Publication Cover
Cognitive Neuroscience
Current Debates, Research & Reports
Volume 14, 2023 - Issue 4
229
Views
0
CrossRef citations to date
0
Altmetric
Reports

Spatiotemporal dynamics of selective attention and visual conflict monitoring using a Stroop task

, , , , , & ORCID Icon show all

References

  • Banich, M., Milham, M., Atchley, R., Cohen, N., Webb, A., Wszalek, T. … Magin, R. (2000). fMri studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12(6), 988–1000. https://doi.org/10.1162/08989290051137521
  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295x.108.3.624
  • Beck, D. M., & Kastner, S. (2005). Stimulus context modulates competition in human extrastriate cortex. Nature neuroscience, 8(8), 1110–1116. https://doi.org/10.1038/nn1501
  • Breu, M. S., Ramezanpour, H., Dicke, W., & Thier, P. W. (2023). A frontoparietal network for volitional control of gaze following. The European Journal of Neuroscience, 57(10), 1723–1735. https://doi.org/10.1111/ejn.15975
  • Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An H215O PET study of Stroop task performance. Neuroimage, 2(4), 264–272. https://doi.org/10.1006/nimg.1995.1034
  • Coderre, E. L., & van Heuven, W. J. (2013). Modulations of the executive control network by stimulus onset asynchrony in a Stroop task. BMC Neuroscience, 14(1), 79. https://doi.org/10.1186/1471-2202-14-79
  • Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332–361. https://doi.org/10.1037/0033-295X.97.3.332
  • Corbetta, M., & Shulman, G. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755
  • Galer, S., Op De Beeck, M., Urbain, C., Bourguignon, M., Ligot, N., Wens, V., Marty, B., Van Bogaert, P., Peigneux, P., & De Tiège, X. (2015). Investigating the neural correlates of the Stroop effect with magnetoencephalography. Brain Topography, 28(1), 95–103. https://doi.org/10.1007/s10548-014-0367-5
  • Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. https://doi.org/10.1016/j.tics.2011.11.014
  • Gosseries, O., Demertzi, A., Noirhomme, Q., Tshibanda, J., Boly, M., Op de Beeck, M., Hustinx, R., Maquet, P., Salmon, E., Moonen, G., Luxen, A., Laureys, S., & De Tiège, X. (2008). Que mesure la neuro-imagerie fonctionnelle: IRMf, TEP & MEG? [functional neuroimaging (fMRI, PET and MEG): What do we measure?]. Revue Medicale de Liege, 63(5–6), 231–237.
  • Grandjean, J., D’Ostilio, K., Phillips, C., Balteau, E., Degueldre, C., Luxen, A., Maquet, P., Salmon, E., Collette, F., & Paul, F. (2012). Modulation of brain activity during a Stroop inhibitory task by the kind of cognitive control required. PloS One, 7(7), e41513. https://doi.org/10.1371/journal.pone.0041513
  • Haciahmet, C. C., Frings, C., & Pastötter, B. (2021, April). Target amplification and distractor inhibition: Theta Oscillatory Dynamics of selective attention in a Flanker task. Cognitive, Affective & Behavioral Neuroscience, 21(2), 355–371. Epub 2021 Mar 15. PMID: 33721227; PMCID: PMC8121747. https://doi.org/10.3758/s13415-021-00876-y
  • Haciahmet, C. C., Frings, C., Beste, C., Münchau, A., & Pastötter, B. (2023, March). Posterior delta/theta EEG activity as an early signal of Stroop conflict detection. Psychophysiology, 60(3), e14195. Epub 2022 Oct 18. PMID: 36254672. https://doi.org/10.1111/psyp.14195
  • Kaiser, J., & Schütz-Bosbach, S. (2021). Motor interference, but not sensory interference, increases midfrontal theta activity and brain synchronization during reactive control. Journal of Neuroscience, 41(8), 1788–1801. 24 February 2021. https://doi.org/10.1523/JNEUROSCI.1682-20.2020
  • Kaiser, J., Iliopoulos, P., Steinmassl, K., & Schütz-Bosbach, S. (2022). Preparing for success: Neural frontal theta and posterior alpha Dynamics during action preparation predict flexible resolution of cognitive conflicts. Journal of Cognitive Neuroscience (2022), 34(6), 1070–1089. https://doi.org/10.1162/jocn_a_01846
  • Kawaguchi, S., Ukai, S., Shinosaki, K., Ishii, R., Yamamoto, M., Ogawa, A., Mizuno-Matsumoto, Y., Fujita, N., Yoshimine, T., & Takeda, M. (2005). Information processing flow and neural activations in the dorsolateral prefrontal cortex in the Stroop task in schizophrenic patients. A spatially filtered MEG analysis with high temporal and spatial resolution. Neuropsychobiology, 51(4), 191–203. https://doi.org/10.1159/000085594
  • Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283–297. https://doi.org/10.1016/j.ijpsycho.2014.06.007
  • Li, Q., Yang, G., Li, Z., Qi, Y., Cole, M. W., & Liu, X. (2017). Conflict detection and resolution rely on a combination of common and distinct cognitive control networks. Neuroscience & Biobehavioral Reviews, 83, 123–131. https://doi.org/10.1016/j.neubiorev.2017.09.032
  • MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4(10), 383–391. https://doi.org/10.1016/S1364-6613(00)01530-8
  • Mansouri, F., Tanaka, K., & Buckley, M. (2009). Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 10(2), 141–152. https://doi.org/10.1038/nrn2538
  • Marek, S., & Dosenbach, N. (2018). The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133–140. https://doi.org/10.31887/DCNS.2018.20.2/smarek
  • Melcher, T., Born, C., & Gruber, O. (2011). How negative affect influences neural control processes underlying the resolution of cognitive interference: An event-related fMRI study. Neuroscience Research, 70(4), 415–427. https://doi.org/10.1016/j.neures.2011.05.007
  • Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 1–17. https://doi.org/10.3758/CABN.7.1.1
  • Paneri, S., & Gregoriou, G. G. (2017). Top-down control of visual attention by the prefrontal cortex. Functional specialization and long-range interactions. Frontiers in Neuroscience, 11, 545. https://doi.org/10.3389/fnins.2017.00545
  • Ramezanpour, H., & Fallah, M. (2022). The role of temporal cortex in the control of attention. Current Research in Neurobiology, 3(13140), 100038. https://doi.org/10.1016/j.crneur.2022.100038
  • Stemmann, H., & Freiwald, W. (2019). Evidence for an attentional priority map in inferotemporal cortex. Proceedings of the National Academy of Sciences, 116(47), 23797–23805. https://doi.org/10.1073/pnas.1821866116
  • Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 1–13. https://doi.org/10.1155/2011/879716
  • Uddin, L. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 55–61. https://doi.org/10.1038/nrn3857
  • Ukai, S., Shinosaki, K., Ishii, R., Ogawa, A., Mizuno-Matsumoto, Y., Inouye, T., Hirabuki, N., Yoshimine, T., Robinson, S. E., & Takeda, M. (2002). Parallel distributed processing neuroimaging in the Stroop task using spatially filtered magnetoencephalography analysis. Neuroscience Letters, 334(1), 9–12. https://doi.org/10.1016/s0304-3940(02)01002-9
  • Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems. The Neuroscientist, 20(2), 150–159. https://doi.org/10.1177/1073858413494269
  • Yeung, N. (2014). Conflict monitoring and cognitive control. The Oxford Handbook of Cognitive Neuroscience: The Cutting Edges, 2, 275–299. https://doi.org/10.1093/oxfordhb/9780199988709.013.0018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.