747
Views
20
CrossRef citations to date
0
Altmetric
Articles

Biodiesel from microalgae lipids: from inorganic carbon to energy production

, , &
Pages 175-202 | Received 30 Mar 2016, Accepted 06 May 2016, Published online: 16 Mar 2017

References

  • International carbon dioxide emissions and carbon intensity [Internet]. Washington: Energy Information Administration; 2011 [cited 2013 Feb 13]. Available from: http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=90&pid=44&aid=8.
  • Archived - Government of Canada announces 2030 emissions target [Internet]. Ottawa: Government of Canada; 2015 [cited 2015 Dec 25]. Available from: http://news.gc.ca/web/article-en.do?nid=974959
  • Environment Canada. Canada's emissions trends. Ottawa: Government of Canada; 2013. (Report number: En81-18/2013E-PDF).
  • Environment Canada. National Inventory Report 1990-2013: Greenhouse Gas Sources and Sinks in Canada. Ottawa: Government of Canada; 2015. (Report number: En81-4/1E-PDF).
  • Environment Canada. National Inventory Report 1990-2010: Greenhouse Gas Sources and Sinks in Canada. Ottawa: Government of Canada; 2012. (Report number: 1910-7064).
  • 2012 world oil production [Internet]. Washington: U.S. Energy Information Administration; 2013 [cited 2014 Jan 1]. Available from: http://www.eia.gov/countries/index.cfm?view=production
  • BP statistical review of world energy [Internet]. London: BP; 2013 [cited 2014 June 13]. Available from: http://www.bp.com/
  • World proved reserves of oil and natural gas, most recent estimates [Internet]. Washington: U.S. Energy Information Administration; 2012 [cited 2014 Jan 1]. Available from: http://www.eia.doe.gov/international/reserves.html
  • Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energ Policy. 2009;37:181–189.
  • 2012 world oil consumption [internet]. Washington: U.S. Energy Information Administration; 2015 [cited 2016 Jan 1]. Available from: http://www.eia.gov/countries/index.cfm?view=consumption
  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.
  • World energy council. World energy resources [Internet]. London: World energy council; 2013 (ISBN: 978 0 946121 29 8).
  • Chapman L. Transport and climate change: a review. J Transp Geogr. 2007;15:354–367.
  • Bindraban PS, Bulte EH, Conijn SG. Can large-scale biofuels production be sustainable by 2020? Agric Syst. 2009;101:197–199.
  • Les législateurs europeens a réduire leur consommation de biocarburant a base d'aliments [Internet]. Tulsa (OK): Krista D. Young; 2013 [cited 2014 Feb 1]. Available from http://www.nouvellesdumonde.net
  • Biodiesel Statistics [Internet]. Washington (DC): U.S. Department of Energy; 2010 [cited 2010 Mar 15]. Available from http://www.afdc.energy.gov/afdc/fuels/biodiesel_statistics.html
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • BP Statistical Review of World Energy [Internet]. London: BP; 2011 [cited 2011 July 13]. Available from http://www.bp.com/
  • Brent oil trading at $121, Iran's President forecasts $150 soon [Internet]. London: Live oil prices; 2011 [cited 2011 July 13]. Available from http://www.liveoilprices.co.uk/
  • Egan M. Oil sinks back below $40. CNN [Internet]. Novembre 18 2015 [cited 2015 Jan 1]. Available from http://money.cnn.com/2015/11/18/investing/oil-price-below-40/
  • Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013;93(4):703–709.
  • Ambati RR, Phang S, Ravi S et al., Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar Drugs. 2014;12(1):128–152.
  • Chen W, Lin B, Huang M et al., Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol. 2015;184:314–327.
  • Gill S, Tsolakis A, Herreros J et al., Diesel emissions improvements through the use of biodiesel or oxygenated blending components. Fuel. 2012;95:578–586.
  • United States Environmental Protection Agency. A comprehensive analysis of biodiesel impacts on exhaust emissions. 2002; EPA420-P-02-001, 1–118.
  • Chauhan BS, Singh RK, Cho H et al., Practice of diesel fuel blends using alternative fuels: A review. Ren Sus Energ Rev. 2016;59:1358–1368.
  • Machado Corrêa S, Arbilla G. Carbonyl emissions in diesel and biodiesel exhaust. Atmos Env. 2008;42:769–775.
  • Demirbas T, Demirbas AH. Bioenergy, Green Energy. Biomass and Biofuels. Energy Sources Part A. 2010;32:1067–1075.
  • Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev. 2010;14(9):2596–2610.
  • FAOSTAT: Food Price Index [Internet]. Rome, Italy: FAO; 2011 [cited 2011 May 23]. Available from http://www.fao.org/worldfoodsituation/wfs-home/foodpricesindex/en/
  • A note on Rising Food Crisis [Internet]. D. Mitchell; 2008 [cited 2010 Apr 8]. Available from http://www.wds.worldbank.org/
  • Goldemberg J, Guardabassi P. Are biofuels a feasible option? Energ Policy. 2009;37(1):10–14.
  • Yong C, Pang WA. Gender impact of large-scale deforestation and oil palm plantations among indigenous groups in Sarawak, Malaysia. In: Gender and land tenure in the context of disaster in Asia. Berlin: Springer; 2015. p. 15–31.
  • Veillette M, Chamoumi M, Nikiema J et al., Production of biodiesel from microalgae. In: Mawaz Z, Naveed S, Editors. Chemical engineering. Rijeka, Croatia: Intech; 2012. p. 1–24.
