1,982
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The three-peat challenge: business as usual, responsible agriculture, and conservation and restoration as management trajectories in global peatlands

, , , , , , , , , , , , , & show all
Article: 2275578 | Received 31 May 2023, Accepted 19 Oct 2023, Published online: 01 Nov 2023

References

  • Girkin NT, Cooper HV, Ledger MJ, et al. Tropical peatlands in the anthropocene: the present and the future. Anthropocene. 2022;40:100354. doi: 10.1016/j.ancene.2022.100354.
  • Cole LE, Åkesson CM, Hapsari KA, et al. Tropical peatlands in the anthropocene: lessons from the past. Anthropocene. 2022;37:100324. doi: 10.1016/j.ancene.2022.100324.
  • C DN. How much wetland has the world lost? Long-term and recent tr in global wetland area mar. Freshw. Res. 2014;65:934–941.
  • Joosten H. The global peatland CO 2 picture: peatland status and drainage related emissions in all countries of the world. Ede, Netherlands: Wetland International. 2010.
  • U.N.E.P. Global peatlands assessment – the state of the world”s peatlands: evidence for action toward the conservation, restoration, and sustainable management of peatlands. Summary for policymakers. Nairobi, Kenya: Global Peatlands Initiative. United Nations Environment Programme; 2022.
  • Joosten H. The development of peatland emissions until 2030: a reconnaissance. IMCG Bull. 2017;9:4–8.
  • Flores Llampazo G, et al. The presence of peat and variation in tree species composition are under different hydrological controls in Amazonian wetland forests. Hydrol. Process. 2022;36:14690.
  • Lambert JM, Jennings JN, Smith CT, et al. The making of the broads: a reconsideration of their origin in the light of new evidence. RGS Res. Ser. 1961;3:153.
  • Smith CT. Dutch peat digging and the origin of the Norfolk broads. Geogr J. 1966;132(1):69–72. doi: 10.2307/1793055.
  • Page SE, Siegert F, Rieley JO, et al. The amount of carbon released from peat and Forest fires in Indonesia during 1997. Nature. 2002;420(6911):61–65. doi: 10.1038/nature01131.
  • Lawson IT, Honorio Coronado EN, Andueza L, et al. The vulnerability of tropical peatlands to oil and gas exploration and extraction. Prog. Environ. Geogr. 2022;1(1–4):84–114. doi: 10.1177/27539687221124046.
  • Roucoux KH, Lawson IT, Baker TR, et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv Biol. 2017;31(6):1283–1292. doi: 10.1111/cobi.12925.
  • Biddulph GE, Bocko YE, Bola P, et al. Current knowledge on the Cuvette centrale peatland complex and future research directions. Bois Trop. 2022;350:3–14. doi: 10.19182/bft2021.350.a36288.
  • Ellison JC. Wetlands of the pacific island region. Wetlands Ecol Manage. 2009;17(3):169–206. doi: 10.1007/s11273-008-9097-3.
  • Denham TP, Haberle SG, Lentfer C, et al. Origins of agriculture at Kuk Swamp in the highlands of New Guinea. Science. 2003;301(5630):189–193. doi: 10.1126/science.1085255.
  • Bourke RM. The decline of taro and taro irrigation in Papua New Guinea. Senri Ethnol. Stud. 2012;78:255–264.
  • Baird AJ, Evans CD, Mills R, et al. Validity of managing peatlands with fire. Nat Geosci. 2019;12(11):884–885. doi: 10.1038/s41561-019-0477-5.
  • Noble A, Palmer SM, Glaves DJ, et al. Prescribed burning, atmospheric pollution and grazing effects on peatland vegetation composition. J. Appl. Ecol. 2018;55(2):559–569. doi: 10.1111/1365-2664.12994.
  • Turetsky MR, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss. Nature Geosci. 2015;8(1):11–14. doi: 10.1038/ngeo2325.
  • Marrs RH, Marsland E-L, Lingard R, et al. Experimental evidence for sustained carbon sequestration in fire-managed, peat moorlands. Nature Geosci. 2019;12(2):108–112. doi: 10.1038/s41561-018-0266-6.
  • Young DM, Baird AJ, Gallego-Sala AV, et al. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci Rep. 2021;11(1):9547. doi: 10.1038/s41598-021-88766-8.
  • Gregg R, Elias JL, Alonso I, et al. Carbon storage and sequestration by habitat: a review of the evidence. New York: Natural England Research Report NERR094. 2021.
