1,697
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Grab and gone: expert perspectives on innovation to diffusion of direct air carbon capture and storage technology

ORCID Icon, &
Article: 2235577 | Received 18 Jan 2023, Accepted 06 Jul 2023, Published online: 16 Jul 2023

References

  • Masson-Delmotte V, Zhai P, Pörtner H, et al. Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge: Cambridge University Press; 2018. doi: 10.1017/9781009157940.
  • Haszeldine RS, Flude S, Johnson G, et al. Negative emissions technologies and carbon capture and storage to achieve the Paris agreement commitments. Phil Trans R Soc A. 2018;376(2119):20160447. doi: 10.1098/rsta.2016.0447.
  • Martin-Roberts E, Scott V, Flude S, et al. Carbon capture and storage at the end of a lost decade. One Earth. 2021;4(11):1569–1584. doi: 10.1016/j.oneear.2021.10.002.
  • Wang Y, Pan Z, Zhang W, et al. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: a review. Environ Res. 2022;207:112219. doi: 10.1016/j.envres.2021.112219.
  • Gabrielli P, Gazzani M, Mazzotti M. The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. Ind Eng Chem Res. 2020;59(15):7033–7045. doi: 10.1021/acs.iecr.9b06579.
  • Psarras P, He J, Pilorgé H, et al. Cost analysis of carbon capture and sequestration from US natural gas-fired power plants. Environ Sci Technol. 2020;54(10):6272–6280. doi: 10.1021/acs.est.9b06147.
  • Budinis S, Krevor S, Mac Dowell N, et al. An assessment of CCS costs, barriers and potential. Energy Strategy Rev. 2018;22:61–81. doi: 10.1016/j.esr.2018.08.003.
  • Mace MJ, Fyson CL, Schaeffer M, et al. Large‐scale carbon dioxide removal to meet the 1.5 °C limit: key governance gaps, challenges and priority responses. Glob Policy. 2021;12(S1):67–81. doi: 10.1111/1758-5899.12921.
  • Zahed MA, Movahed E, Khodayari A, et al. Biotechnology for carbon capture and fixation: critical review and future directions. J Environ Manage. 2021;293:112830. doi: 10.1016/j.jenvman.2021.112830.
  • Olabi AG, Wilberforce T, Elsaid K, et al. Large scale application of carbon capture to process industries–a review. J Clean Prod. 2022;362:132300. doi: 10.1016/j.jclepro.2022.132300.
  • Baker ED. A just energy transition requires research at the intersection of policy and technology. PLOS Clim. 2022;1(10):e0000084. doi: 10.1371/journal.pclm.0000084.
  • CIEL. It’s time to end carbon capture of climate policy; 2021 [cited 2023 Apr 1]. Available from: https://www.ciel.org/wp-content/uploads/2021/07/CCS-Ad_The-Washington-Post_FINAL.pdf
  • Marcucci A, Kypreos S, Panos E. The road to achieving the long-term Paris targets: energy transition and the role of direct air capture. Clim Change. 2017;144(2):181–193. doi: 10.1007/s10584-017-2051-8.
  • Terlouw T, Treyer K, Bauer C, et al. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environ Sci Technol. 2021;55(16):11397–11411. doi: 10.1021/acs.est.1c03263.
  • Qiu Y, Lamers P, Daioglou V, et al. Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100. Nat Commun. 2022;13(1):3635. doi: 10.1038/s41467-022-31146-1.
  • Shrum TR, Markowitz E, Buck H, et al. Behavioural frameworks to understand public perceptions of and risk response to carbon dioxide removal. Interface Focus. 2020;10(5):20200002. doi: 10.1098/rsfs.2020.0002.
  • Sovacool BK, Brossmann B. Fantastic futures and three American energy transitions. Sci Cult. 2013;22(2):204–212. doi: 10.1080/09505431.2013.786999.
  • Hoicka CE, Das RR, Zhao Y, et al. Methodology to identify demand-side low-carbon innovations and their potential impact on socio-technical energy systems. MethodsX. 2021;8:101295. doi: 10.1016/j.mex.2021.101295.
  • Raimi KT. Public perceptions of geoengineering. Curr Opin Psychol. 2021;42:66–70. doi: 10.1016/j.copsyc.2021.03.012.
  • Devine-Wright P, Batel S, Aas O, et al. A conceptual framework for understanding the social acceptance of energy infrastructure: insights from energy storage. Energy Policy. 2017;107:27–31. [20] doi: 10.1016/j.enpol.2017.04.020.
  • Osazuwa-Peters M, Hurlbert M, McNutt K, et al. Saskatchewan’s energy future: risk and pathways analysis. Environ Innov Soc Transit. 2020;34:237–250. doi: 10.1016/j.eist.2020.01.010.
  • Yang L, Zhang X, McAlinden KJ. The effect of trust on people’s acceptance of CCS (carbon capture and storage) technologies: evidence from a survey in the people’s republic of China. Energy. 2016;96:69–79. doi: 10.1016/j.energy.2015.12.044.
  • Moon WK, Kahlor LA, Olson HC. Understanding public support for carbon capture and storage policy: the roles of social capital, stakeholder perceptions, and perceived risk/benefit of technology. Energy Policy. 2020;139:111312. doi: 10.1016/j.enpol.2020.111312.
  • Wüstenhagen R, Wolsink M, Bürer MJ. Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy. 2007;35(5):2683–2691. doi: 10.1016/j.enpol.2006.12.001.
  • Jones CR, Olfe-Kräutlein B, Naims H, et al. The social acceptance of carbon dioxide utilisation: a review and research agenda. Front Energy Res. 2017;5:1–11. doi: 10.3389/fenrg.2017.00011.
  • Krause RM, Carley SR, Warren DC, et al. “Not in (or under) my backyard”: geographic proximity and public acceptance of carbon capture and storage facilities. Risk Anal. 2014;34(3):529–540. doi: 10.1111/risa.12119.
  • Zanocco C, Boudet H, Clarke CE, et al. NIMBY, YIMBY, or something else? Geographies of public perceptions of shale gas development in the Marcellus shale. Environ Res Lett. 2020;15(7):074039. doi: 10.1088/1748-9326/abf8e2.
  • Dear M. Understanding and overcoming the NIMBY syndrome. J Am Plan Assoc. 1992;58(3):288–300. doi: 10.1080/01944369208975808.
  • Bell D, Gray T, Haggett C, et al. Re-visiting the ‘social gap’: public opinion and relations of power in the local politics of wind energy. Environ Politics. 2013;22(1):115–135. doi: 10.1080/09644016.2013.755793.
  • Geels FW. From sectoral systems of innovation to socio-technical systems: insights about dynamics and change from sociology and institutional theory. Res Policy. 2004;33(6–7):897–920. doi: 10.1016/j.respol.2004.01.015.
  • Geels FW. The multi-level perspective on sustainability transitions: responses to seven criticisms. Environ Innov Soc Transit. 2011;1(1):24–40. doi: 10.1016/j.eist.2011.02.002.
  • Geels FW. Socio-technical transitions to sustainability: a review of criticisms and elaborations of the multi-level perspective. Curr Opin Environ Sustain. 2019;39:187–201. doi: 10.1016/j.cosust.2019.06.009.
  • Normann HE. Policy networks in energy transitions: the cases of carbon capture and storage and offshore wind in Norway. Technol Forecast Soc Change. 2017;118:80–93. doi: 10.1016/j.techfore.2017.02.004.
  • Genus A, Coles AM. Rethinking the multi-level perspective of technological transitions. Res Policy. 2008;37(9):1436–1445. doi: 10.1016/j.respol.2008.05.006.
  • Geels FW. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research Policy. 2002;31(8–9):1257–1274. doi: 10.1016/S0048-7333(02)00062-8.
  • Geels FW, Sovacool BK, Schwanen T, et al. Sociotechnical transitions for deep decarbonization. Science. 2017;357(6357):1242–1244. doi: 10.1126/science.aao3760.
  • Hermwille L. The role of narratives in socio-technical transitions—Fukushima and the energy regimes of Japan, Germany, and the United Kingdom. Energy Res Soc Sci. 2016;11:237–246. doi: 10.1016/j.erss.2015.11.001.
  • Fri RW, Savitz ML. Rethinking energy innovation and social science. Energy Res Soc Sci. 2014;1:183–187. doi: 10.1016/j.erss.2014.03.010.
  • Smith A, Raven R. What is protective space? Reconsidering niches in transitions to sustainability. Res Policy. 2012;41(6):1025–1036. doi: 10.1016/j.respol.2011.12.012.
  • Iyer G, Hultman N, Eom J, et al. Diffusion of low-carbon technologies and the feasibility of long-term climate targets. Technol Forecast Soc Change. 2015;90:103–118. doi: 10.1016/j.techfore.2013.08.025.
  • Smith A. Translating sustainabilities between green niches and socio-technical regimes. Technol Anal Strateg Manag. 2007;19(4):427–450. doi: 10.1080/09537320701403334.
  • Edling L, Danks C. What came first, the pellet or boiler? Interacting leverage points within a sociotechnical system in the United States. Energy Res Soc Sci. 2022;88:102627. doi: 10.1021/acs.est.8b00575.