  • Yen H, Hu I, Chen C et al., Microalgae-based biorefinery–from biofuels to natural products. Bioresour Technol. 2013;135:166–174.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev. 2010;14(1):217–232.
  • Wang K, Brown RC. Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem. 2013;15(3):675–681.
  • Kim KH, Choi IS, Kim HM et al., Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour Technol. 2014;153:47–54.
  • Templeton DW, Quinn M, Van Wychen S et al., Separation and quantification of microalgal carbohydrates. J Chromatography A. 2012;1270:225–234.
  • Doan QC, Moheimani NR, Mastrangelo AJ et al., Microalgal biomass for bioethanol fermentation: Implications for hypersaline systems with an industrial focus. Biomass Bioenerg. 2012;46:79–88.
  • Angermayr SA, Hellingwerf KJ, Lindblad P et al., Energy biotechnology with cyanobacteria. Curr Opin Biotechnol. 2009;20(3):257–263.
  • Williams PJ, Laurens LM. Microalgae as biodiesel and biomass feedstocks: Review and analysis of the biochemistry, energetics and economics. Energ Env Sci. 2010;3:554–590.
  • Walker TL, Purton S, Becker DK et al., Microalgae as bioreactors. Plant Cell. Rep. 2005;24:629–641.
  • Uslu L, Içik O, Koç K et al., The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Afri J Biotechnol. 2013;10(3):386–389.
  • Kates M. Technique of lipidology: solation, analysis and identification. Amsterdam, 1000 AE, Netherlands: Elsevier; 1986.
  • Yang T, Fang S, Zhang H et al., N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J Nutr Biochem. 2013;24(5):744–753.
  • Cicero AF, Tartagni E. Diet, dietary supplements and age-related macular degeneration (AMD). Nutrafoods. 2014;13(1):5–11.
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26(3):126–131.
  • Deng X, Li Y, Fei X. Microalgae: A promising feedstock for biodiesel. Afr J Microbiol Res. 2009;3(13):1008–1014.
  • Liang M, Jiang J. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52(4):395–408.
  • Liu B, Lee Y. Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol. 2000;12:301–307.
  • Pires J, Alvim-Ferraz M, Martins F et al., Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev. 2012;16(5):3043–3053.
  • Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol. 2009;100(13):3382–3386.
  • Wang M, Kuo-Dahab WC, Dolan S et al., Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour Technol. 2014;154:131–137.
  • Becker W. Microalgae in human and animal nutrition. In: Richmond A, Editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Publishing Ltd; 2004. p. 312–351.
  • Christaki E, Florou-Paneri P, Bonos E. Microalgae: a novel ingredient in nutrition. Int J Food Sci Nut. 2011;62(8):794–799.
  • Hosikian A, Lim S, Halim R et al., Chlorophyll extraction from microalgae: A review onthe process engineering aspects. Intern J Chem Eng. 2010;2010:1–11.
  • Bai M, Cheng C, Wan H et al., Microalgal pigments potential as byproducts in lipid production. J Taiwan Ins Chem Eng. 2011;42(5):783–786.
  • De Clerck O, Guiry MD, Leliaert F et al., Algal taxonomy: a road to nowhere? . J Phycol. 2013;49:215–225.
  • Gopinathan CP. Marine microalgae. Presented at: Proceedings of Ocean Life Food and Medicine Expo; 2004 Feb; Chennai, India.
  • Jianga L, Luoa S, Fana X et al., Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy. 2011;88:3336–3341.
  • de Morais MG, Costa JAV. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ Convers Manag. 2007;48(7):2169–2173.
  • Kim S, Park J, Cho Y et al., Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol. 2013;144:8–13.
  • Cantin I. La production de biodiesel à partir des microalgues ayant un métabolisme heterotrophe [master's thesis]. Sherbrooke (Qc): Université de Sherbrooke; 2010.
  • Li P, Miao X, Li R et al., In situ biodiesel production from fast-growing and high oil content chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotecnol. 2011; 2011:1–8.
  • Wu Z, Shi X. Rheological properties of Chlorella pyrenoidosa culture grown heterotrophically in a fermentor. J Appl Phycol. 2008;20(3):279–282.
  • Adesanya VO, Vadillo DC, Mackley MR. The rheological characterization of algae suspensions for the production of biofuels. J Rheol. 2012;56:925–939.
  • Tanoi T, Kawachi M, Watanabe MM. Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol. 2011;23:25–33.
  • Cheng Y, Lu Y, Gao C et al., Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energ Fuels. 2009;23(8):4166–4173.
  • Cheng Y, Zhou W, Gao C et al., Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol. 2009;84(5):777–781.
  • Zhao X, Wu S, Hu C et al., Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J Ind Microbiol Biotechnol. 2010;37(6):581–585.
  • Wei A, Zhang X, Wei D et al., Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol. 2009;36(11):1383–1389.
  • Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 2006;126:499–507.
  • Chen C, Yeh K, Aisyah R et al., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol. 2011;102(1):71–81.
  • Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett. 2009;31:1043–1049.
  • Burley JS. Algal culture: from laboratory to pilot plant. Washington, DC, USA: Carnegie Institution of Washington; 1976.
  • Zeiler KG, Heacox DA, Toon ST et al., the use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers. Manag. 1995;36(6-9):707–712.
  • Kao C, Chen T, Chang Y et al., Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol. 2014;166:485–493.
  • Chinnasamy S, Ramakrishnan B, Bhatnagar A et al., Biomass production potential of a wastewater alga chlorellavulgaris ARC 1 under elevated levels of CO2 and temperature. Int J Mol Sci. 2009;10:518–532.
  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–369.
  • Grobbelaar JU. Microalgal biomass production: Challenges and realities. Photosynthesis Res. 2010;106(1-2):135–144.
  • Amin S. Review on biofuel oil and gas production processes from microalgae. Energ Convers Manag. 2009;40:1834–1840.
  • Arbiba Z, Ruiza J, Álvarez-Díaza P et al., Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Eco Eng. 2013;52:143–153.
  • Suh IS, Lee C. Photobioreactor engineering: Design and performance. Biotechnol Bioprocess Eng. 2003;8(6):313–321.
  • Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31:233–239.
  • Doucha J, Lìvanský K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol. 2006;18:811–826.
  • Xu L, Weathers PJ, Xiong X et al., Microalgal bioreactors: Challenges and opportunities. Eng Life Sci. 2009;9(3):178–189.
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–648.
  • Spolaore P, Joannis-Cassan C, Duran E et al., Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96.
  • Menetrez MY. An Overview of Algae Biofuel Production and Potential Environmental Impact. Environ Sci Technol. 2012;46(13):7073–7085.
  • Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14(2):557–577.
  • Alga Technologies: Technology Overview [Internet]. Kibbutz Ketura (Israel): Algatechnologies Ltd.; 2004 [cited 2011 May 28]. Available from http://www.algatech.com/techno.htm
  • Singh RN, Sharma S. Development of suitable photobioreactor for algae production – A review. Renew Sust Energ Rev. 2012;16(4):2347–2353.
  • Acién Fernández FG, Hall DO, Cañizares Guerrero E et al., Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol. 2003;103(2):137–152.
  • Hall DO, Acién Fernández FG, Guerrero EC et al., Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng. 2003;82(1):62–73.
  • Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA et al., Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: Assessment of design and performance. Chem Eng Sci. 2001;56(8):2721–2732.
  • Kurano N, Miyachi S. Microalgal studies for the 21st Century. Hydrobiologia. 2004;512:27–32.
  • Xue S, Su Z, Cong W. Growth of Spirulina platensis enhanced under intermittent illumination. J Biotechnol. 2011;151(3):271–277.
  • Barbosa MJ, Janssen M, Ham N et al., Microalgae cultivation in air-lift reactors: Modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng. 2003;82(2):170–179.
  • Xu Z, Baicheng Z, Yiping Z et al., A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnol Lett. 2002;24(21):1767–1771.
  • Ranjbar R, Inoue R, Shiraishi H et al., High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem Eng J. 2008;39(3):575–580.
  • Rusch KA, Christensen JM. The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production. Aquacult Eng. 2003;27(4):249–264.
  • Li J, Xu NS, Su WW. Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochem Eng J. 2003;14(1):51–65.
  • Sato T, Usui S, Tsuchiya Y et al., Invention of outdoor closed type photobioreactor for microalgae. Ener Conv Manag. 2006;47(6):791–799.
  • Huntley WE, Redalje DC, inventors; Huntley WE, Redalje DC, assignee. Continuous-batch hybrid process for production of oil and other useful products from photosynthetic microbes. United States patent US 10/582,029. 2006 June 7.
  • Huntley M, Redalje DG. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strat. Glob. Chang. 2007;12:573–608.
  • Wu Z, Shi X. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol. 2007;44(1):13–18.
  • Meeting the growing need for renew-able fuels [Internet]. San Francisco (CA): Solazyme Inc.; 2011 [cited 2011 July 8]. Available from http://www.solazyme.com/fuels
  • Zhang XL, Yan S, Tyagi RD et al., Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sust Energ Rev. 2013;26:216–223.
  • Kitaya Y, Azuma H, Kiyota M. Effects of temperature, CO2/O2 conce ntrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Adv Space Res. 2005;35:1584–1588.
  • Cheng J, Huang Y, Feng J et al., Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour Technol. 2013;136:496–501.
  • Yue L, Chen W. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Ener Conv Manag. 2005;46(11-12):1868–1876.
  • Wu LF, Chen PC, Huang AP et al., The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol. 2012;113:14–18.
  • Mohsenpour SF, Richards B, Willoughby N. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour Technol. 2012;125:75–81.
  • Wahidin S, Idris A, Shaleh SRM. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol. 2013;129:7–11.
  • Blanco AM, Moreno J, Del Campo JA et al., Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol. 2007;73(6):1259–1266.
  • Sousa C, de Wintera L, Janssen M et al., Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresour Technol. 2012; 104:565–570.
  • Xu N, Zhang X, Fan X et al., Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J Appl Phycol. 2001;13(6):463–469.
  • Xin L, Hong-ying H, Ke G et al., Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101(14):5494–5500.
  • Sheehan J, Dunahay T, Benemann J et al., A look back 1900 at the U.S. Department of Energy's aquatic species program—biodiesel from algae. Golden (CO): U.S. Department of Energy's Office of Fuels Development; 1998. (Report number NREL/TP-580 24190).
  • Gao Y, Yang M, Wang C. Nutrient deprivation enhances lipid content in marine microalgae. Bioresour Technol. 2013;127:484–491.
  • Giordano M, Pezzoni V, Hell R. Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol. 2000;124(2):857–864.
  • Yang S, Wang J, Cong W et al., Effects of bisulfite and sulfite on the microalga Botryococcus braunii. Enzyme Microb Technol. 2004;35(1):46–50.
  • Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol. 2012;109:261–265.
  • Renaud SM, Parry DL. Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol. 1994;6(3):347–356.
  • Wang L, Min M, Li Y et al., Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 2010;162(4):1174–1186.
  • Chinnasamy S, Bhatnagar A, Hunt RW et al., Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101(9):3097–3105.
  • Lürling M, Eshetu F, Faassen EJ et al., Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biol. 2013;58(3):552–559.
  • Abu-Rezq TS, Al-Musallam L, Al-Shimmari J et al., Optimum production conditions for different high-quality marine algae. Hydrobiologia. 1999;403:97–107.
  • Sierra E, Acién FG, Fernández JM et al., Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J. 2008;138(1-3):136–147.
  • Briassoulis D, Panagakis P, Chionidis M et al., An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol. 2010;101(17):6768–6777.
  • Bitaubé Pérez E, Caro Pina I, Pérez Rodríguez L. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J. 2008;40(3):520–525.
  • Al-Qasmi M, Raut S, Talebi S et al., A review of effect of light on microalgae growth. Presented at: Proceedings of the World Congress on Engineering; 2012 July 4–6; London, UK.
  • Barbosa MJ, Albrecht M, Wijffels RH. Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng. 2003;83(1):112–120.
  • Carlsson AS, van Beilen JB, Moller R et al. , Micro- and macro-algae: utility for industrial applications. Newbury: CPL Press; 2007. (Report ISSN 978-1-872691-29-9).
  • Rashid N, Rehman SU, Han JI. Rapid harvesting of freshwater microalgae using chitosan. Proc Biochem. 2013;48(4):1107–1110.
  • Lee Y, Kim B, Farooq W et al., Harvesting of oleaginous Chlorella sp. by organoclays. Biores Technol. 2013;132:440–445.
  • The SLS Lab Model Specs [Internet]. Colombus (OH): Algaeventure Inc.; 2011 [cited 2011 Oct 19]. Available from http://algaevs.com
  • Lotta Watta: algal innovators pio-neering new extraction techniques. [Internet]. Colombus (OH): Algaeventure Inc.; 2011 [cited 2011 Oct 19]. Available from http://algaevs.com
  • Technical specification Evodos SPT 225 & SPT 325 [Internet]. Raamsdonksveer (The Netherlands): Evodos; 2010 [cited 2011 Oct 19]. Available from http://www.dataopslag.net/storage/cmsserver/upload/files/200037_12542.pdf
  • Hu Q, Sommerfeld M, Chen Y et al., inventors; Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For An On Behalf Of Arizona State University, assignee. Method of separation of algal biomass from aqueous or marine culture. United States patent OCT/US2010/0311181.2010, 2010 Apr 15.
  • Lee J, Yoo C, Jun S et al., Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol. 2010;101:575–577.
  • Cooney M, Young G, Nagle N. Extraction of bio-oils from microalgae. Sep Purif Rev. 2009;38:291–325.
  • Umdu ES, Tuncer M, Seker E. Transesterification of Nannochloropsis oculata microalga's lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol. 2009;100(11):2828–2831.
  • Li X, Xu H, Wu Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng. 2007;98(4):764–771.
  • Johnson MB, Wen Z. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energ Fuels. 2009;23:5179–5183.
  • Pandolfi G, Miglio R, Carnelli L, inventors; Eni S.P.A., assignee. Process of the drying of algal biomass. United States patent WO2010/140037.2010. 2010 Dec 9.
  • Lardon L, Hélias A, Sialve B et al., Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol. 2009;43(17):6475–6481.
  • Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol. 2006;97(6):841–846.
  • Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal from animal tissues. J Biol Chem. 1957;226:497–509.
  • Bligh EG, Dyer WJ. A rapid method for total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.
  • Iverson SJ, Lang SLC, Cooper MH. Comparison of the Bligh and Dyer and Folch Methods for Total Lipid Determination in a Broad Range of Marine Tissu. Lipids. 2001;36(11):1283–1287.
  • Lewis T, Nichols PD, McMeekina TA. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods. 2000;42:107–116.
  • Veillette M, Giroir-Fendler A, Faucheux N et al., Biodiesel production from microalgae: Influence of pretreatment on lipid extraction. J Sust Devel Plan. 2015;10(3):382–394.
  • Integrated Risk Information System: Chloroform [Internet]. Washington (DC): U.S. Environmental Protection Agency; 2011 [cited 2011 July 10]. Available from http://www.epa.gov/iris/subst/0025.htm
  • Halim R, Gladman B, Danquah MK et al., Oil extraction from microalgae for biodiesel production. Bioresour Technol. 2010;102(1):178–185.
  • Lee S, Yoon B, Oh H. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech. 1998;12(7):553–556.
  • Samorì C, Torri C, Samorì G et al., Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol. 2010;101(9):3274–3279.
  • Fleischer D, Jukie M, Thompson ARG., Inventors; Fleischer D, Jukie M, Thompson ARG., assegnee. Systems and Methods for Extracting Lipids from and Dehydrating Wet Algal Biomass. United States patent US 7,868,195 B2.2011. 2011 May 5.
  • Andrich G, Nesti U, Venturi F et al., Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol. 2005;107(6):381–386.
  • Sajilata MG, Singhal RS, Kamat MY. Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J Food Eng. 2008;84(2):321–326.
  • Ruen-ngam D, Shotipruk A, Pavasant P et al., Selective Extraction of Lutein from Alcohol Treated Chlorella vulgaris by Supercritical CO2. Chem Eng Technol. 2012;35(2):255–260.
