1,918
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Potential greenhouse gas emissions mitigation through increased grazing pressure: a case study in North Portugal

, &

References

  • Lindner M, Maroschek M, Netherer S, et al. Climate change impacts, adaptive capacity, and vulnerability of european Forest ecosystems. For Ecol Manage. 2010;259(4):698–709. doi:10.1016/j.foreco.2009.09.023.
  • Stavi I. Wildfires in grasslands and shrublands: a review of impacts on vegetation, soil, hydrology, and geomorphology. Water. 2019;11(5):1042. doi:10.3390/w11051042.
  • Pausas JG, Vallejo VR. The role of fire in European mediterranean ecosystems. In: Chuvieco E, editor. Remote sensing of large wildfires. Berlin: Springer; 1999. p. 3–16
  • EEA.Forest fires. 2019. [Online]. Available: https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/assessment.
  • Parente J, Amraoui M, Menezes I, et al. Drought in Portugal: Current regime, comparison of indices and impacts on extreme wildfires. Sci Total Environ. 2019;685:150–173. doi:10.1016/j.scitotenv.2019.05.298.
  • Pereira MG, Parente J, Amraoui M, et al. The role of weather and climate conditions on extreme wildfires. In Tedim F, Leone V, McGee TK, editors. Extreme wildfire events and disasters. Amsterdam: Elsevier; 2020. p. 55–72.
  • Narayan C, Fernandes PM, van Brusselen J, et al. Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto protocol. For Ecol Manage. 2007;251(3):164–173. doi:10.1016/j.foreco.2007.06.042.
  • Camia A, Amatulli G. Weather factors and fire danger in the mediterranean. Earth observation of wildland fires in mediterranean ecosystems. Berlin, Heidelberg: Springer, pp. 71–82. 2009.
  • Prober SM, Thiele KR, Rundel PW, et al. Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world’s largest mediterranean-climate woodland. Clim Change. 2012;110(1–2):227–248. doi:10.1007/s10584-011-0092-y.
  • Spinoni J, Vogt JV, Naumann G, et al. Will drought events become more frequent and severe in Europe? Int J Climatol. 2018;38(4):1718–1736. doi:10.1002/joc.5291.
  • EEA. Climate change, impacts and vulnerability in Europe 2016, 2020. https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016.
  • Carvalho A, Flannigan MD, Logan KA, et al. The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change. Clim Change. 2010;98(1–2):177–197. doi:10.1007/s10584-009-9667-2.
  • Oliveira M, Delerue-Matos C, Pereira MC, et al. Environmental particulate matter levels during 2017 large Forest fires and megafires in the center region of Portugal: a public health concern? IJERPH. 2020;17(3):1032. doi:10.3390/ijerph17031032.
  • Ameray A. Climate change mitigation: Annual carbon balance accounting and mapping in the national Forest ecosystems (continental Portugal). Bragança, Portugal: Polytechnic Institute of Bragança; 2018. p. 145.
  • Lasanta T, Khorchani M, Pérez-Cabello F, et al. Clearing shrubland and extensive livestock farming: active prevention to control wildfires in the mediterranean mountains. J Environ Manage. 2018;227:256–266. doi:10.1016/j.jenvman.2018.08.104.
  • Meneses BM, Reis E, Reis R. Assessment of the recurrence interval of wildfires in mainland Portugal and the identification of affected LUC patterns. J Maps. 2018;14(2):282–292. doi:10.1080/17445647.2018.1454351.
  • Serra P, Pons X, Saurí D. Land-cover and land-use change in a mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr. 2008;28(3):189–209. doi:10.1016/j.apgeog.2008.02.001.
  • Vilar L, Camia A, San-Miguel-Ayanz J, et al. Modeling temporal changes in human-caused wildfires in mediterranean Europe based on land use-land cover interfaces. For Ecol Manage. 2016;378:68–78. doi:10.1016/j.foreco.2016.07.020.
  • Beighley M, Hyde AC. Systemic risk and Portugal’s Forest fire defense strategy. In Portucel Conf. 2009. p. 48.
