126
Views
1
CrossRef citations to date
0
Altmetric
Articles

Desert stream phototrophic mats: a promising source for biofuel production

, &
Pages 339-349 | Received 29 Jan 2017, Accepted 09 Jul 2017, Published online: 26 Sep 2017

References

  • Krumbein WE, Cohen Y, Shilo M. Solar Lake (Sinai) Stromatolitic cyanobacterial mats. Limnol Oceanogr. 1977;22(4):635–656.
  • Esteve I, Matinez-Alonso M, Mir J, et al. Distribution, typology and structure of microbial mat communities in Spain: A preliminary study. Limnetica. 1992;8:185–195.
  • Navarrete A, Peacock A, Macnaughton SJ, et al. Physiological status and community composition of microbial mats of the Ebro Delta, Spain, by signature lipid biomarkers. Microb Ecol. 2000;39:92–99.
  • vanGemerden H. Microbial mats: A joint venture. Mar Geol. 1993;113:3–25.
  • Decho AW. Microbial biofilms in intertidal systems: an overview. Cont Shelf Res. 2000;20:1257–1273.
  • Macur RE, Langner HW, Kocar BD, et al. Linking geochemical processes with microbial community analysis: successional dynamics in an arsenic-rich, acid-sulphate-chloride geothermal spring. Geobiol. 2004;2:163–177.
  • Dupraz C, Reid RP, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev. 2008;96:141–162.
  • Zhang L, An R, Wang J, et al. Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol. 2005;8:276–281.
  • Rojas JL, Martín J, Tormo JR, et al. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics. 2009;2:33–41.
  • Abed RMM, Dobrestov S, Al-Kharusi S, et al. Cyanobacterial diversity and bioactivity of inland hypersaline microbial mats from a desert stream in the Sultanate of Oman. Fottea. 2011, 11(1):215–224.
  • Abed RMM, Dobretsov S, Sudesh K. Applications of cyanobacteria in biotechnology. J Appl Microbiol. 2009;106:1–12.
  • Thajuddin N, Subramanian G. Cyanobacterial biodiversity and potential application in biotechnology. Curr Sci. 2005;89:47–57.
  • