1,119
Views
32
CrossRef citations to date
0
Altmetric
Articles

A comprehensive review of biodiesel production methods from various feedstocks

, &
Pages 325-333 | Received 12 Oct 2015, Accepted 07 Jun 2016, Published online: 25 Nov 2016

References

  • Muthu H, SathyaSelvabala V, Varathachary T, et al. Synthesis of biodiesel from neem oil using sulfated zirconia via transesterification. Braz J Chem Eng. 2010;27(4):601–608.
  • Sahoo P, Das L. Combustion analysis of jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine. Fuel. 2009;88(6):994–999.
  • Aransiola EF, Ojumu TV, Oyekola OO, et al. A review of current technology for biodiesel production: State of the art. Biomass Bioenerg. 2014;61:276–297. http://dx.doi.org/10.1016/j.biombioe.2013.11.014.
  • Kondilia EM, Kaldellis JK. Biofuel implementation in East Europe: current status and future prospects. Renew Sust Energ Rev. 2007;11:2137–2151.
  • Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew Sust Energ Rev. 2007;11:1300–1311.
  • Luque R, Lovett JC, Datta B, et al. Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energ Environ Sci. 2010;3:1706–1721.
  • Almeida JR, Fávaro LC, Quirino BF. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels. 2012;5:48.
  • Atapour M, Kariminia HR, Moslehabadi PM. Optimization of biodiesel production by alkali-catalyzedtransesterification of used frying oil. Process Saf Environ Prot. 2014;92:179–185.
  • Balakrishnan K, Olutoye MA, Hameed BH. Synthesis ofmethyl esters from waste cooking oil using constructionwaste material as solid base catalyst. Bioresour Technol. 2013;128:788–791.
  • Ito T, Sakurai Y, Kakuta Y, et al. Biodiesel production from waste animal fats using pyrolysismethod. Fuel Process Technol. 2012;94:47–52.
  • Kafuku G, Mbarawa M. Biodiesel production from Crotonmegalocarpus oil and its process optimization. Fuel. 2010;89:2556–2560.
  • Noshadi I, Amin N, Parnas RS. Continuous productionof biodiesel from waste cooking oil in a reactive distillationcolumn catalyzed by solid heteropolyacid: optimization usingresponse surface methodology (RSM). Fuel. 2012;94:156–164.
  • Wan Omar WNN, Saidina Amin NA. Optimization ofheterogeneous biodiesel production from waste cooking palmoil via response surface methodology. Biomass Bioenergy. 2011;35:1329–1338.
  • Zabeti M, Daud WMAW, Aroua MK. Biodieselproduction using alumina-supported calcium oxide: anoptimization study. Fuel Process Technol. 2010;91:243–248.
  • Jain S, Sharma M. Prospects of biodiesel from jatropha in India: a review. Renew Sust Energ Rev. 2010;14(2):763–771.
  • Leung DY, Wu X, Leung M. A review on biodiesel production using catalyzed transesterification. Appl Energ. 2010;87:1083–1095.
  • Sanchez-Arreola E, Martin-Torres G, Lozada-Ramírez JD, et al. Biodiesel production and de-oiled seed cake nutritional values of a Mexican edible Jatropha curcas. Renew Energ. 2015;76:143–147.
  • Ahmad A, Yasin N, Derek C, et al. Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energ Rev. 2011;15:584–593.
  • Pinzi S, Leiva D, López-García I, et al. Latest trends in feedstocks for biodiesel production. Biofuels Bioprod Bioref. 2014;8:126–143.
  • Balat M. Potential alternatives to edible oils for biodiesel production e a review of current work. Energ Convers Manag. 2011;52(2):1479–1492.
  • Balat M, Balat H. Progress in biodiesel processing. Appl Energ. 2010;87:1815–1835.
  • Knothe G, Steidley KR. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel. Bioresource Technol. 2009;100:5796–5801.
  • Diya'uddeen BH, Abdul Aziz A, Daud W, et al. Performance evaluation of biodiesel from used domestic waste oils: a review. Process Saf Environ Prot. 2012;90:164–179.
  • Yaakob Z, Mohammad M, Alherbawi M, et al. Overview of the production of biodiesel from Waste cooking oil. Renew Sust Energ Rev. 2013;18:184–193.