  • Castro M, Ameray A, Castro JP. A new approach to quantify grazing pressure under mediterranean pastoral systems using GIS and remote sensing. Int J Remote Sens. 2020;41(14):5371–5387. doi:10.1080/01431161.2020.1731930.
  • Starns HD, Fuhlendorf SD, Elmore RD, et al. Recoupling fire and grazing reduces wildland fuel loads on rangelands. Ecosphere. 2019;10(1):e02578. doi:10.1002/ecs2.2578.
  • Calleja JA, Escolà M, Carvalho J, et al. Cattle grazing fails to control shrub encroachment in mediterranean landscapes. Rangeland Ecol Manage. 2019;72(5):803–811. doi:10.1016/j.rama.2019.04.005.
  • Jenkins M, Price O, Collins L, et al. The influence of planting size and configuration on landscape fire risk. J Environ Manage. 2019;248:109338. doi:10.1016/j.jenvman.2019.109338.
  • Torres-Manso F, Fernandes P, Pinto R, et al. Regional livestock grazing, human demography and fire incidence in the portuguese landscape. Forest Syst. 2014;23(1):15. doi:10.5424/fs/2014231-02758.
  • Fuhlendorf SD, Engle DM, Elmore RD, et al. Conservation of pattern and process: Developing an alternative paradigm of rangeland management. Rangeland Ecol Manage. 2012;65(6):579–589. doi:10.2111/REM-D-11-00109.1.
  • Anderson HE. Aids to determining fuel models for estimating fire behavior. US Department of Agriculture, Forest Service, Intermountain Forest and Range (Vol. 122). 1981.
  • Santana J, Porto M, Reino L, et al. Long-term understory recovery after mechanical fuel reduction in mediterranean Cork oak forests. For Ecol Manage. 2011;261(3):447–459. doi:10.1016/j.foreco.2010.10.030.
  • Prior LD, Murphy BP, Bowman DMJS. Conceptualizing ecological flammability: an experimental test of three frameworks using various types and loads of surface fuels. Fire. 2018;1(1):14. doi:10.3390/fire1010014.
  • Ruiz-Mirazo J, Martínez-Fernández J, Vega-García C. Pastoral wildfires in the mediterranean: Understanding their linkages to land cover patterns in managed landscapes. J Environ Manage. 2012;98:43–50. doi:10.1016/J.JENVMAN.2011.12.017.
  • Liedloff AC, Coughenour MB, Ludwig JA, et al. Modelling the trade-off between fire and grazing in a tropical savanna landscape, Northern Australia. Environ Int. 2001;27(2-3):173–180. doi:10.1016/S0160-4120(01)00079-4.
  • Davies KW, Bates JD, Svejcar TJ, et al. Effects of Long-Term livestock grazing on fuel characteristics in rangelands: an example from the sagebrush steppe. Rangeland Ecol Manage. 2010;63(6):662–669. doi:10.2111/REM-D-10-00006.1.
  • Davies KW, Boyd CS, Bates JD, et al. Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland. Int J Wildland Fire. 2016;25(2):191–199. doi:10.1071/WF15055.
  • Davies KW, Gearhart A, Boyd CS, et al. Fall and spring grazing influence fire ignitability and initial spread in shrub steppe communities. Int J Wildland Fire. 2017;26(6):485–490. doi:10.1071/WF17065.
  • Braasch M, García-Barrios L, Ramírez-Marcial N, et al. Can cattle grazing substitute fire for maintaining appreciated pine savannas at the frontier of a montane Forest biosphere-reserve? Agriculture, Ecosystems & Environment. 2017;250:59–71. doi:10.1016/j.agee.2017.08.033.
  • Travers SK, Eldridge DJ, Koen TB, et al. Livestock and kangaroo grazing have little effect on biomass and fuel hazard in semi-arid woodlands. For Ecol Manage. 2020;467:118165. doi:10.1016/j.foreco.2020.118165.
  • ICNF. Apoio à Realização de Fogo Controlado no âmbito da Prevenção dos Fogos florestais 2018/2019. 2018. http://www2.icnf.pt/portal/fundos/fundo-florestal-permanente/candidatura-2018.