  • Aresta M, Dibenedetto A, Carone M et al., Production of biodiesel from macroalgae by supercritical CO2extraction and thermochemical liquefaction. Environ Chem Lett. 2005;3:136–139.
  • Santana A, Jesus S, Larrayoz MA et al., Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. Procedia Eng. 2012;42;1755–1761.
  • Yongli M, inventor; China Co. Ltd. Green Oil, assignee. Biodiesel production method taking algae as raw material. United States patent no 101747924A.2010. 2010 Dec 19.
  • Perrut M. Supercritical fluid applications: Industrial developments and economic issues. Ind Eng Chem Res. 2000;39(12):4531–4535.
  • Tan KT, Lee KT. A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges. Renew Sust Energ Rev. 2011;15(5):2452–2456.
  • Gordon R, Gorodnitsky I, Grichko V., inventors; Cavitation Technologies, Inc., assignee. Method for processing algae medium containing algae microorganism to produce algal oil and by-products. United States patent US 2010/0151540 A1.2010. 2009 Dec 14.
  • Larach M., inventor; Kai Bioenergy Corporation, assignee. Hydrodynamic extraction of oils from photo-synthetic cultures. United Stated Patent WO/2010/045392.2010. 2009 Oct 14.
  • Dillon HF, Elefant D, Day AG et al., inventors; Solazyme, Inc., assignee. Fractionation of oil-bearing microbial biomass. United Stated patent PCT/US2010/036238. 2013 Oct 16.
  • Ranjan A, Patil C, Moholkar VS. Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res. 2010;49(6):2979–2985.
  • Kempkes MA, Roth I, Gaudreau MPJ., inventor; Diversified Technologies, Inc., assignee. Pulsed electric field (PEF) method for continuous enhanced extraction of oil. United States patent US 2011/0107655 A1.2011. 2010 May 12.
  • Machacek MT, Smith TG., inventor; Machacek MT, Smith TG, assignee. Continous algal biodiesel production facility. United States patent US 2009/0071064 A1.2009. 2009 July 28.
  • Di Serio M, Tesser R, Dimiccoli M et al., Synthesis of biodiesel via homogeneous Lewis acid catalyst. J Mol Cat A Chem. 2005;239(1–2):111–115.
  • Liu Y, Lotero E, Goodwin Jr. JG. Effect of water on sulfuric acid catalyzed esterification. J Mol Cat A Chem. 2006;245(1–2):132–140.
  • Chai M, Tu Q, Lu M et al., Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process Technol. 2014;125;106–113.
  • Wase C, Ridderstrale R, Hasselrot EI. Ett kontinuerligt förfarande för isolering av oljor från alger eller mikroorganismer. SE. 2010;534:278.
  • Kuehnle AR, Nolasco NAB., inventor; Kuehnle Agrosystems, Inc., assignee. Enrichment of process feedstock. United States patent US2011/0124034A1.2011. 2010 Nov 24.
  • Di Salvo R, Reich A, Dykes HWH et al., inventor; Streamline Automation, Llc, assignee. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction. United States patent US2011/0076748.2011. 2010 Dec 16.
  • Poenie M, Jones J, Beach J., inventor; Board Of Regents, The University Of Texas System, assignee. Immobilized resins for algal oil extraction. United States patent US2011/0083360A1.2010. 2010 Oct 13.
  • Thomas G, Lennart L., inventor; Thomas G, Lennart L., assignee. Adiabatic compaction of algae biomass for extraction of biofuel. US2009/0298158A1.2009. 2009 May 16.
  • Echevarría Parres AJJSJB. Method and appartus for fragmenting algae and extracting the oil therefrom, by means of either a continous process or batch process. Patent number WO/2010/090506.2010. 2009 Feb 12.
  • Zeiler H, Bullis DT, Light D., inventors; Synthetic Genomics, Inc., assignee. Delivery into cells using ultra-short pulse lasers. Patent number WO2009/140701A2.2009. 2009 May 18.
  • Fu C, Hung T, Chen J et al., Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol. 2010;101(22):8750–8754.
  • El-Shafie MA., inventor; El-Shafie MA., assigne. Method and systems for processing a biomass for producing biofuels and other products. Patent number WO2011/006019A2.2011. 2014 June 19.
  • Weaver CA, Kobzeff JM, Behrens PW et al., inventor; Dsm Ip Assets B.V., assignee. Method for producing lipids by liberation from biomass. United States patent US2005/0170479.2005. 2004 Oct 22.
  • Koberg M, Cohen M, Ben-Amotz A et al., Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol. 2011;102:4265–4269.
  • Nagle N, Lemke P. Production of methyl-ester fuel from microalgae. Appl Biochem Biotechnol. 1990;24(24-25):355–361.
  • Lin VSY, Trewyn BG, Chung PW et al., inventor; Iowa State University Research Foundation, Inc., assignee. Sequestration of compounds from microorganism. United States patent US 2010/0196971 A1.2010. 2010 Feb 2.
  • McNichol J, MacDougall KM, Melanson JE et al., Suitability of Soxhlet extraction to quantify microalgal fatty acids as determined by comparison with in situ transesterification. Lipids. 2012;47:195–207.
  • Knothe G. Biodiesel and renewable diesel: A comparison. Prog Energ Combust Sci. 2010;36(3):364–373.
  • Altin R, Çetinkaya S, Yücesu HS. Potential of using vegetable oil fuels as fuel for diesel engines. Ener Conv Manag. 2001;42(5):529–538.
