2,792
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Soil carbon sequestration potential bounded by population growth, land availability, food production, and climate change

ORCID Icon, , ORCID Icon, & ORCID Icon
Article: 2244456 | Received 11 Jan 2023, Accepted 16 Jul 2023, Published online: 11 Aug 2023

References

  • IPCC. Climate change 2022: mitigation of climate change. In: Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. Shukla PR, Skea J, Slade R, et al., editors. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926; 2022.
  • van Soest HL, den Elzen MGJ, van Vuuren DP. Net-zero emission targets for major emitting countries consistent with the paris agreement. Nat Commun. 2021; Apr 912(1):2140. doi: 10.1038/s41467-021-22294-x.
  • Fuss S, Lamb WF, Callaghan MW, et al. Negative emissions-Part 2: costs, potentials and side effects. Environ Res Lett. 2018; 13(6):063002. doi: 10.1088/1748-9326/aabf9f.
  • Smith P. Soil carbon sequestration and biochar as negative emission technologies. Glob Chang Biol. 2016; 22(3):1315–1324. doi: 10.1111/gcb.13178.
  • Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304(5677):1623–1627. doi: 10.1126/science.1097396.
  • Olson KR, Al-Kaisi MM, Lal R, et al. Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates. Soil Sci Soc Am J. 2014;78(2):348–360. doi: 10.2136/sssaj2013.09.0412.
  • Leifeld J, Keel SG. Quantifying negative radiative forcing of non-permanent and permanent soil carbon sinks. Geoderma. 2022;423:115971. doi: 10.1016/j.geoderma.2022.115971.
  • Sierra CA, Crow SE, Heimann M, et al. The climate benefit of carbon sequestration. Biogeosciences. 2021;18(3):1029–1048. doi: 10.5194/bg-18-1029-2021.
  • Matthews HD, Zickfeld K, Dickau M, et al. Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario. Commun Earth Environ. 2022;3:65. doi: 10.1038/s43247-022-00391-z.
  • van Groenigen JW, van Kessel C, Hungate BA, et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol. 2017; 51(9):4738–4739. doi: 10.1021/acs.est.7b01427.
  • Baveye PC, Berthelin J, Tessier D, et al. The “4 per 1000” initiative: a credibility issue for the soil science community? Geoderma. 2018;309:118–123. doi: 10.1016/j.geoderma.2017.05.005.
  • Poulton P, Johnston J, Macdonald A, et al. Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at rothamsted research, United Kingdom. Glob Chang Biol. 2018; 24(6):2563–2584. doi: 10.1111/gcb.14066.
  • Lugato E, Leip A, Jones A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat Clim Change. 2018;8(3):219–223. doi: 10.1038/s41558-018-0087-z.
  • Guenet B, Gabrielle B, Chenu C, et al. Can N2O emissions offset the benefits from soil organic carbon storage? Glob Chang Biol. 2021; 27(2):237–256. doi: 10.1111/gcb.15342.
  • Powlson DS, Whitmore AP, Goulding KWT. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci. 2011;62(1):42–55. doi: 10.1111/j.1365-2389.2010.01342.x.
  • Poeplau C, Don A, Vesterdal L, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Glob Change Biol. 2011;17(7):2415–2427. doi: 10.1111/j.1365-2486.2011.02408.x.
  • Johnston AE, Poulton PR, Coleman K. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. In: Advances in agronomy. Vol 101. San Diego: Elsevier Academic Press Inc; 2009. p. 1–57.
  • Bolinder MA, Crotty F, Elsen A, et al. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitig Adapt Strateg Glob Change. 2020;25(6):929–952. doi: 10.1007/s11027-020-09916-3.
  • Levavasseur F, Lashermes G, Mary B, et al. Quantifying and simulating carbon and nitrogen mineralization from diverse exogenous organic matters. Soil Use Manage. 2022;38(1):411–425. doi: 10.1111/sum.12745.