  • Ruiz-Mirazo J, Robles AB, González-Rebollar JL. Two-year evaluation of fuelbreaks grazed by livestock in the wildfire prevention program in Andalusia (Spain). Agric Ecosyst Environ. 2011;141(1–2):13–22. doi:10.1016/j.agee.2011.02.002.
  • Bidwell T, Elmore D, Hickman K. Stocking rate determination on native rangeland. Oklahoma Cooperative Extension, 2013. http://osufacts.okstate.edu
  • Salgado-Luarte C, Escobedo VM, Stotz GC, et al. Goat grazing reduces diversity and leads to functional, taxonomic, and phylogenetic homogenization in an arid shrubland. Land Degrad Dev. 2019;30(2):178–189. doi:10.1002/ldr.3208.
  • Meehan MA, Sedivec KK, Printz JL, and, Brummer FA. Determining carrying capacity and stocking rates for range and pasture in North Dakota. NDSU Extension, North Dakota State University; 2018.
  • IPMA. Weather data. 2019. https://www.ipma.pt/en/oipma/.
  • Elzinga CL, Salzer DW. Measuring and monitoring plant populations. US Department of the Interior, Bureau of Land Management; 1998.
  • Catchpole WR, Wheeler CJ. Estimating plant biomass: a review of techniques. Austral Ecol. 1992;17(2):121–131. doi:10.1111/j.1442-9993.1992.tb00790.x.
  • Papachristou TG, Dziba LE, Provenza FD. Foraging ecology of goats and sheep on wooded rangelands. Small Rumin Res. 2005;59(2–3):141–143. vol doi:10.1016/j.smallrumres.2005.05.003.
  • Kirmse RD, Norton BE. Comparison of the reference unit method and dimensional analysis methods for two large shrubby species in the caatinga woodlands. J Range Manage. 1985;38(5):425. doi:10.2307/3899714.
  • Carpenter AT, West NE. Validating the reference unit method of aboveground phytomass estimation on shrubs and herbs. Vegetatio. 1987;72:75–79. doi:10.2307/20038200.
  • Kiregyera B. Regression-type estimators using two auxiliary variables and the model of double sampling from finite populations. Metrika. 1984;31(1):215–226. doi:10.1007/BF01915203.
  • Rao PSRSBT-H of S18 Ratio and regression estimators. Handbook of Statistics. 1988;6:449–468.
  • Wharton EH, Griffith DM. Methods to estimate total Forest biomass for extensive Forest inventories: Applications in the northeastern US. USA Department of Agriculture Forest Service. 1993. https://www.osti.gov/biblio/5132445.
  • Council NR. Predicting feed intake of food-producing animals. Washington DC: National Academies Press; 1987.
  • IPCC. 2006 IPCC guidelines for national greenhouse gas inventories, Vol. 4. Geneva: Intergovernmental Panel On Climate Change; 2006.
  • IPCC. Global Warming Potential Values used in the fifth Assessment Report (AR5). 2014. www.ipcc.ch.
  • Fuglestvedt JS, Isaksen ISA, Wang W-C. Estimates of indirect global warming potentials for CH4, CO and NOX. Clim Change. 1996;34(3–4):405–437. no doi:10.1007/BF00139300.
  • Riedel JL, Bernues A, Casasus I. Livestock grazing impacts on herbage and shrub dynamics in a mediterranean natural park. Rangeland Ecol Manage. 2013;66(2):224–233. doi:10.2111/REM-D-11-00196.1.
  • Sirca C, Caddeo A, Spano D, et al. Methods for biomass stock estimation in mediterranean maquis systems. iForest. 2017;10(1):108–114. doi:10.3832/ifor1769-009.
  • De Luis M, Baeza MJ, Raventós J, et al. Fuel characteristics and fire behaviour in mature mediterranean gorse shrublands. Int J Wildland Fire. 2004;13(1):79–87. doi:10.1071/WF03005.
  • Casasús I, Bernués A, Sanz A, et al. Vegetation dynamics in mediterranean Forest pastures as affected by beef cattle grazing. Agriculture, Ecosystems & Environment. 2007;121(4):365–370. doi:10.1016/j.agee.2006.11.012.