  • Kiriamiti H, Aoyi O, Wafula W et al., Comparative Study of Petrodiesel and Biodiesel in Domestic and Engine Use. African J Technol. 2014;1(1):1–7.
  • Xiong W, Li X, Xiang J et al., High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol. 2008;78:29–36.
  • Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energ. 2010;87:1083–1095.
  • Hanh HD, Dong NT, Okitsu K et al., Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field. Renew Energ. 2009;34(3):766–768.
  • Likozar B, Levec J. Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: modelling of chemical equilibrium, reaction kinetics and mass transfer based on fatty acid composition. Appl Energy. 2014;123:108–120.
  • Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in situ transesterification of microalgae lipids. Fuel. 2010;89(3):677–684.
  • Gole VL, Gogate PR. A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chem Eng Process . 2012;53:1–9.
  • Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renew Sust Energ Rev. 2007;11(6):1300–1311.
  • Chauhan BS, Kumar N, Cho HM. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy. 2012;37(1):616–622.
  • Chen L, Liu T, Zhang W et al., Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol. 2012;111:208–214.
  • Couto RM, Simões PC, Reis A et al., Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii . Eng Life Sci. 2010;10(2):158–164.
  • Wang Y, Wang F, Song Q et al., Heterogeneous ceria catalyst with water-tolerant lewis acidic sites for one-pot synthesis of 1, 3-diols via prins condensation and hydrolysis reactions. J Am Chem Soc. 2013;135(4):1506–1515.
  • Dias JM, Alvim-Ferraz MC, Almeida MF et al., Selection of heterogeneous catalysts for biodiesel production from animal fat. Fuel. 2012;94:418–425.
  • Li Y, Lian S, Tong D et al., One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Appl Energ. 2011;88(10):3313–3317.
  • Carrero A, Vicente G, Rodríguez R et al., Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil. Catal Today. 2011;167(1):148–153.
  • Helwani Z, Othman MR, Aziz N et al., Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Appl Catal. 2009;363:1–10.
  • Chai F, Cao F, Zhai F et al., Transesterification of vegetable oil to biodiesel using a hetero-polyacid solid catalyst. Adv Synth Catal. 2007;349(7):1057–1065.
  • Omota F, Dimian AC, Bliek A. Fatty acid esterification by reactive distillation: Part 2—kinetics-based design for sulphated zirconia catalysts. Chem Eng Sci. 2003;58(14):3175–3185.
  • Liu C, Huang C, Wang Y et al., Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energ. 2012;100:41–46.
  • Ehimen EA, Sun Z, Carrington GC. Use of ultrasound and co-solvents to improve the in-situ transesterification of microalgae biomass. Procedia Environ Sci. 2012;15:47–55.
  • Sathish A, Sims RC. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol. 2012;118:643–647.
  • American Society for Testing and Materials (ASTM). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. West Conshohocken (PA): ASTM. 2010. Stadards No. D6751-10.
  • Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc. 2006;83(10):823–833.
  • Ciubota-Rosie C, Ruiz JR, Ramos MJ et al., Biodiesel from Camelina sativa: a comprehensive characterisation. Fuel. 2013;105:572–577.
  • Hart Energy Consulting. Establishment of the Guide-lines for the Development of Biodiesel Standards in 2220 the APPEC Region. Houston (TX): Hart Energy; 2007. (Report number APEC#208-RE-01.5).
  • Gouvernement du Québec. Règlement sur les produits pétroliers: Loi sur les produits pétroliers (L.R.Q., c. P-30.01, a. 5 et 96). CHAPITRE II: Normes relatives aux produits pétroliers, Article 10. 2011(July 22). 2011.
  • Knothe G, Gerpen JV, Krahl J. The biodiesel handbook. Campaign, Illinois, USA: AOCS Press; 2005.
  • Giakoumis EG. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renew Energ. 2013;50:858–878.
  • Taux de cétane élevé: Qu'est-ce que le cétane et pourquoi est-ce mportant ? [Internet]. London (UK): BP; 2011 [15 May 2011]. Available from http://www.bp.com/sectiongenericarticle.do?categoryId=9017537&contentId=7033512
  • Knothe G, Matheaus AC, Ryan TW. Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. fuel technical review. San Ramon (CA): Chevron Corporation; 2007.
  • National Renewable Energy Laboratory. Biodiesel han-dling and use guide. Golden (CO): National Renewable Energy Laboratory; 2009. (Report No NREL/TP-540-4367).
  • Stansell GR, Gray VM, Sym SD. Microalgal fatty acid composition: implications for biodiesel quality. J Appl Phycol. 2011;24(4):791–801.
  • Canoira L, Alcántara R, Torcal S et al., Nitration of biodiesel of waste oil: Nitrated biodiesel as a cetane number enhancer. Fuel. 2007;86(7-8):965–971.
  • Dunn RO. Cold weather properties and performance of biodiesel. In: Knothe G, Krahl J, Gerpen JV, Editors. The biodiesel handbook. Campaign, Illinois, USA: AOCS Press; 2005. p. 83–121.
  • Basha SA, Gopal KR, Jebaraj S. A review on biodiesel production, combustion, emissions and performance. Renew Sust Energ Rev. 2009;13(6-7):1628–1634.
  • Özener O, Yüksek L, Ergenç AT et al., Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel. 2014;115:875–883.
  • Knothe G. Oxidative stability of biodiesel. In: Knothe G, Krahl J, Gerpen JV, Editors. The biodiesel handbook. Campaign, Illinois, USA: AOCS Press; 2005. p. 122–126.