  • Wilkinson SL, Andersen R, Moore PA, et al. Wildfire and degradation accelerate Northern peatland carbon release. Nat Clim Chang. 2023;13(5):456–461. doi: 10.1038/s41558-023-01657-w.
  • Lukenbach MC, Hokanson KJ, Moore PA, et al. Hydrological controls on deep burning in a Northern forested peatland. Hydrol. Process. 2015;29(18):4114–4124. doi: 10.1002/hyp.10440.
  • Koplitz SN, Mickley LJ, Marlier ME, et al. Public health impacts of the severe haze in equatorial asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ Res Lett. 2016;11(9):094023. doi: 10.1088/1748-9326/11/9/094023.
  • Fuss S, Canadell JG, Ciais P, et al. Moving towards net-zero emissions requires new alliances for carbon dioxide removal. One Earth. 2020;3(2):145–149. doi: 10.1016/j.oneear.2020.08.002.
  • Evans CD, Peacock M, Baird AJ, et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature. 2021;593(7860):548–552. doi: 10.1038/s41586-021-03523-1.
  • Seddon N, Chausson A, Berry P, et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos Trans R Soc Lond B Biol Sci. 2020;375(1794):20190120. doi: 10.1098/rstb.2019.0120.
  • Schulz C, et al. Peatland and wetland ecosystems in Peruvian Amazonia. Ecol. Soc. 2019;24:1–16.
  • Leifeld J, Wüst-Galley C, Page S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat Clim Chang. 2019;9(12):945–947. doi: 10.1038/s41558-019-0615-5.
  • Günther A, Barthelmes A, Huth V, et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 2020;11(1):1644. doi: 10.1038/s41467-020-15499-z.
  • Joosten H. The global peatland CO2 picture. Ede, the Netherlands: Wetlands International; 2009.
  • Freeman BWJ, Evans CD, Musarika S, et al. Responsible agriculture must adapt to the wetland character of mid‐latitude peatlands. Glob Chang Biol. 2022;28(12):3795–3811. doi: 10.1111/gcb.16152.
  • Evans C, Morrison R, Burden A, et al. Lowland peatland systems in England and Wales – evaluating greenhouse gas fluxes and carbon balances. Centre for Ecology and Hydrology. 2017.
  • Koh LP, Miettinen J, Liew SC, et al. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci USA. 2011;108(12):5127–5132. doi: 10.1073/pnas.1018776108.
  • Cooper HV, Evers S, Aplin P, et al. Greenhouse gas emissions resulting from conversion of peat swamp Forest to oil palm plantation. Nat Commun. 2020;11(1):1717. doi: 10.1038/s41467-020-14298-w.
  • Cooper HV, Vane CH, Evers S, et al. From peat swamp Forest to oil palm plantations: the stability of tropical peatland carbon. Geoderma. 2019;342:109–117. doi: 10.1016/j.geoderma.2019.02.021.
  • Girkin NT, Dhandapani S, Evers S, et al. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry. 2020;147(1):87–97. doi: 10.1007/s10533-019-00632-y.
  • Bourdon K, Fortin J, Dessureault‐Rompré J, et al. Agricultural peatlands conservation: how does the addition of plant biomass and copper affect soil fertility? Soil Science Soc of Amer J. 2021;85(4):1242–1255. doi: 10.1002/saj2.20271.
  • Williams-Mounsey J, Grayson R, Crowle A, et al. A review of the effects of vehicular access roads on peatland ecohydrological processes. Earth-Sci. Rev. 2021;214:103528. doi: 10.1016/j.earscirev.2021.103528.
  • Aitkenhead M, et al. Peatland restoration and potential emissions savings on agricultural land: an evidence assessment. ESA Work. Pap. 2021; doi: 10.7488/era/974.
  • Union NF. Delivering for Britain: food and Farming in the Fen. 2019.
  • Evans C, et al. Implementation of an Emissions Inventory for UK Peatlands. 2017).
  • Newton P, Civita N, Frankel-Goldwater L, et al. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Front Sustain Food Syst. 2020;4:194. doi: 10.3389/fsufs.2020.577723.
  • Wen Y, Zang H, Ma Q, et al. Impact of water table levels and winter cover crops on greenhouse gas emissions from cultivated peat soils. Sci Total Environ. 2020;719:135130. doi: 10.1016/j.scitotenv.2019.135130.