  • Sovacool BK, Hess DJ, Amir S, et al. Sociotechnical agendas: reviewing future directions for energy and climate research. Energy Res Soc Sci. 2020;70:101617. doi: 10.1016/j.erss.2020.101617.
  • Kanger L, Geels FW, Sovacool B, et al. Technological diffusion as a process of societal embedding: lessons from historical automobile transitions for future electric mobility. Transp Res Part D Transp Environ. 2019;71:47–66. doi: 10.1016/j.trd.2018.11.012.
  • Skea J, Shukla P, Kılkış Ş, et al. Climate change 2022: mitigation of climate change [Internet]. 2022 [cited 2022 Dec 2]. Available from: https://www.ipcc.ch/report/ar6/wg3/
  • Spijkerboer RC, Turhan E, Roos A, et al. Out of steam? A social science and humanities research agenda for geothermal energy. Energy Res Soc Sci. 2022;92:102801. doi: 10.1016/j.erss.2022.102801.
  • Rogge KS, Pfluger B, Geels FW. Transformative policy mixes in socio-technical scenarios: the case of the low-carbon transition of the German electricity system (2010–2050). Technol Forecast Soc Change. 2020;151:119259. doi: 10.1016/j.techfore.2018.04.002.
  • Edomah N, Bazilian M, Sovacool BK. Sociotechnical typologies for national energy transitions. Environ Res Lett. 2020;15(11):111001. doi: 10.1088/1748-9326/abba54.
  • Galiègue X, Laude A. Combining geothermal energy and CCS: from the transformation to the reconfiguration of a socio-technical regime? Energy Procedia. 2017;114:7528–7539. doi: 10.1016/j.egypro.2017.03.1904.
  • Aradóttir ESP, Sonnenthal EL, Björnsson G, et al. Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int J Greenhouse Gas Control. 2012;9:24–40. doi: 10.1016/j.ijggc.2012.02.006.
  • Miranda-Barbosa E, Sigfússon B, Carlsson J, et al. Advantages from combining CCS with geothermal energy. Energy Procedia. 2017;114:6666–6676. doi: 10.1016/j.egypro.2017.03.1794.
  • Creutzig F, Breyer C, Hilaire J, et al. The mutual dependence of negative emission technologies and energy systems. Energy Environ Sci. 2019;12(6):1805–1817. doi: 10.1039/C8EE03682A.
  • Gislason SR, Oelkers EH. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim Cosmochim Acta. 2003;67(20):3817–3832. doi: 10.1016/S0016-7037(03)00176-5.
  • Matter JM, Stute M, Snæbjörnsdottir SÓ, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science. 2016;352(6291):1312–1314. doi: 10.1126/science.aad8132.
  • Raza A, Glatz G, Gholami R, et al. Carbon mineralization and geological storage of CO2 in basalt: mechanisms and technical challenges. Earth-Sci Rev. 2022;229:104036. doi: 10.1016/j.earscirev.2022.104036.
  • Matter JM, Broecker WS, Stute M, et al. Permanent carbon dioxide storage into basalt: the CarbFix pilot project, Iceland. Energy Procedia. 2009;1(1):3641–3646. doi: 10.1016/j.egypro.2009.02.160.
  • Diao Y, Zhang S, Wang Y, et al. Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS demonstration project as a case study. Environ Earth Sci. 2015;73(11):7571–7586. doi: 10.1007/s12665-014-3928-8.
  • Schumer, C, Lebling, K,  How are Countries Counting on Carbon Removal to Meet Climate Goals? World Research Institute; 2022, https://www.wri.org/insights/carbon-removal-countries-climate-goals
  • Erans M, Sanz-Pérez ES, Hanak DP, et al. Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ Sci. 2022;15(4):1360–1405. doi: 10.1039/D1EE03523A.
  • Sovacool BK, Axsen J, Sorrell S. Promoting novelty, rigor, and style in energy social science: towards codes of practice for appropriate methods and research design. Energy Res Soc Sci. 2018;45:12–42. doi: 10.1016/j.erss.2018.07.007.
  • Mabon L, Shackley S, Bower-Bir N. Perceptions of sub-seabed carbon dioxide storage in Scotland and implications for policy: a qualitative study. Mar Policy. 2014;45:9–15. doi: 10.1016/j.marpol.2013.11.011.
  • Xenias D, Whitmarsh L. Carbon capture and storage (CCS) experts’ attitudes to and experience with public engagement. Int J Greenh Gas Control. 2018;78:103–116. doi: 10.1016/j.ijggc.2018.07.030.
  • de Best-Waldhober M, Daamen D, Faaij A. Informed and uninformed public opinions on CO2 capture and storage technologies in The Netherlands. Int J Greenhouse Gas Control. 2009;3(3):322–332. doi: 10.1016/j.ijggc.2008.09.001.
  • Weiss RS. Learning from strangers: the art and method of qualitative interview studies. New York: Simon and Schuster; 1995.
  • Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101. doi: 10.1191/1478088706qp063oa.
  • Alhojailan MI. Thematic analysis: a critical review of its process and evaluation. West East J Soc Sci. 2012;1(1):39–47. doi: 10.1016/j.ijggc.2012.02.006.
  • Carbfix: coda terminal [Internet]; 2021 [cited 2022 Jun 1]. Available from: https://www.carbfix.com/codaterminal
  • Naber R, Raven R, Kouw M, et al. Scaling up sustainable energy innovations. Energy Policy. 2017;110:342–354. doi: 10.1016/j.enpol.2017.07.056.
  • Nisbet MC. The carbon removal debate: asking critical questions about climate change futures. Washington (DC): Institute for Carbon Removal Law and Policy; 2019.
  • Mann CC. The wizard and the prophet: two remarkable scientists and their dueling visions to shape tomorrow’s world. New York: Knopf; 2018.
  • Koukouzas N, Christopoulou M, Giannakopoulou PP, et al. Current CO2 capture and storage trends in Europe in a view of social knowledge and acceptance. A short review. Energies. 2022;15(15):5716. doi: 10.3390/en15155716.
  • Carbajo R, Cabeza LF. Researchers’ perspective within responsible implementation with socio-technical approaches. An example from solar energy research Centre in Chile. Renew Sustain Energy Rev. 2022;158:112132. doi: 10.1016/j.rser.2022.112132.
  • Lebling K, Leslie-Bole H, Bridgwater L, et al. Building direct air capture responsibly from the ground up [Internet]. World Resources Institute; 2022 [cited 2022 Jun 9]. Available from: https://www.wri.org/insights/direct-air-
  • Upham P, Virkamäki V, Kivimaa P, et al. Socio-technical transition governance and public opinion: the case of passenger transport in Finland. J Transp Geogr. 2015;46:210–219. doi: 10.1016/j.jtrangeo.2015.06.024.
  • Yun S, Lee J. Advancing societal readiness toward renewable energy system adoption with a socio-technical perspective. Technol Forecasting Social Change. 2015;95:170–181. doi: 10.1016/j.techfore.2015.01.016.
  • Chanley VA, Rudolph TJ, Rahn WM. The origins and consequences of public trust in government: a time series analysis. Public Opin Q. 2000;64(3):239–256. doi: 10.1086/317987.
  • Huijts NM, Midden CJ, Meijnders AL. Social acceptance of carbon dioxide storage. Energy Policy. 2007;35(5):2780–2789. doi: 10.1016/j.enpol.2006.12.007.
  • Roberts C, Geels FW. Conditions and intervention strategies for the deliberate acceleration of socio-technical transitions: lessons from a comparative multi-level analysis of two historical case studies in Dutch and Danish heating. Technol Anal Strateg Manag. 2019;31(9):1081–1103. doi: 10.1080/09537325.2019.1584286.
  • Ozkan M. Direct air capture of CO2: a response to meet the global climate targets. MRS Energy Sustain. 2021;8(2):51–56. doi: 10.1557/s43581-021-00005-9.
  • McQueen N, Psarras P, Pilorgé H, et al. Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States. Environ Sci Technol. 2020;54(12):7542–7551. doi: 10.1021/acs.est.0c00476.
  • Ozkan M, Nayak SP, Ruiz AD, et al. Current status and pillars of direct air capture technologies. Iscience. 2022;25(4):103990. doi: 10.1016/j.isci.2022.103990.
  • Sekera J, Lichtenberger A. Assessing carbon capture: public policy, science, and societal need. Biophys Econ Sust. 2020;5(3):1–28. doi: 10.1007/s41247-020-00080-5.
  • L’Orange Seigo S, Dohle S, Siegrist M. Public perception of carbon capture and storage (CCS): a review. Renew Sustain Energy Rev. 2014;38:848–863. doi: 10.1016/j.rser.2014.07.017.
  • Nurdiawati A, Urban F. Decarbonising the refinery sector: a socio-technical analysis of advanced biofuels, green hydrogen and carbon capture and storage developments in Sweden. Energy Res Soc Sci. 2022;84:102358. doi: 10.1016/j.erss.2021.102358.
  • Ravikumar AP, Baker E, Bates A, et al. Enabling an equitable energy transition through inclusive research. Nat Energy. 2022;8(1):1–4. doi: 10.1038/s41560-022-01145-z.
  • Baker E, Goldstein AP, Azevedo IM. A perspective on equity implications of net zero energy systems. Energy Clim Change. 2021;2:100047. doi: 10.1016/j.egycc.2021.100047.