  • Shahabuddin M, Kalam M, Masjuki H et al., An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy. 2012;44(1):616–622.
  • Focke WW, Van der Westhuizen I, Grobler AL et al., The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel. 2012;94:227–233.
  • Jakeria MR, Fazal MA, Haseeb ASMA. Influence of different factors on the stability of biodiesel: A review. Renew Sust Energ Rev. 2014;30:154–163.
  • Chevron Corporation. Diesel Fuel technical review. San Ramon (CA): Chevron Corporation; 2007.
  • Shumacher L. Biodiesel Lubricity. In: Knothe G, Krahl J, Gerpen JV, Editors. The biodiesel handbook. Campaign, Illinois, USA: AOCS Press; 2005. p. 127–133.
  • Kalita P, Malshe AP, Kumar SA et al., Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process. 2012;14(2):160–166.
  • Knothe G, Steidley KR. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energ Fuels. 2005;19(3):1192–1200.
  • Lois E, Arkoudeas P. Lubricating aspects of automobile fuels. In: Carmo JP, Ribeiro JE, Editors. New advances in vehicular technology and automotive engineering. Rijeka, Croatia: Intech; 2012. p. 91–118.
  • Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol. 2007;18(3):213–219.
  • Hirkude JB, Padalkar AS. Performance and emission analysis of a compression ignition: engine operated on waste fried oil methyl esters. Appl Energy. 2012;90(1):68–72.
  • Bondioli P. From oil seeds to industrial products: present and near future of oleochemistry. Ital J Agron. 2003;7(2):129–135.
  • Global glycerol market from biodiesel, fatty acids, fatty alcohols for personal care, alkyd resins, polyether polyols applications, downstream opportunities is expected to reach USD 2.52 billion By 2020 [Internet]. San Francisco: Gran View Research; 2014 [cited 2014 Apr 4]. Available from http://www.grandviewresearch.com/press-release/global-glycerol-market
  • Renewable fuels: The biodiesel bulletin [Internet]. Chicago (IL): The Jacobsen; 2011 [cited 2011 avril 7]. Available from http://www.thejacobsen.com
  • Zakaria ZY, Linnekoski J, Amin N. Catalyst screening for conversion of glycerol to light olefins. Chem Eng J. 2012;207:803–813.
  • Li L, Korányi TI, Sels BF et al., Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts. Green Chem. 2012;14(6):1611–1619.
  • Luo X, Hu S, Zhang X et al., Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour Technol. 2013;139:323–329.
  • Dobson R, Gray V, Rumbold K. Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol. 2012;39(2):217–226.
  • Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009;27:409–416.
  • Molina Grima E, Belarbi EH, Acién Fernández FG et al., Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20(7-8):491–515.
  • Benemann JR, Oswald WJ. System and economic analysis of microalgae ponds for conversion of CO2 to biomass. Washington (DC): U.S. Department of Energy; 1996. (Report No U.S.DE-FG22-93PC93204).
  • Alabi AO, Tampier M, Bibeau E. Microalgae technologies & processes for biofuels/bioenergy production in british columbia: Current technology, suitability & barriers to implementation. Vancouver (BC): The British Columbia Innovation Council; 2009.
  • Slade R, Bauen A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 2013;53:29–38.
  • Ozkan A, Kinney K, Katz L et al., Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol. 2012;114:542–548.
  • Davis RE, Fishman DB, Frank ED et al., Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale. Environ Sci Technol. 2014;48(10):6035–6042.
  • Benemann JR. Open ponds and closed photobioreactors - comparative economics. Presented at: 5th Annual World Congress on Industrial Biotechnology & Bioprocessing; 2008 April 30; Chicago, USA.
  • The supply and disposition of rafined petroleum products in Canada [Internet]. Ottawa: Statistics Canada; 2013 [cited 2013 Mar 27] Available from http://www.statcan.gc.ca/pub/45-004-x/2013004/t109-eng.htm
  • Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv. 2012;30(3):673–690.
  • Catallo JW, Junk T., inventors; Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College, assignee. Transforming biomass to hydrocarbon mixtures in near-critical or supercritical water. United States patent 6,180,845 B1.1999. 1999 Oct 7.
  • Fajardo AR, Cerdán LE, Medina AR et al., Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol. 2007;109(2):120–126.
  • Kita K, Okada S, Sekino H et al., Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl Energ. 2010;87(7):2420–2423.
  • Wiltshire KH, Boersma M, Möller A et al., Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol. 2000;34(2):119–126.
  • Young G, Nippgen F, Titterbrandt S et al., Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol. 2010;72(1):118–121.
  • Tran H, Hong S, Lee C. Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB 572 and Synechocystis sp. PCC 6803. Biotechnol Bioprocess Eng. 2009;14(2):187–192.
  • Barakos N, Pasias S, Papayannakos N. Transesterification of triglycerides in high and low quality oil feeds over an HT2 hydrotalcite catalyst. Bioresour Technol. 2008;99(11):5037–5042.
  • Shu Q, Nawaz Z, Gao J et al., Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation. Bioresour Technol. 2010;101(14):5374–5384.
  • Zanette AF, Barella RA, Pergher SBC et al., Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts. Renew Energ. 2011;36(2):726–731.
  • Gao L, Xu B, Xiao G et al., Transesterification of palm oil with methanol to biodiesel over a KF/hydrotalcite solid catalyst. Energ Fuels. 2008;22(5):3531–3535.