  • Dawson JJC, Smith P. Carbon losses from soil and its consequences for land-use management. Sci Total Environ. 2007;382(2–3):165–190. doi: 10.1016/j.scitotenv.2007.03.023.
  • Girkin NT, Turner BL, Ostle N, et al. Root exudate analogues accelerate CO2 and CH4 production in tropical peat. Soil Biol. Biochem. 2018;117:48–55. doi: 10.1016/j.soilbio.2017.11.008.
  • Girkin NT, Turner BL, Ostle N, et al. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil Biol. Biochem. 2018;127:280–285. doi: 10.1016/j.soilbio.2018.09.033.
  • Dhandapani S, Girkin NT, Evers S, et al. Is intercropping an environmentally-wise alternative to established oil palm monoculture in tropical peatlands? Front for Glob Change. 2020;3:1–8. doi: 10.3389/ffgc.2020.00070.
  • Dhandapani S, Girkin NT, Evers S, et al. Immediate environmental impacts of transformation of an oil palm intercropping to a monocropping system in a tropical peatland. Mires Peat. 2022;28:1–17.
  • Jovani, Sancho AJ ‐, et al. CH4 and N2O emissions from smallholder agricultural systems on tropical peatlands in Southeast Asia. Global Change Biology; 2023;29(15):4279–4297.
  • Taft HE, Cross PA, Jones DL. Efficacy of mitigation measures for reducing greenhouse gas emissions from intensively cultivated peatlands. Soil Biol. Biochem. 2018;127:10–21. doi: 10.1016/j.soilbio.2018.08.020.
  • Mulholland B, et al. An assessment of the potential for paludiculture in England and Wales: report to Defra for ProjectSP1218. 98 2020.
  • Matysek M, Leake J, Banwart S, et al. Optimizing fen peatland water-table depth for romaine lettuce growth to reduce peat wastage under future climate warming. Soil Use Manag. 2022;38(1):341–354. doi: 10.1111/sum.12729.
  • Abel S, Couwenberg J, Joosten H. Towards more diversity in paludiculture–a literature review of useful wetland plants in Proceedings of the 14th International Peat Congress 2012).
  • Tan ZD, Lupascu M, Wijedasa LS. Paludiculture as a sustainable land use alternative for tropical peatlands: a review. Sci Total Environ. 2021;753:142111. doi: 10.1016/j.scitotenv.2020.142111.
  • M.I.N.A.M. Decreto supremo N° 006-2021-MINAM. Lima, Peru: Ministerio del Ambiente de Peru; 2021.
  • Coronado ENH. Personal communication. 2023.
  • Trenbirth H, Dutton A. UK natural capital: peatlands. 2019.
  • Nayak DR, Miller D, Nolan A, et al. Calculating carbon budgets of wind farms on Scottish peatlands. Mires Peat. 2010;4:09.
  • Smith J, Farmer J, Smith P, et al. The role of soils in provision of energy. Philos Trans R Soc Lond B Biol Sci. 2021;376(1834):20200180. doi: 10.1098/rstb.2020.0180.
  • Smith SW, Vandenberghe C, Hastings A, et al. Optimizing carbon storage within a spatially heterogeneous upland grassland through sheep grazing management. Ecosystems. 2014;17(3):418–429. doi: 10.1007/s10021-013-9731-7.
  • Page SE, Baird AJ. Peatlands and global change: response and resilience. Annu Rev Environ Resour. 2016;41(1):35–57. doi: 10.1146/annurev-environ-110615-085520.
  • Leifeld J, Menichetti L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat Commun. 2018;9(1):1071. doi: 10.1038/s41467-018-03406-6.
  • Bonn A, Allott T, Evans M, et al. Peatland restoration and ecosystem services: nature-based solutions for societal goals. In: Bonn A, Allott T, Evans M, Joosten H, Stoneman R. editors. Peatland restoration and ecosystem services: science, policy and practice. Cambridge, UK: Cambridge University Press; 2016. p. 402–417.
  • Chausson A, Turner B, Seddon D, et al. Mapping the effectiveness of nature‐based solutions for climate change adaptation. Glob Chang Biol. 2020;26(11):6134–6155. doi: 10.1111/gcb.15310.
  • Strack M, Davidson SJ, Hirano T, et al. The potential of peatlands as nature-based climate solutions. Curr Clim Change Rep. 2022;8(3):71–82. doi: 10.1007/s40641-022-00183-9.
