. Appl Energy. 1999;63(4):287–298. doi:10.1016/S0306-2619(99)00034-3.
  • Dyer JA, Desjardins RL. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosyst Eng. 2006;93(1):107–118. doi:10.1016/j.biosystemseng.2005.09.011.
  • Dyer JA, Desjardins RL. The impact of farm machinery management on the greenhouse gas emissions from Canadian agriculture. J Sustain Agric. 2003;22(3):59–74. doi:10.1300/J064v22n03_07.
  • Lal R. Carbon emission from farm operations. Environ Int. 2004;30(7):981–990. doi:10.1016/j.envint.2004.03.005.
  • IPCC. Climate change, the science of climate change. In Houghton JT, Meira Filho LG, Callander BA, editors. Cambridge: Intergovernmental Panel on Climate Change, Cambridge University Press; 1995. Available from: https://www.ipcc.ch/report/ar2/wg1
  • Kramer KJ, Moll HC, Nonhebel S. Total greenhouse gas emissions related to the Dutch crop production system. Agric Ecosyst Environ. 1999;72(1):9–16. doi:10.1016/S0167-8809(98)00158-3.
  • Jackson ML. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt Ltd.; 1967.
  • Bationo A, Kihara J, Vanlauwe B, et al. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric Syst. 2007;94(1):13–25. doi:10.1016/j.agsy.2005.08.011.
  • Ghorai AK, Kumar M, Kar CS. Weed smothering in jute with green gram intercropping. Indian J Weed Sci. 2016;48(3):343–344. doi:10.5958/0974-8164.2016.00088.5.
  • Devi Konthoujam N, S, D, Shamurailatpam T, Basanta, et al. Performance of lentil (lens culinaris M.) and mustard (brassica juncea L.) intercropping under rainfed conditions. Aust J Crop Sci. 2014;8:284–289. http://www.cropj.com/devi_8_2_2014_284_289.pdf.
  • Singh AK, Mandira C. Water and nitrogen use efficiency in SRI through AWD and LCC: farmer-participatory experiment. Indian J Agric Sci. 2019; 89:2059–2063.
  • Yang JC, Zhang JH. Crop management techniques to enhance harvest index in rice. J Exp Bot. 2010;61(12):3177–3189. doi:10.1093/jxb/erq112.
  • Sainju UM, Jabro JD, Caesar-TonThat T. Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emission and carbon content. J Environ Qual. 2010;39(3):935–945. doi:10.2134/jeq2009.0223.
  • Pinheiro ÉFM, De Campos DVB, De Carvalho BF, et al. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agric Syst. 2015;132:35–39. doi:10.1016/j.agsy.2014.08.008.
  • Hu F, Chai Q, Yu A, et al. Less carbon emissions of wheat–maize intercropping under reduced tillage in arid areas. Agron Sustain Dev. 2015;35(2):701–711. doi:10.1007/s13593-014-0257-y.
  • Pratibha G, Srinivas I, Rao KV, et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeon pea-castor systems. Eur J Agron. 2015;66:30–40. doi:10.1016/j.eja.2015.02.001.
  • Chaudhary VP, Singh KK, Pratibha G, et al. Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation. Energy. 2017;130:307–317. doi:10.1016/j.energy.2017.04.131.
  • Dumanski J, Desjardins RL, Tarnocai C, et al. Possibilities for future carbon sequestration in Canadian agriculture in relation to land use changes. J Clim Res. 1998;40:81–103. doi:10.1023/A:1005390815340.
  • Garcia-Franco N, Albaladejo J, Almagro M, et al. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a mediterranean agroecosystem. Soil till Res. 2015;153:66–75. doi:10.1016/j.still.2015.05.010. .
  • Nemecek T, Hayer F, Bonnin E, et al. Designing eco-efficient crop rotations using life cycle assessment of crop combinations. Eur J Agron. 2015;65:40–51. doi:10.1016/j.eja.2015.01.005.
  • Burton DL, Zebarth BJ, Gillam KM, et al. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can J Soil Sci. 2008;88(2):229–239. doi:10.4141/CJSS06007.
  • Zebarth BJ, Rochette P, Burton DL. N2O emissions from spring 1308 barley production as influenced by fertilizer nitrogen rate. Can J Soil Sci. 2008;88(2):197–205. doi:10.4141/CJSS06006.