  • Navarro Cerrillo R, Oyonarte P. Estimation of above-ground biomass in shrubland ecosystems of Southern Spain. Invest Agrar: Sist Recur For. 2006;15(2):197. doi:10.5424/srf/2006152-00964.
  • Pasalodos-Tato M, Ruiz-Peinado R, Del Río M, et al. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the mediterranean region. Eur J Forest Res. 2015;134(3):537–553. doi:10.1007/s10342-015-0870-6.
  • De Cáceres M, Casals P, Gabriel E, et al. Scaling-up individual-level allometric equations to predict stand-level fuel loading in mediterranean shrublands. Ann for Sci. 2019;76(3):1–17. doi:10.1007/s13595-019-0873-4.
  • Woodmansee RG, Duncan DA. Nitrogen and phosphorus dynamics and budgets in annual grasslands. Ecology. 1980;61(4):893–904. doi:10.2307/1936759.
  • Castro H, Freitas H. Above-ground biomass and productivity in the montado: from herbaceous to shrub dominated communities. J Arid Environ. 2009;73(4–5):506–511. doi:10.1016/j.jaridenv.2008.12.009.
  • Evlagon D, Kommisarchik S, Glasser T, et al. How much browse is available for goats that graze mediterranean woodlands. Small Ruminant Research. 2010;94(1–3):103–108. no doi:10.1016/j.smallrumres.2010.07.008.
  • Ruiz-Mirazo J, Robles AB. Impact of targeted sheep grazing on herbage and holm oak saplings in a silvopastoral wildfire prevention system in South-Eastern Spain. Agroforest Syst. 2012;86(3):477–491. doi:10.1007/s10457-012-9510-z.
  • Fonseca T, Manso F, Martins C, et al. A gestão florestal sustentável na prevençâo do risco de incêndio: silvicultura e pastoreio na redução da biomassa combustível. 2021. p. 54–71.
  • Johansson MU, Granström A. Fuel, fire and cattle in african highlands: traditional management maintains a mosaic heathland landscape. J Appl Ecol. 2014;51(5):1396–1405. doi:10.1111/1365-2664.12291.
  • Etienne M, Armand D, Julian P, and, Napoleone M. Un contrat d’entretien de pare-feu par des moutons. Bilan 1987–1992. Avignon, France: INRA; 1993.
  • Mosley JC, Roselle L. Targeted livestock grazing to suppress invasive annual grasses. In: Launchbaugh K, editor. Targeted grazing: a natural approach to vegetation management and landscape enhancement. Centennial (CO): American Sheep Industry Association; 2006. p. 67–76.
  • Thornes JB. Coupling erosion, vegetation and grazing. Land Degrad Dev. 2005;16(2):127–138. doi:10.1002/ldr.655.
  • Oñatibia GR, Amengual G, Boyero L, et al. Aridity exacerbates grazing‐induced rangeland degradation: a population approach for dominant grasses. J Appl Ecol. 2020;57(10):1999–2009. doi:10.1111/1365-2664.13704.
  • Piñeiro G, Paruelo JM, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecol Manage. 2010;63(1):109–119. doi:10.2111/08-255.1.
  • Abdalla M, Hastings A, Chadwick DR, et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric Ecosyst Environ. 2018;253:62–81. doi:10.1016/j.agee.2017.10.023.
  • Fernandes PM, Botelho HS. A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire. 2003;12(2):117–128. doi:10.1071/WF02042.
  • Valkó O, Török P, Deák B, et al. Prospects and limitations of prescribed burning as a management tool in european grasslands. Basic Appl Ecol. 2014;15(1):26–33. doi:10.1016/j.baae.2013.11.002.
  • Pinares-Patiño CS, Waghorn GC, Hegarty RS, et al. Effect of intensification of pastoral farming on greenhouse gas emissions in New Zealand. N Z Vet J. 2009;57(5):252–261. doi:10.1080/00480169.2009.58618.
  • Grossi G, Goglio P, Vitali A, et al. Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim Front. 2019;9(1):69–76. doi:10.1093/af/vfy034.