  • Tanneberger F, et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv Sustain Syst. 2021;5:2000146.
  • Xu J, Morris PJ, Liu J, et al. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena. 2018;160:134–140. doi: 10.1016/j.catena.2017.09.010.
  • Page SE, Rieley JO, Banks CJ. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 2011;17(2):798–818. doi: 10.1111/j.1365-2486.2010.02279.x.
  • Dargie GC, Lewis SL, Lawson IT, et al. Age, extent and carbon storage of the Central Congo Basin peatland complex. Nature. 2017;542(7639):86–90. doi: 10.1038/nature21048.
  • Crezee B, Dargie GC, Ewango CEN, et al. Mapping peat thickness and carbon stocks of the Central Congo basin using field data. Nat Geosci. 2022;15(8):639–644. doi: 10.1038/s41561-022-00966-7.
  • Hastie A, Honorio Coronado EN, Reyna J, et al. Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nat Geosci. 2022;15(5):369–374. doi: 10.1038/s41561-022-00923-4.
  • Loisel J, Gallego-Sala A. Ecological resilience of restored peatlands to climate change. Commun Earth Env. 2022;3:208.
  • Smith P, Martino D, Cai Z, et al. Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci. 2008;363(1492):789–813. doi: 10.1098/rstb.2007.2184.
  • Paustian K, Lehmann J, Ogle S, et al. Climate-smart soils. Nature. 2016;532(7597):49–57. doi: 10.1038/nature17174.
  • Abdalla M, Hastings A, Truu J, et al. Emissions of methane from Northern peatlands: a review of management impacts and implications for future management options. Ecol Evol. 2016;6(19):7080–7102. doi: 10.1002/ece3.2469.
  • Harris JA, Hobbs RJ, Aronson J, et al. Ecol. Restor. Glob. Clim. Change Restor. Ecol. 2006;14(2):170–176. doi: 10.1111/j.1526-100X.2006.00136.x.
  • R S, et al. Resilience in ecology: abstraction, distraction, or where the action is? Biol. Conserv. 2014;177:43–51.
  • Hobbs RJ, Higgs E, Harris JA. Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol. 2009;24(11):599–605. doi: 10.1016/j.tree.2009.05.012.
  • Klimkowska A, Goldstein K, Wyszomirski T, et al. Are we restoring functional fens? The outcomes of restoration projects in fens re-analysed with plant functional traits. PLOS One. 2019;14(4):e0215645. doi: 10.1371/journal.pone.0215645.
  • I.U.C.K.-U.K. Peatland Code version 2.0. 2023.
  • Milner AM, Baird AJ, Green SM, et al. Understanding a regime shift from erosion to carbon accumulation in a temperate Northern peatland. J. Ecol. 2021;109(1):125–138. doi: 10.1111/1365-2745.13453.
  • Bullock JM, Fuentes‐Montemayor E, McCarthy B, et al. Future restoration should enhance ecological complexity and emergent properties at multiple scales. Ecography. 2022;2022(4):1–11. doi: 10.1111/ecog.05780.
  • Weise H, Auge H, Baessler C, et al. Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos. 2020;129(4):445–456. doi: 10.1111/oik.07213.
  • Coleman MA, Wood G, Filbee-Dexter K, et al. Restore or redefine: future trajectories for restoration. Front Mar Sci. 2020;7:237. doi: 10.3389/fmars.2020.00237.
  • Girkin NT, Vane CH, Turner BL, et al. Root oxygen mitigates methane fluxes in tropical peatlands. Environ Res Lett. 2020;15(6):064013. doi: 10.1088/1748-9326/ab8495.
  • Kreyling J, Tanneberger F, Jansen F, et al. Rewetting does not return drained fen peatlands to their old selves. Nat Commun. 2021;12(1):5693. doi: 10.1038/s41467-021-25619-y.
  • Drever CR, Cook-Patton SC, Akhter F, et al. Natural climate solutions for Canada. Sci Adv. 2021;7(23):6034. doi: 10.1126/sciadv.abd6034.
  • Nugent KA, Strachan IB, Strack M, et al. Multi‐year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Glob Chang Biol. 2018;24(12):5751–5768. doi: 10.1111/gcb.14449.
  • Gilmore MP, Endress BA, Horn CM. The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multi-use management in two Maijuna communities of the Peruvian Amazon. J Ethnobiol Ethnomed. 2013;9(1):29. doi: 10.1186/1746-4269-9-29.
