206
Views
6
CrossRef citations to date
0
Altmetric
Articles

Production of bioethanol from liquid waste from cassava dough during gari processing

ORCID Icon, ORCID Icon &
Pages 493-501 | Received 05 Dec 2016, Accepted 27 Mar 2017, Published online: 29 May 2017

References

  • Wyman CE. Ethanol fuel. In: Cleveland C, editor. Chapter in new edition of encyclopedia of energy. Vol. 2. St. Louis (MO): Elsevier; 2004. p. 541–555.
  • Lucon O, Coehlo ST, Goldemberg J. LPG in Brazil: lessons and challenges. Energy Sustain Dev. 2004;VIII(3).
  • Rao PJM. National fuel alcohol plants; sugarcane and cassava, the potential energy crops to produce fuel alcohol. Coop Sugar. 1981;12(8):2–3.
  • Bansal P, Hall M, Realff MJ, et al. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv. 2009;27:833–848. DOI: 10.1016/j.biotechadv.2009.06.005. Epub 2009 Jul 3.
  • Zheng Y, Pan Z, Zhang R, et al. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass. Biotechnol Bioeng. 2009;102:1558–1569. doi: 10.1002/bit.22197.
  • Burhan A, Nisa U, Gokhan C, et al. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6, Process. Biochem. 2003;38:1397–1403.
  • Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechno. 2005;69:627–642. DOI:10.1007/s00253-005-0229-x.
  • Taherzadeh MJ, Karimi K. Enzymatic- based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources. 2007;2:707–738.
  • Pandey A, Soccol CR, Nigam P, et al. Biotechnological potential of agro-industrial residue. II: cassava bagasse. Bioresour Technol. 2000;74:81–87. DOI:10.1016/S0960-8524(99)00143-1.
  • Shetty JK, Chotani G, Duan G, et al. Cassava as an alternative feedstock in production of transportation fuel. Int Sugar J. 2007;109:3–11.
  • Atthasampunna P, Somchai P, Eur-aree A, et al. Production of fuel ethanol from cassava. World J Microbiol Biotechnol. 1987;3(2):135–142. DOI:10.1007/BF00933613.
  • Ado SA, Olukotun GB, Ameh JB, et al. Bioconversion of cassava starch to ethanol in a simultaneous saccharification and fermentation process by co-cultures of Aspergillus niger and Saccharomyces cerevisiae. Sci World J. 2009;4(1):19–22.
  • Pervez S, Aman A, Iqbal S, et al. Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process. BMC. 2014;14:49. DOI: 10.1186/1472-6750-14-49
  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, et al. α-Amylases from Microbial Sources – An Overview on Recent Developments. Food Technol Biotechnol. 2006;44(2):173–184.
  • Westley J. Rhodanase and sulfane pool. In: Jakoby WB, editor. Enzymatic basis of detoxification 2. New York: Academic; 1980. p. 245–262.
  • Mojović L, Nikolić S, Rakin M, et al. Production of bioethanol from corn meal hydrolyzates. Fuel. 2006;85:1750–1755.
  • Liu Y, Wang L, Yan Y. Biodiesel synthesis combining pre-esterification with alkali catalyzed process from rapeseed oil deodorizer distillate. Fuel Process Technol. 2009;90:857–862.
  • Sasson A. Feeding tomorrow's world. Paris: UNESCO; 1990. p. 500–510.
  • Abera S, Rakshit SK. Effect of dry cassava chip storage on yield and functional properties of extracted starch. Starch. 2004;56:232–240. DOI:10.1002/star.200300247
  • Bassam N. Energy plants species, their use and impact on environment and development. London: James & James Science Publishers; 1998.
  • Kneen E. A comparative study of the development of amylases in germinating cereals. Cereal Chem. 1944;21:304–314.
  • Egwin EC, Oloyede OB. Comparison of α-amylase activity in some sprouting. Nigerian Cereal. Biokemistri. 2006;18(1):15–20. Available from: http://www.bioline.org.br/pdf?bk06003.
  • Machaiah JP, Vakil UK. Isolation and partial characterization of α-amylase components evolved during early wheat germination. J Biosci. 1984;6:47–59.
  • Doss A, Anand SP. Purification and optimization of fungal amylase from litter samples of Western Ghats, Coimbatore, Tamilnadu (India). Journal of Scientific Research and Reviews. 2013; 2(1), pp. 001 - 004.
  • Wigfield P. Protein precipitation using ammonium sulphate. Current Protocols in Protein Scienc. 2001; 13(3F):A.3F.1–A.3F.8. DOI:10.1002/0471140864.psa03fs13
  • Erickson HM, Ransom H. Usage recommendations for α-amylase: maximizing enzyme activity while minimizing enzyme –artifact binding residues. Am Inst Conserv. 1992;11. Available online athttp://www.cool.conservation-us.org/coolaic/sg/bpg/annual/v11/bp/11-04.html.
  • Izmirlioglu G, Demirci A. Strain selection and medium optimization for glucoamylase production from industrial potato waste by Aspergillus niger. J Sci Food Agric. 2016;96:2788–2795. DOI:10.1002/jsfa.7445
  • Prabakaran M, Thennarasu V, Mangala RA, et al. Comparative studies on enzyme activities of wild and mutant strains isolated from sugarcane field. Indian J Sci Technol. 2009;2:6846–6849.
  • Gupta A, Gautam N, Modi DR. Optimization of a-amylase production from free and immobilized cells of Aspergillus niger E3. J Biotechnol Pharm Res. 2010;1(1):001–008.
  • Bernfed PC. Enzymes of starch degradation and synthesis. Adv Enzymol. 1951;12:379–481.
  • Pandey A, Soccol CR, & Mitchell D, New developments in solid state fermentation, process. Biochem, 2000a, 35, 1153–1169.
  • Fuwa H. A new method of microdetermination of amylase activity by the use of amylase as the substrate. J Biochem. 1954;41:583–603.
  • Xiao Z, Storms R, Tsang A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem. 2006;351(1):146–148. DOI:10.1016/j.ab.2006.01.036
  • Raabo E, Terkildsen, TC. On the enzyme determination of blood glucose. Scand J Clin Lab Invest. 2010. Available from: https://doi.org/10.3109/00365516009065404.
  • Hegde S, Maness NO. Changes in apparent molecular mass of pectin and hemicellulose extracts during peach softening. J Am Soc Hortic Sci. 1998;123:445–456.
  • Shuler ML, Kargi F. Bioprocess engineering. Upper Saddle River (NJ): Prentice Hall; 2002. p. 245–385.
  • Aggarwal NK, Nigam P, Singah D, et al. Process optimization for the production of sugar for the bioethanol industry from sorghum, a non-conversional source of starch. World J Microbilo Biotechnol. 2001;17:411–417.
  • Mawahib EMElNour, Yagoub SO. Partial purification and characterization of α and β-amylase isolated from Sorghum bicolor cv. (Feterita) Malt. J Appl Sci. 2010;10:1414–1319.
  • Mawahib EMElNour, Yagoub SO, Jarbough AA. Purification and characterization of α and β- amylases isolated from millet ( Pennisetum glaucum ) Malt. Am J Sci Ind Res. 2013; ISSN: 2153-649X. DOI:10.5251/ajsir.2013.4.2.183.190
  • Cordeiro CAM, Martins ML, Luciano AB. Production and properties of a-amylase from thermophilic bacillus sp.Braz J Microbiol. 2002;33(1):57–61.
  • Pavezzi FC, Gomes E, da Silva R. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast (Saccharomyces cer evisiae) using different carbon sources. Braz J Microbiol. 2008;39(1):108–114. Available from: http://doi.org/10.1590/S1517-838220080001000024.
  • Mishra A, Debnath Das M. Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose isomerase. Appl Biochem Biotechnol. 2002;102-103(1-6):193–199.
  • Kim HR, Im YK, Ko HM, et al. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Biotechnol Lett. 2011;33(8):1643–1648. DOI:10.1007/s10529-011-0613-9
  • Chi Z, Liu Z. Studies on high concentration ethanol fermentation of raw ground corn by Saccharomyces sp. H0. Chin J Biotechnol. 1994;10(2):113–9.
  • Singh D, Dahiya JS, Nigam P. Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase from Rhizoctonia solani and Saccharomyces cerevisaiae. J Basic Microbiol. 1995;35(2):117–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.