  • Gao L, Teng G, Xiao G et al., Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst. Biomass Bioener. 2010;34(9):1283–1288.
  • Trakarnpruk W, Porntangjitlikit S. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renew Energ. 2008;33(7):1558–1563.
  • Ngamcharussrivichai C, Totarat P, Bunyakiat K. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Appl Catal A. 2008;341(1-2):77–85.
  • Zeng H, Feng Z, Deng X et al., Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil. Fuel. 2008;87(13-14):3071–3076.
  • Meng X, Xin Z. Preparation of biodiesel from soybean oil by transesterification on KF/CaO catalyst. Petrochem Technol. 2005;34(3):282–286.
  • Di Serio M, Ledda M, Cozzolino M et al., Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind Eng Chem Res. 2006;45(9):3009–3014.
  • Xie W, Huang X. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal Lett. 2006;107(1-2):53–59.
  • Xie W, Huang X, Li H. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresour Technol. 2007;98(4):936–939.
  • Yang Z, Xie W. Soybean oil transesterification over zinc oxide modified with alkali earth metals. Fuel Process Technol. 2007;88(6):631–638.
  • Xie W, Li H. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J Mol Cat A Chem. 2006;255(1-2):1–9.
  • Xie W, Peng H, Chen L. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J Mol Cat A Chem. 2006;246(1-2):24–32.
  • Xie W, Peng H, Chen L. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal A. 2006;300(1):67–74.
  • Fu C, Hung T, Su C et al., Immobilization of calcium oxide onto chitosan beads as a heterogeneous catalyst for biodiesel production. Polym Int. 2011;60(6):957–962.
  • Chakraborty R, Bepari S, Banerjee A. Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts. Chem Eng J. 2010;165(3):798–805.
  • Antunes WM, Veloso CdO, Henriques CA. Transesterification of soybean oil with methanol catalyzed by basic solids. Catal Today. 2008;133-135(1-4):548–554.
  • Samart C, Chaiya C, Reubroycharoen P. Biodiesel production by methanolysis of soybean oil using calcium supported on mesoporous silica catalyst. Energ Conv Manag. 2010;51(7):1428–1431.
  • Samart C, Sreetongkittikul P, Sookman C. Heterogeneous catalysis of transesterification of soybean oil using KI/mesoporous silica. Fuel Process Technol. 2009;90(7-8):922–925.
  • Kim M, DiMaggio C, Yan S et al., The synergistic effect of alcohol mixtures on transesterification of soybean oil using homogeneous and heterogeneous catalysts. Appl Catal A. 2010;378(2):134–143.
  • Teng G, Gao L, Xiao G et al., Transesterification of soybean oil to biodiesel over heterogeneous solid base catalyst. Energ Fuels. 2009;23(9):4630–4634.
  • Silva CCCM, Ribeiro NFP, Souza MMVM et al., Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Process Technol. 2010;91(2):205–210.
  • Kouzu M, Kasuno T, Tajika M et al., Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Appl Catal A. 2008;334(1-2):357–365.
  • Kim M, Dimaggio C, Yan S et al., The effect of support material on the transesterification activity of CaO-La2O3 and CaO-CeO2 supported catalysts. Green Chem. 2011;13(2):334–339.
  • Yan S, Kim M, Salley SO et al., Oil transesterification over calcium oxides modified with lanthanum. Appl Catal A. 2009;360(2):163–170.
  • Wang Y, Zhang F, Xu S et al., Preparation of macrospherical magnesia-rich magnesium aluminate spinel catalysts for methnolysis of soybean oil. Chem Eng Sci. 2008;63(17):4306–4312.
  • Shu Q, Yang B, Yuan H et al., Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun. 2007;8(12):2159–2165.
  • Chen L, Yin P, Liu X et al., Biodiesel production over copper vanadium phosphate. Energy. 2011;36(1):175–180.
  • Guo F, Peng Z, Dai J et al., Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Process Technol. 2010;91(3):322–328.
  • Kim MJ, Kim M, Kwon OZ et al., Transesterification of vegetable oils over a phosphazenium hydroxide catalyst incorporated onto silica. Fuel Process Technol. 2011;92(1):126–131.
  • Ramos MJ, Casas A, Rodríguez L et al., Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. Appl Catal A Gen. 2008;346(1-2):79–85.
  • Lukić I, Krstić J, Jovanović D et al., Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresour Technol. 2009;100(20):4690–4696.
  • Albuquerque MCG, Jiménez-Urbistondo I, Santamaría-González J et al., CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Appl Catal A Gen. 2008;334(1-2):35–43.
  • Albuquerque MCG, Santamaría-González J, Mérida-Robles JM et al., MgM (M = Al and Ca) oxides as basic catalysts in transesterification processes. Appl Catalysis A Gen. 2008;347(2):162–168.
  • Qian W, Han P, Lü X. KF/CaO as solid base catalyst for transesterification to biodiesel by ultrasound. Nat Prod Res. 2010;38(1):52–56.
  • Ramachandran K, Sivakumar P, Suganya T et al., Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresour Technol. 2011;102(15):7289–7293.
  • Shu Q, Gao J, Nawaz Z et al., Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl Energ. 2010;87(8):2589–2596.
  • Li E, Rudolph V. Transesterification of vegetable oil to biodiesel over MgO-functionalized mesoporous catalysts. Energ Fuels. 2008;22(1):145–149.
  • Zhang J, Chen S, Yang R et al., Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel. 2010;89(10):2939–2944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.