243
Views
27
CrossRef citations to date
0
Altmetric
Articles

Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods

, , , &
Pages 245-257 | Received 09 Dec 2016, Accepted 24 Feb 2017, Published online: 21 Apr 2017

References

  • Casiano-Flores H, Cárdenas-Chávez D, Díaz-Chavez R, et al. Renewable energy research progress in Mexico. Renew Sust Energ Rev. 2014;32:140–153.
  • Pérez-Casar L. Argentina con energías renovadas. Revista de Investigaciones Agropecuarias. 2014;40:125–128.
  • Uasuf A, Hilbert J. El uso de biomasa de origen forestal con destino a bioenergía en la Argentina. INTA Informes Técnicos Bioenergía. 2012; 1-ISSN 2250-8481.
  • Echegaray M, Saffe M, Palacios C, et al. Thermogravimetric and kinetic analysis of different agro-industrial wastes under nitrogen atmosphere. Int J Eng Innov Res. 2015;4:213–219.
  • Aino S. Introduction to biorefineries and biofuels - Comparison of gasification, pyrolysis and combustión. Alto University School of Chemical Technology 2013:4120.
  • Cai J, Wu W, Liu R. Sensitivity analysis of three-parallel-DAEM reaction model for describing rice straw pyrolysis. Bioresour Technol. 2013;132:423–426.
  • Li Z, Zhao W, Meng B, et al. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Bioresour Technol. 2008;99(16):7616–7622.
  • Zhou H, Long Y, Meng A, et al. The pyrolysis simulation of five biomass species by hemicellulose, cellulose and lignin based on thermogravimetric curves. Thermochim Acta. 2013;Acta 566:36–43.
  • Pasangulapati V, Ramachandriya K, Kumar A, et al. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour Technol. 2012;114:663–669.
  • Channiwala S, Parikh P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81(8):1051–1063.
  • Coats A, Redfern J. Kinetic parameters from thermogravimetric data. Nature 1964;201; 68–69.
  • Sharp JH, Achar BNN. In: Proceeding of the International Clay Conference 1966; 1–67.
  • Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C: Polym Symposia. 1964;6(1):183–195.
  • Flynn JH. A general differential technique for the determination of parameters: energy of activation, preexponential factor and order of reaction (when applicable). J Therm Anal. 1991;37(2):293–305.
  • Aranzazu Ríos L, Cárdenas Muñoz P, Cárdenas Giraldo J, et al. Kinetic models of polymer thermal decomposition: a review. Rev Ing Univ Medellín. 2013;12(23):113–130.
  • Cai J, Liu R, Sun C. Logistic regression model for isoconversional kinetic analysis of cellulose pyrolysis. Energ Fuel. 2008;22( 2):867–870.
  • Burnham A, Dinh L. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89(2):479–490.
  • Vyazovkin S, Lesnikovich A. Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters. Thermochim Acta. 1998;128:297–300.
  • Kim YS, Kim SH. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste–waste lube oil compounds. Environ Sci Technol. 2010;44(13):5313–5317.
  • Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol. 2013;146:485–493.
  • Moustafa Radwan A. An overview on gasification of biomass for production of hydrogen rich gas. Der Chemica Sinica. 2012;3(2):323–335.
  • Tchapda A, Pisupati S. A Review of thermal co-conversion of coal and biomass/waste. Energies. 2014;7(3):1098–1148.
  • Huang M, Li X. Thermal degradation cellulose and cellulose esters. J Polym Sci. 1998;68(2):293–304.
  • Obernberger I, Thek G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behavior Biomass. Bioenergy. 2004;27(6):653–669.
  • Vassilev S, Baxter D, Andersen L, et al. An overview of the chemical composition of biomass. Fuel. 2010;89(5):913–933.
  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83(1):37–46.
  • Yang H, Yan R, Chen H, et   al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12-13)1781–1788.
  • Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energ. 2007;32( 4):649–661.
  • Gottipati R, Mishra S. A kinetic study on pyrolysis and combustion characteristics of oil cakes: Effect of cellulose and lignin content. J Fuel Chem Technol. 2011;39(4):265–270.
  • Fu P, Hu S, Xiang J, et al. FTIR study of pyrolysis products evolving from typical agricultural residues. J Anal Appl Pyrolysis. 2010;88(2):117–123.
  • Liu Q, Wang S, Zheng Y, et al.   Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal App Pyrolysis. 2008;82(1):170–177.
  • Lv D, Xu M, Liu X, et al. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol. 2010;91(8):903–909.
  • Vassilev S, Baxter D, Andersen L, et al. An overview of the organic and inorganic phase composition of biomass. Fuel 2012;94:1–33.
  • Ulloa A, Garcia X, Gordon A, Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Process Technol. 2009;90(4):583–590.
  • Demirbas A. Biorefineries: Current activities and future developments. Energ Convers Manage. 2009;50(11):2782–2801.
  • Poletto M, Dettenborn J, Pistor V, et al. Materials produced from plant biomass. Part I: evaluation of thermal stability and pyrolysis of wood. Mater Res. 2010;13(3):375–379.
  • García Barneto A, Ariza Carmona, Martín Alfonso J, et   al. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J Anal Appl Pyrolysis. 2009;86(1):108–114.
  • Blasi C, Galgano A, Branca C. Effects of potassium hydroxide impregnation on wood pyrolysis. Energ Fuel. 2009;23(2):1045–1054.
  • Hu M, Chen Z, Wang S, et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energ Convers Manage. 2016;118:1–11.
  • Biney P, Gyamerah M, Shen J, et al. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model. Bioresour Technol. 2015;179:113–122.
  • Fernandez A, Saffe A, Pereyra R, et   al. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl Therm Eng. 2016;106(5):1157–1164.
  • Li L, Zhao N, Fu X, et al. Bioresour. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres. Bioresour Technol. 2013;140:152–157.
  • Yahiaoui M, Hadoun H, Toumert I, et al. Determination of kinetic parameters of Phlomis bovei de Noe using thermogravimetric analysis Aicha Hassani. Bioresour Technol. 2015;196:441–447.
  • Varhegyi G, Jakab E, Antal M. Is the Broido-Shafizadeh model for cellulose pyrolysis true? Energy and Fuels 1994;8(6):1345–1352.
  • Shafizadeh F, Mc Ginnis G. Chemical compositions and the analysis of Cottonwood. Carbohydrate Research. 1971;16(2):273–277.
  • Peng H, Wang N, Hu Z, et al. Physicochemical characterization of hemicelluloses from bamboo (Phyllostachys pubescens Mazel) stem. Ind Crop Prod. 2012;37(1):41–50.
  • Damartzis T, Vamvuka D, Sfakiotakis S, et al.  Thermal degradation studies and kinetic modeling of cardoon (Cynaracardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol. 2011;102(10):6230–6238.
  • Negahdar L Delidovich I, Palkovits R, Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism applied catalysis B. Environmental. 2016;184:285–298.
  • Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energ Combust Sci. 2016;53:41–79.
  • Zhou S, Pecha B, Van Kuppevelt M, et al. Slow and fast pyrolysis of Douglas-Fir lignin: importance of liquid-intermediate formation on the distribution of products. Biomass Bioenerg. 2014;66:398–409.
  • Faravelli T, Frassoldati A, Migliavacca G, et al. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenerg. 2010;34(3):290–301, .
  • Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energ Combust Sci. 2008;34(1):47–90.
  • Wang S, Ru B, Lin H, et al. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. BioresourTechnol. 2013;143:378–383.
  • Räisänen U, Pitkänen I, Halttunen H, et   al. Formation of the main degradation compounds from arabinose, xylose, mannose and arabinitol during pyrolysis. J Therm Anal Calorim. 2003;72(2):481–488.
  • Garcia Cortes A. Estudio térmico y cinético de la pirolisis de residuos sólidos urbanos. Tesis doctoral de la universidad de Alicante; 1993.
  • Patwardhan P, Brown R, Shanks B. Product distribution from the fast pyrolysis of hemicellulose. Chem Sus Chem. 2011;4(5):636–643.
  • Jakab E, Faix O, Till F, et al. Thermogravimetry mass-spectrometry study of 6 lignins within the scope of an international round-robin test. J Anali Appl Pyrolysis. 1995;35, 2:167–179.
  • Asmadi M, Kawamoto H, Saka S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. J Anali Appl Pyrolysis. 2011;92(2):88–98.
  • Werkelin J, Skrifvars B, Zevenhoven M, et al. Chemical forms of ash-forming elements in woody biomass fuels. Fuel 2010;89(2):481–493.
  • Vlaev L, Georgieva V, Genieva S. Products and kinetics of nonisothermal decomposition of vanadium (IV) oxide compounds. J Therm Anal Calorim. 2007;88(3):805–812.
  • Sheng J, Ji D, Yu F, et al. Influence of chemical treatment on rice straw pyrolysis by TG-FTIR. IERI Procedia 2014;8:30–34.
  • Turmanova S, Genieva S, Dimitrova A, et al. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008; 2(2): 133–146.
  • Santos C, Dweck J, Viotto R, et al. Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresource Technology 2015;196:469–479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.