  • Atabani A, Silitonga A, Badruddin IA, et al. comprehensive review on biodiesel as analternative energy resource and its characteristics. Renew Sustain Energ Rev. 2012;16:2070–2093.
  • Atadashi I, Aroua M, Abdul Aziz A, et al. Theeffects of water on biodiesel production and refiningtechnologies: a review. Renew Sustain Energ Rev. 2012a;16:3456–3470.
  • Atadashi I, Aroua M, Abdul Aziz A, et al. Production of biodiesel using high free fatty acid feedstocks. Renew Sustain Energ Rev. 2012b;16:3275–3285.
  • Banerjee A, Chakraborty R. Parametric sensitivity intransestrification of waste cooking oil for biodiesel production – a review. Resour Conserv Recycl. 2009;53:490–497.
  • Borges M, Díaz L. Recent developments on heterogeneouscatalysts for biodiesel production by oil esterification andtransestrification reactions: a review. Renew Sustain Energ Rev. 2012;16:2839–2849.
  • Mohamad Firdaus MY, Xu X, Guo Z. Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: a review on processing and production requirements. J Am Oil Chem Soc. 2014;91:525–531.
  • Zhang J, Cui C, Chen H, et al. The completion of esterification of free fatty acids in Zanthoxylum bungeanum seed oil with ethanol. Int J Green Energ. 2014;11:822–832.
  • Sivaramakrishnan R, Muthukumar K. Isolation of thermo-stable and solvent-tolerant Bacillus sp. lipase for the production of biodiesel. Appl Biochem Biotechnol. 2012;166:1095–1111.
  • Lai JQ, Hu ZL, Sheldon RA, et al. Catalytic performance of crosslinked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Process Biochem. 2012b;47:2058–2063.
  • Tran DT, Chen CL, Chang JS. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol. 2013;135:213–221.
  • Li Z, Yuan H, Yang J, et al. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresour Technol. 2011;102:9128–9134.
  • Nogueira BM, Carretoni C, Cruz R, et al. Microwave activation of enzymatic catalysts for biodiesel production. J Mol Cat B Enzym. 2010;67:117–121.
  • Liu Y, Jin Q, Shan L, et al. The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrason Sonochem. 2008;15:402–407.
  • Rodrigues HS. Production of ethyl and methyl esters by transesterification reaction of the latin american palm macauba e Acrocomia aculeate [Dr. thesis]. Brazil (in Portuguese): University of São Paulo; 2007.
  • Silva C, Weschenfelder TA, Rovani S, et al. Continuous production of fatty acid ethyl esters from soybean oil in compressed ethanol. Ind Eng Chem Res. 2007;46:5304–5309.
  • Michelin S, Penha. FM, Sychoski MM, et al. Kinetics of ultrasound-assisted enzymatic biodiesel production from Macauba coconut oil. Renew Energ. 2015;76:388–393.
  • Lee H, Rho J, Messersmith PB. “Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings,” Advanced Materials. 2009;21(4):431–434.
  • Islam A, Taufiq-Yap YH, Chan E-S, et al. Advances in solid-catalytic and non-catalytic technologies for biodiesel Production. Energ Conv Manage. 2014;88:1200–1218.
  • Bajaj A, Lohan P, Jha PN, et al. Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B: Enzym. 2010;62(1–2):9–14.
  • Garlapati VK, Kant R, Kumari A, et al. Lipase mediated transesterification of Simarouba glauca oil: a new feedstock for biodiesel production. Sust Chem Process. 2013;1:11.
  • Gog A, Roman M, Toşa M, et al. Biodiesel production using enzymatic transesterification – current state and perspectives. Renew Energ. 2012;39(1):10–16.
  • Macario A, Moliner M, Diaz U, et al. Biodiesel production by immobilized lipase on zeolites and related materials. Stud Surf Sci Catal. 2008;174(2):1011–1016.
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomater. 2005;26:3995–4021.
  • Sheldona RA. Enzyme Immobilization: The Quest for Optimum Performance, Adv Synth Catal. 2007;349;1289.
  • Xu J, Ju C, Sheng J, et al. Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization. Bull Korean Chem Soc. 2013;34:8.
  • Shah S, Dasgupta S, Chakraborty M, et al. Green Synthesis Of Iron Nanoparticles Using Plant Extracts. Inter J Biol Pharm Res. 2014;5(6):549–552.