  • Lehmann J, Cowie A, Masiello CA, et al. Biochar in climate change mitigation. Nat Geosci. 2021;14(12):883–892. doi: 10.1038/s41561-021-00852-8.
  • Wiesmeier M, Poeplau C, Sierra CA, et al. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends. Sci Rep. 2016; 6(6):32525–32525. doi: 10.1038/srep32525.
  • Riggers C, Poeplau C, Don A, et al. How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? Plant Soil. 2021;460(1–2):417–433. doi: 10.1007/s11104-020-04806-8.
  • Burg V, Bowman G, Erni M, et al. Analyzing the potential of domestic biomass resources for the energy transition in Switzerland. Biomass Bioenergy. 2018;111:60–69. doi: 10.1016/j.biombioe.2018.02.007.
  • Wüst-Galley C, Keel SG, Leifeld J. A model-based carbon inventory for Switzerland’s mineral agricultural soils using RothC. Agroscope Sci. 2020;105:1–110.
  • Sierra CA, Müller M, Trumbore SE. Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci Model Dev. 2012;5(4):1045–1060. doi: 10.5194/gmd-5-1045-2012.
  • Bolinder MA, Janzen HH, Gregorich EG, et al. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosyst Environ. 2007; 118(1–4):29–42. doi: 10.1016/j.agee.2006.05.013.
  • Keel SG, Anken T, Büchi L, et al. Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agric Ecosyst Environ. 2019;286:106654. doi: 10.1016/j.agee.2019.106654.
  • Hirte J, Leifeld J, Abiven S, et al. Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agric Ecosyst Environ. 2018; Oct265(265):556–566. doi: 10.1016/j.agee.2018.07.010.
  • Leifeld J, Bassin S, Fuhrer J. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric Ecosyst Environ. 2005; 105(1–2):255–266. doi: 10.1016/j.agee.2004.03.006.
  • Weihermüller L, Graf A, Herbst M, et al. Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. Eur J Soil Sci. 2013;64(5):567–575. doi: 10.1111/ejss.12036.
  • CH2018 Project Team. CH2018 – Climate scenarios for Switzerland. National Centre for Climate Services. 2018. doi: 10.18751/Climate/Scenarios/CH2018/1.0.
  • Jacob D, Teichmann C, Sobolowski S, et al. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Reg Environ Change. 2020;20(2):51. doi: 10.1007/s10113-020-01606-9.
  • Hargreaves GH, Samani ZA. Reference crop evapotranspiration from temperature. Trans ASAE. 1985;1(2):96–99.
  • Priestley CHB, Taylor RJ. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Wea Rev. 1972;100(2):81–92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.
  • Calanca P, Smith P, Holzkämper A, et al. Die Referenzverdunstung und ihre Anwendung in der Agrarmeteorologie. Agrarforschung Schweiz. 2011;2(4):176–183.
  • Woolf D, Lehmann J. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry. 2012;111(1–3):83–95. doi: 10.1007/s10533-012-9764-6.
  • Zimmerman AR. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol. 2010;44(4):1295–1301. doi: 10.1021/es903140c.
  • Harvey OR, Kuo LJ, Zimmerman AR, et al. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ Sci Technol. 2012; 46(3):1415–1421. doi: 10.1021/es2040398.
  • Camps-Arbestain M, Amonette JE, Singh B, et al. A biochar classification system and associated test methods. In: Lehmann J, Joseph S, editors. Biochar for environmental management. London: routledge; 2015. p. 165–194.
  • IPCC. Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. In: Calvo Buendia E, Tanabe K, Kranjc A, et al. editors. Switzerland: IPCC; 2019.
  • Al-Wabel MI, Hussain Q, Usman ARA, et al. Impact of biochar properties on soil conditions and agricultural sustainability: a review. Land Degrad Dev. 2018;29(7):2124–2161. doi: 10.1002/ldr.2829.
  • Kuzyakov Y, Bogomolova I, Glaser B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem. 2014;70:229–236. doi: 10.1016/j.soilbio.2013.12.021.
  • Lehmann J, Abiven S, Kleber M, et al. Persistence of biochar in soil. In: Lehmann J, Joseph S, editors. Biochar for environmental management. Science, Technology and Implementation. Routledge; 2015. p. 235–282.
  • Jiang X, Denef K, Stewart CE, et al. Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biol Fertil Soils. 2016;52(1):1–14. doi: 10.1007/s00374-015-1047-7.
  • Sørmo E, Silvani L, Thune G, et al. Waste timber pyrolysis in a medium-scale unit: emission budgets and biochar quality. Sci Total Environ. 2020; 718(718):137335. doi: 10.1016/j.scitotenv.2020.137335.
  • von Ow A, Waldvogel T, Nemecek T. Environmental optimization of the Swiss population’s diet using domestic production resources. J Cleaner Prod. 2020;248:119241. doi: 10.1016/j.jclepro.2019.119241.
  • FSO. Federal statistical office. Farm structure census in 2019. Neuchâtel; 2020.
  • FCA. Swiss federal customs administration. Swiss-Impex foreign trade database. Berne; 2020.
  • Agristat. Statistical surveys and estimates on agriculture and nutrition, Swiss Farmers’ Union. Brugg; 2020.
  • Swisspatat. Statistical data 2020 on potato cultivation and potato utilisation. Berne; 2020.
  • SSN. Swiss society for nutrition. Swiss food pyramid. Recommendations for a Healthy and Enjoyable Adult Diet. 2016;
  • Chen S, Arrouays D, Angers DA, et al. Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil Tillage Res. 2019;188:53–58. doi: 10.1016/j.still.2018.11.001.
  • Amelung W, Bossio D, de Vries W, et al. Towards a global-scale soil climate mitigation strategy. Nat Commun. 2020; 11(1):5427. doi: 10.1038/s41467-020-18887-7.
  • Wendling M, Büchi L, Amossé C, et al. Influence of root and leaf traits on the uptake of nutrients in cover crops. Plant Soil. 2016;409(1-2):419–434. doi: 10.1007/s11104-016-2974-2.
  • Hauk S, Knoke T, Wittkopf S. Economic evaluation of short rotation coppice systems for energy from biomass—a review. Renew Sustain Energy Rev. 2014;29:435–448. doi: 10.1016/j.rser.2013.08.103.
  • Landgraf D, Carl C, Neupert M. Biomass yield of 37 different SRC poplar varieties grown on a typical site in North Eastern Germany. Forests. 2020;11(10):1048. doi: 10.3390/f11101048.
  • Berhongaray G, Janssens IA, King JS, et al. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture. Plant Soil. 2013;373(1–2):269–283. doi: 10.1007/s11104-013-1778-x.
  • González I, Sixto H, Rodríguez-Soalleiro R, et al. Nutrient contribution of litterfall in a short rotation plantation of pure or mixed plots of Populus alba L. and Robinia pseudoacacia L. Forests. 2020;11(11):1133. doi: 10.3390/f11111133.
  • Cotrufo MF, De Angelis P, Polle A. Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biol. 2005;11(6):971–982. doi: 10.1111/j.1365-2486.2005.00958.x.
  • Guénon R, Bastien J-C, Thiébeau P, et al. Carbon and nutrient dynamics in short-rotation coppice of poplar and willow in a converted marginal land, a case study in Central France. Nutr Cycl Agroecosyst. 2016;106(3):293–309. doi: 10.1007/s10705-016-9805-y.
  • Bretscher D. Agricultural sector of Switzerland’s greenhouse gas inventory 1990-2019, federal office for the environment. Bern: FOEN; 2021.
  • IPCC. 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. In: Eggleston S, Buendia L, Miwa K, et al. editors. Japan: Intergovernmental Panel on Climate Change; 2006.
  • Stewart CE, Paustian K, Conant RT, et al. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry. 2007; Oct86(1):19–31. doi: 10.1007/s10533-007-9140-0.
  • Sun Z, Scherer L, Tukker A, et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat Food. 2022;3(1):29–37. doi: 10.1038/s43016-021-00431-5.
  • Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014; 515(7528):518–522. doi: 10.1038/nature13959.
  • Bajželj B, Richards KS, Allwood JM, et al. Importance of food-demand management for climate mitigation. Nature Clim Change. 2014;4(10):924–929. doi: 10.1038/nclimate2353.
  • Xu X, Sharma P, Shu S, et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat Food. 2021;2(9):724–732. doi: 10.1038/s43016-021-00358-x.
  • Hammar T, Hansson P-A, Röös E. Time-dependent climate impact of beef production – can carbon sequestration in soil offset enteric methane emissions? J Cleaner Prod. 2022;331:129948. doi: 10.1016/j.jclepro.2021.129948.
  • Liang C, MacDonald JD, Desjardins RL, et al. Beef cattle production impacts soil organic carbon storage. Sci Total Environ. 2020; 718:137273. doi: 10.1016/j.scitotenv.2020.137273.
  • Boehm M, Junkins B, Desjardins R, et al. Sink potential of Canadian agricultural soils. Clim Change. 2004; 65(3):297–314. doi: 10.1023/B:CLIM.0000038205.09327.51.
  • Rui Y, Jackson RD, Cotrufo MF, et al. Persistent soil carbon enhanced in mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proc Natl Acad Sci U S A. 2022; Feb 15119(7):1–6.
  • Poeplau C, Don A. Carbon sequestration in agricultural soils via cultivation of cover crops - a meta-analysis. Agric Ecosyst Environ. 2015; 200:33–41. doi: 10.1016/j.agee.2014.10.024.
  • Seitz D, Fischer LM, Dechow R, et al. The potential of cover crops to increase soil organic carbon storage in german croplands. Plant Soil. 2022; doi: 10.1007/s11104-022-05438-w.
  • Rodrigues L, Hardy B, Huyghebeart B, et al. Achievable agricultural soil carbon sequestration across Europe from country-specific estimates. Glob Chang Biol. 2021;27(24):6363–6380. doi: 10.1111/gcb.15897.
  • Minasny B, Malone BP, McBratney AB, et al. Soil carbon 4 per mille. Geoderma. 2017; 292:59–86. doi: 10.1016/j.geoderma.2017.01.002.
  • Wang J, Xiong Z, Kuzyakov Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. GCB Bioenergy. 2016;8(3):512–523. doi: 10.1111/gcbb.12266.
  • Reisser M, Purves RS, Schmidt MWI, et al. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front Earth Sci. 2016;4(80):1–14. doi: 10.3389/feart.2016.00080.
  • Briones MJI, Panzacchi P, Davies CA, et al. Contrasting responses of macro- and meso-fauna to biochar additions in a bioenergy cropping system. Soil Biol Biochem. 2020;145:107803. doi: 10.1016/j.soilbio.2020.107803.
  • Hilber I, Blum F, Leifeld J, et al. Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. J Agric Food Chem. 2012;60(12):3042–3050. doi: 10.1021/jf205278v.
  • Rumpel C, Chabbi A, Marschner B. Carbon storage and sequestration in subsoil horizons: knowledge, gaps and potentials; 2012. p. 445–464.
  • Alcantara V, Don A, Vesterdal L, et al. Stability of buried carbon in deep-ploughed Forest and cropland soils – implications for carbon stocks. Sci Rep. 2017; 7(1):5511–5511. doi: 10.1038/s41598-017-05501-y.
  • Woolf D, Lehmann J, Ogle S, et al. Greenhouse gas inventory model for biochar additions to soil. Environ Sci Technol. 2021;55(21):14795–14805. Oct 12. doi: 10.1021/acs.est.1c02425.