264
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using eddy-covariance to measure the effects of COVID-19 restrictions on CO2 emissions in a neighborhood of Indianapolis, IN

, , , , , , , , & show all
Article: 2365900 | Received 27 Oct 2023, Accepted 03 Jun 2024, Published online: 01 Jul 2024

References

  • COVID-19 Community Mobility Reports [Internet]. Googleplex: Google LLC; 2024 [cited 2024 Jan 2]. Available from: https://www.google.com/covid19/mobility/
  • Loo BPY, Huang Z. Spatio-temporal variations of traffic congestion under work from home (WFH) arrangements: lessons learned from COVID-19. Cities. 2022;124:103610. doi: 10.1016/j.cities.2022.103610.
  • Tian X, An C, Chen Z, et al. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci Total Environ. 2021;765:144270. doi: 10.1016/j.scitotenv.2020.144270.
  • Le Quéré C, Jackson RB, Jones MW, et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat Clim Chang. 2020;10(7):647–653. doi: 10.1038/s41558-020-0797-x.
  • Schulte-Fischedick M, Shan Y, Hubacek K. Implications of COVID-19 lockdowns on surface passenger mobility and related CO2 emission changes in Europe. Appl Energy. 2021;300:117396. doi: 10.1016/j.apenergy.2021.117396.
  • Zhang X, Li Z, Wang J. Impact of COVID-19 pandemic on energy consumption and carbon dioxide emissions in China’s transportation sector. Case Stud Therm Eng. 2021;26:101091. doi: 10.1016/j.csite.2021.101091.
  • Toro AR, Catalán F, Urdanivia FR, et al. Air pollution and COVID-19 lockdown in a large South American city: Santiago Metropolitan Area, Chile. Urban Clim. 2021;36:100803. doi: 10.1016/j.uclim.2021.100803.
  • Collivignarelli MC, Abbà A, Bertanza G, et al. Lockdown for CoViD-2019 in Milan: what are the effects on air quality? Sci Total Environ. 2020;732:139280. doi: 10.1016/j.scitotenv.2020.139280.
  • Weir B, Crisp D, O'Dell CW, et al. Regional impacts of COVID-19 on carbon dioxide detected worldwide from space. Sci Adv. 2021;7(45):eabf9415. doi: 10.1126/sciadv.abf9415.
  • Monteiro V, Miles NL, Richardson SJ, et al. The impact of the COVID-19 lockdown on greenhouse gases: a multi-city analysis of in situ atmospheric observations. Environ Res Commun. 2022;4(4):041004. doi: 10.1088/2515-7620/ac66cb.
  • Moncrieff J, Valentini R, Greco S, et al. Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. J Exp Bot. 1997;48(5):1133–1142. doi: 10.1093/jxb/48.5.1133.
  • Velasco E, Roth M. Cities as net sources of CO2: review of atmospheric CO2 exchange in urban environments measured by Eddy Covariance technique. Geogr Compass. 2010;4(9):1238–1259. doi: 10.111/j.1749-8198.2010.00384.x.
  • Crawford B, Christen A, McKendry I. Diurnal course of carbon dioxide mixing ratios in the urban boundary layer in response to surface emissions. J Appl Meteor Climatol. 2016;55(3):507–529. doi: 10.1175/JAMC-D-15-0060.1.
  • Matese A, Gioli B, Vaccari FP, et al. Carbon dioxide emissions of the city center of Firenze, Italy: measurement, evaluation, and source partitioning. J Appl Meteor Climatol. 2009;48(9):1940–1947. doi: 10.1175/2009JAMC1945.1.
  • Helfter C, Tremper AH, Halios CH, et al. Spatial and temporal variability of urban fluxes of methane, carbon monoxide, and carbon dioxide above London, UK. Atmos Chem Phys. 2016;16(16):10543–10557. doi: 10.5194/acp-16-10543-2016.
  • Ishidoya S, Sugawara H, Terao Y, et al. O2: CO2 exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO2 emissions. Atmos Chem Phys. 2020;20(9):5293–5308. doi: 10.5194/acp-20-5293-2020.