  • Huang Y, Wu J. Analysis of biodiesel promotion in Taiwan. Renew Sust Energ Rev. 2008;12:2472–2483.
  • Huang Y, Wu J. Assessment of feed in tariff mechanism for renewable energies in Taiwan. Energy Policy. 2011;39:8106–8115.
  • Ileri E, Karaoglan D, Atmanli A. Response surface methodology based prediction of engine performance and exhaust emissions of a diesel engine fuelled with canola oil methylester. Renew Sust Energ. 2013;5:033132–19.
  • Hamzea H, Akiaa M, Yazdania F. Optimization of biodiesel production from thewaste cooking oil using response surfacemethodology. Process Safety and Environ Protect. 2015;94:1–10.
  • Varun NK, Chauhan SR. Performance and emission characteristics of biodiesel from different origins: A review. Renew Sust Energ Rev. 2013;21:633–658.
  • Aransiola E, Betiku E, Ikhuomoregbe D, et al. Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. Afr J Biotechnol. 2012;11(22):6178–6186.
  • Wang R, Hanna MA, Zhou W-W, et al. Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L. Bioresour Technol. 2011;102(2):1194–1199.
  • Canakci M, Monyem A, Gerpen JV. Accelerated oxidation process in biodiesel. T Am Soc Agr Eng. 2005;42:1565–1572.
  • Yahya A, Marley SJ. Physical and chemical characterization of methyl soyoil and methyl tallow esters as CI engine fuels. Biomass Bioenerg. 1994;6:321–328.
  • Lin L, Cunshan Z, Vittayapadung S, et al. Opportunitiesand challenges for biodiesel fuel. Appl Energ. 2011;88:1020–1031.
  • Shah S, Sharma A, Gupta MN. Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Ind Crops Products. 2004;20:275–279.
  • Aigbodion AI, Pillai CKS. Preparation, analysis and applications of rubber seed oil and its derivatives in surface coatings. Progress in Organic Coatings. 2000;38(108):187–192.
  • Zhu Y, Xu J, Mortimer PE. The influence of seed and oil storage on the acid levels of rubber seedoil, derived from Hevea brasiliensis grown in Xishuangbanna, China. Energ. 2011;36:5403–5408.
  • Raheman H, Ghadge SV. Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel. 2007;86:2568–2573.
  • Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transestrification methods. Prog Energ Combust Sci. 2005;31(5e6):466–487.
  • Ma F, Hanna MA. Biodiesel production: a review. Bioresour Technol. 1999;70(1):1–15.
  • Shahid EM, Jamal Y. Production of biodiesel: a technical review. Renew Sust Energ Rev. 2011;15:4732–4745.
  • Cetinkaya M, Karaosmanoglu F. Optimization of basecatalyzed transesterification reaction of used cooking oil. Energ Fuel. 2004;18(6):1888–1895.
  • Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001;92(5):405–416.
  • Helwani Z, Othman MR, Aziz N, et al. Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol. 2009;90(12):1502–1514.
  • Çaylı G, Küsefoğlu S. Increased yields in biodiesel production from used cooking oils by a two step process:comparison with one step process by using TGA. Fuel Process Technol. 2008;89(2):118–122.
  • Szcze˛sna Antczak M, Kubiak A, Antczak T, et al. Enzymatic biodiesel synthesis e key factors affecting efficiency of the process. Renew Energ. 2009;34(5):1185–1194.
  • Kumari A, Mahapatra P, Garlapati VK, et al. Enzymatic transesterification of jatropha oil. Biotechnol Biofuels. 2009;2(1):1–6.
  • Hong J, Gong P, Xu D, et al. Stabilization of achymotrypsin by covalent immobilization on aminefunctionalized superparamagnetic nanogel. J Biotechnol. 2007;128(3):597–605.
  • Guo Z, Sun Y. Characteristics of immobilized lipase on hydrophobic superparamagnetic microspheres to catalyze esterification. Biotechnol Prog. 2004;20(2):500–506.
  • Xie W, Ma N. Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenerg. 2010;34(6):890–896.
  • Xie W, Wang J. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenerg. 2012;36:373–380.
  • Cao LQ, Bornscheuer UT, Schmid RD. Immobilised enzymes: science or art. Curr Opin Chem Biol. 2005;9(2):217–226.