  • Horn CM, Gilmore MP, Endress BA. Ecological and socio-economic factors influencing aguaje (mauritia flexuosa) resource management in two indigenous communities in the Peruvian Amazon. For. Ecol. Manag. 2012;267:93–103. doi: 10.1016/j.foreco.2011.11.040.
  • Hidalgo Pizango CG, Honorio Coronado EN, del Águila-Pasquel J, et al. Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests. Nat Sustain. 2022;5(6):479–487. doi: 10.1038/s41893-022-00858-z.
  • Baker TR, et al. The challenges for achieving conservation and sustainable development within the wetlands of the Pastaza-Marañon basin. 2019.
  • Harrison, M E., Ottay, J B, D”Arcy, L J., et al. Tropical Forest and peatland conservation in Indonesia: challenges and directions. People Nat. 2020;2(1):4–28 doi: 10.1002/pan3.10060.
  • Honorio Coronado EN, Hastie A, Reyna J, et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ Res Lett. 2021;16(7):074048. doi: 10.1088/1748-9326/ac0e65.
  • Wang R, Sun Q, Wang Y, et al. Contrasting responses of soil respiration and temperature sensitivity to land use types: cropland vs. apple orchard on the Chinese Loess Plateau. Sci Total Environ. 2018;621:425–433. doi: 10.1016/j.scitotenv.2017.11.290.
  • Garcin Y, Schefuß E, Dargie GC, et al. Hydroclimatic vulnerability of peat carbon in the Central Congo Basin. Nature. 2022;612(7939):277–282. doi: 10.1038/s41586-022-05389-3.
  • Loisel J, et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Clim Change. 2020;11(1), 70–77. doi: 10.1038/s41558-020-00944-0.
  • Lamb A, Green R, Bateman I, et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nature Clim Change. 2016;6(5):488–492. doi: 10.1038/nclimate2910.
  • Jiren TS, Dorresteijn I, Schultner J, et al. The governance of land use strategies: institutional and social dimensions of land sparing and land sharing. Conserv. Lett. 2018;11:12429.
  • Lee JSH, Garcia‐Ulloa J, Ghazoul J, et al. Modelling environmental and socio‐economic trade‐offs associated with land‐sparing and land‐sharing approaches to oil palm expansion. J. Appl. Ecol. 2014;51(5):1366–1377. doi: 10.1111/1365-2664.12286.
  • Miettinen J, Shi C, Liew SC. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 2011;17(7):2261–2270. doi: 10.1111/j.1365-2486.2011.02398.x.
  • Frontiers |. A novel low-cost, high-resolution camera system for measuring peat subsidence and water table dynamics. https://www.frontiersin.org/articles/10.3389/fenvs.2021.630752/full.
  • Hairiah K, van Noordwijk M, Sari R R, et al. Soil carbon stocks in indonesian (agro) Forest transitions: compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 2020; 294:106879. doi: 10.1016/j.agee.2020.106879.
  • Mazzola V, Perks MP, Smith J, et al. Seasonal patterns of greenhouse gas emissions from a Forest-to-bog restored site in Northern Scotland: influence of microtopography and vegetation on carbon dioxide and methane dynamics. European J Soil Science. 2021;72(3):1332–1353. doi: 10.1111/ejss.13050.
  • Bragazza L, Freeman C, Jones T, et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci U S A. 2006;103(51):19386–19389. doi: 10.1073/pnas.0606629104.
  • Zou J, Ziegler AD, Chen D, et al. Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nat Geosci. 2022;15(8):627–632. doi: 10.1038/s41561-022-00989-0.
  • Sloan TJ, et al. Peatland afforestation in the UK and consequences for carbon storage. Mires Peat. 2018;01:1–17 doi: 10.19189/MaP.2017.OMB.315.
  • Jovani-Sancho AJ, Cummins T, Byrne KA. Soil carbon balance of afforested peatlands in the Maritime temperate climatic zone. Glob Chang Biol. 2021;27(15):3681–3698. doi: 10.1111/gcb.15654.
  • Hergoualc”h K, van Lent J, Dezzeo N, et al. Major carbon losses from degradation of mauritia flexuosa peat swamp forests in Western Amazonia. Biogeochemistry. 2023;1:1–19. doi: 10.1007/s10533-023-01057-4.