  • Sugawara H, Ishidoya S, Terao Y, et al. Anthropogenic CO2 emissions changes in an urban area of Tokyo, Japan, due to the COVID-19 pandemic: a case study during the state of emergency in April-May 2020. Geophys Res Lett. 2021;48(15). doi: 10.1029/2021GL092600.
  • Matthews B, Schume H. Tall tower eddy covariance measurements of CO2 fluxes in Vienna, Austria. Atmos Environ. 2022;274:118941. doi: 10.1016/j.atmosenv.2022.118941.
  • Nicolini G, Antoniella G, Carotenuto F, et al. Direct observations of CO2 emissions reductions due to COVID-19 lockdown across European urban districts. Sci Total Environ. 2022;830. doi: 10.1016/j.scitotenv.2022.154662.
  • Wu K, Davis KJ, Miles NL, et al. Source decomposition of eddy-covariance CO2 flux measurements for evaluating a high-resolution urban CO2 emissions inventory. Environ Res Lett. 2022;17(7):074035. doi: 10.1088/1748-9326/ac7c29.
  • Turnbull JC, Sweeney C, Karion A, et al. Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: results from the INFLUX experiment. JGR Atmosph. 2014;120(1):292–312. doi: 10.1002/2014JD022555.
  • Vogel, E, Richardson, SJ, Miles, NL, Davis, KJ, INFLUX suburban carbon dioxide flux tower data. Data set. Pennsylvania State University Data Commons, University Park, Pennsylvania, USA.; 2023. Available from: http://datacommons.psu.edu. doi: 10.26208/2YQZ-5S85.
  • Miles NL, Richardson SJ, Davis KJ, et al. In-situ tower atmospheric measurements of carbon dioxide, methane and carbon monoxide mole fraction for the Indianapolis Flux (INFLUX) project, Indianapolis, IN, USA. Data set. The Pennsylvania State University Data Commons, University Park, Pennsylvania, USA; 2017. Available from: http://datacommons.psu.edu. doi: 10.18113/D37G6P.
  • Davis KJ, Deng A, Lauvaux T, et al. The Indianapolis Flux Experiment (INFLUX): a test-bed for developing urban greenhouse gas emission measurements. Elem Sci Anth. 2017;5(21). doi: 10.1525/elementa.188.
  • Heimburger AMF, Harvey RM, Shepson PB, et al. Assessing the optimized precision of the aircraft mass balance method for measurement of urban greenhouse gas emission rates through averaging. Elem Sci Anth. 2017;5(26). doi: 10.1525/elementa.134.
  • Lauvaux T, Gurney KR, Miles NL, et al. Policy-relevant assessment of urban CO2 emissions. Environ Sci Technol. 2020;54(16):10237–10245. doi: 10.1021/acs.est.0c00343.
  • Richardson SJ, Miles NL, Davis KJ, et al. Tower measurement network of in-situ CO2, CH4, and CO in support of the Indianapolis FLUX (INFLUX) experiment. Elem Sci Anth. 2017;5:59. doi: 10.1525/elementa.140.
  • U.S. Geological Survey. USGS One-Meter x56y441 in Central Marion Co 2016; 2020.
  • LI-COR, Inc. EddyPro® version 7.0 help and user’s guide. Lincoln, NE: LI-COR, Inc; 2021.
  • Foken T, Nappo CJ. Micrometeorology. New York, NY: Springer; 2008.
  • Lee X, Massman W, Law B. A perspective on thirty years of the Webb. Boundary Layer Meteorol. 2011;139(1):37–59. doi: 10.1007/s10546-010-9575-z.
  • Wilczak JM, Oncley SP, Stage SA. Sonic anemometer tilt correction algorithms. Boundary Layer Meteorol. 2001;99(1):127–150. doi: 10.1023/A:1018966204465.
  • Lee X, Massman W, Law B.Handbook of micrometeorology. In: Lee X, Massman X, Law B, editor. Handbook of micrometeorology. Vol. 29. Netherlands: Springer; 2005. doi: 10.1007-4020-2265-4.