  • Bergamasco J, de Araujo MV, de Vasconcellos A, et al. Enzymatic transestrification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres. Biomass Bioenerg. 2013;59;218–233.
  • Nezihe A, Aysegul D. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel. 2007;86:2639–2644.
  • Lidstroom P, Tierney J, Wathey B. et al. Microwave assisted organic synthesis- a review. Tetrahedron. 2001;57:9225–9283.
  • Da Ros PCM, Silva CSP, Silva-Stenico ME, et al. Microcystis aeruginosa lipids as feedstock for biodiesel synthesis by enzymatic route. J Mol Catal B Enzym. 2012;84:177–182.
  • Da Ros PCM, Freitas L, Perez VH, et al. Enzymatic synthesis of biodiesel from palm oil assisted by microwave irradiation. Bioprocess and Biosystems Eng. 2013;36:443.
  • Vyas AP, Verma JL, Subrahmanyam N. A review on FAME production processes. Fuel. 2010;89:1–9.
  • Vyas AP, Verma JL, Subrahmanyam N. Effects of molar ratio, alkali catalyst concentration and temperature on transesterification of Jatropha oil with methanol under ultrasonic irradiation. Adv Chem Eng Sci. 2011;1:45–50.
  • Koh MY, Mohd. Ghazi TI. A review of biodiesel production from Jatropha curcas L. oil. Renew Sust Energ Rev. 2011;15(5):2240–2251.
  • Santos FFP, Rodrigues S, Fernandes FAN. Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Process Technol. 2009;90(2):312–316.
  • Thanh LT, Okitsu K, Sadanaga Y, et al. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour Technol. 2010;101(2):639–645.
  • Abd Rabu R, Janajreh I, Honnery D. Transesterification ofwaste cooking oil: process optimization and conversion rateevaluation. Energ Convers Manag. 2013;65:764–769.
  • Talebian-Kiakalaieh A, Amin NAS, Zarei A, et al. Transesterification of waste cooking oil by heteropoly acid(HPA) catalyst: optimization and kinetic model. Appl Energ. 2013;102:283–292.
  • Azócar L, Heipieper HJ, Muñoz R, et al. Improvingfatty acid methyl ester production yield in a lipase-catalyzedprocess using waste frying oils as feedstock. J Biosci Bioeng. 2010;109:609–614.
  • Kim ST, Park YT. Application of taguchi experimentaldesign for the optimization of effective parameters on therapeseed methyl ester production. Environ Eng Res. 2010;15:129–134.
  • Uzun BB, Kılıc M, Özbay N, et al. Biodiesel production from wastefrying oils: optimization of reaction parameters and determination of fuel properties. Energ. 2012;44:347–351.
  • Wu X, Leung DY. Optimization of biodiesel productionfrom camelina oil using orthogonal experiment. Appl Energ. 2011;88:3615–3624.
  • Betiku E, Okunsolawo SS, Ajala SO, et al. Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. Renew Energ. 2015;76:408–417.
  • Betiku E, Omilakin OR, Ajala SO, et al. Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis. Energ. 2014;72:266–273.
  • Betiku E, Adepoju TF, Omole AK, et al. Statistical approach to the optimization of oil from beniseed (Sesamum indicum) oil seeds. J Food Sci Eng. 2012;2:351–357.
  • Ghazali WNMW, Mamat R, Masjuki HH, et al. Effects of biodiesel from different feedstocks on engineperformanceand emissions: A review. Renew Sust Energ Rev. 2015;51:585–602.
  • No S-Y Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew Sust Energ Rev. 2011;15:131–149.
  • Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energ. 2008;33(11):1646–1653. http://dx.doi.org/10.1016/j.energy.2008.06.002.
  • Borugadda VB, Goud VV. Biodiesel production from renewable feedstocks: status And opportunities. Renew Sustain Energ Rev. 2012;16:4763–4784.
  • Abedin MJ, Masjuki HH, Kalam MA, et al. Combustion, performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils. Energ Convers Manag. 2014;85:173–189. http://dx.doi.org/10.1016/j.enconman.2014.05.065.
  • Guldhe A, Singh B, Mutanda T, et al. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renew Sust Energ Rev. 2015;41:1447–1464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.