  • Webb EK, Pearman GI, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quart J Royal Meteoro Soc. 1980;106(447):85–100. doi: 10.1002/qj.49710644707.
  • Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol. 1997;14(3):512–526. doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.
  • Yi C, Davis KJ, Bakwin PS, et al. Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J Geophys Res. 2000;105(D8):9991–9999. doi: 10.1029/2000JD900080.
  • King C. Our year of COVID: Key dates in Indiana’s fight against the coronavirus. Indianapolis Star; 2021, March 18 [cited 2024 Jan 2] Available from: https://www.indystar.com/in-depth/news/2021/03/18/indiana-covid-timeline-key-dates-states-fight-vs-pandemic/6813412002/
  • Hale T, Angrist N, Goldszmidt R, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021;5(4):529–538. doi: 10.1038/s41562-021-01079-8.
  • Browaeys J. Linear fit with both uncertainties in x and in y. MATLAB Central File Exchange; 2022. [updated 2017 Oct 25; cited 2022 June 23]. Available from: https://www.mathworks.com/matlabcentral/fileexchange/45711-linear-fit-with-both-uncertainties-in-x-and-in-y
  • Gurney KR, Razlivanov I, Song Y, et al. Quantification of fossil fuel CO2 emissions on the building/street scale for a large city. Environ Sci Technol. 2012;46(21):12194–12202. doi: 10.1021/es3011282.
  • Gurney KR, Liang J, O’Keeffe D, et al. Comparison of global downscaled versus bottom-up fossil fuel CO2 emissions at the urban scale in four US urban areas. J Geophys Res D Atmos. 2018;124(5):2823–2840. doi: 10.1029/2018JD028859.
  • Roest G, Gurney KR, Vogel E, et al. Hestia Fossil Fuel Carbon Dioxide (FFCO2) Data Product – Indianapolis, Version 3.2, 20m Grid at Flux Towers. State College, PA: Penn State Data Commons; 2023. doi: 10.26208/H62J-4004.
  • Kljun N, Calanca P, Rotach MW, et al. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci Model Dev. 2015;8(11):3695–3713. doi: 10.5194/gmd-8-3695-2015.
  • Hersbach H, Bell B, Berrisford P, et al. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS); 2023. doi: 10.24381/cds.adbb2d47.
  • Tennekes H. The logarithmic wind profile. J Atmos Sci. 1973;30(2):234–238. doi: 10.1175/1520-0469(1973)030<0234:TLWP>2.0.CO;2.
  • Mead R, Nelder JA. A simplex method for function minimization. Comput. J. 1965;7(4):308–313. doi: 10.1093/comjnl/7.4.308.
  • Iowa Environmental Mesonet. [Internet]. Iowa State University. [cited 2024 February 6]. Available from: https://mesonet.agron.iastate.edu/request/download.phtml?network=IN_ASOS.
  • Velasco E. Impact of Singapore’s COVID-19 confinement on atmospheric CO2 fluxes at neighborhood scale. Urban Clim. 2021;37:100822. doi: 10.1016/j.uclim.2021.100822.
  • Yadav V, Ghosh S, Mueller K, et al. The impact of COVID-19 on CO2 emissions in the Los Angeles and Washington DC/Baltimore metropolitan areas. Geophys Res Lett. 2021;48(11):e2021GL092744. doi: 10.1029/2021GL092744.
  • U.S. Census Bureau. 2020 Census Demographic Data Map Viewer; 2020. Available from: https://maps.geo.census.gov/ddmv/map.html
  • Stewart ID, Oke TR. Local climate zones for urban temperature studies. Bull Amer Metor Soc. 2012;93(12):1879–1900. doi: 10.1175/BAMS-D-11-00019.1.
  • Dewitz J, U.S. Geological Survey. National Land Cover Database (NLCD) 2019 products (ver. 2.0, June 2021). U.S. Geological Survey Data Release; 2021. Reston, Virginia. doi: 10.5066/P9KZCM54.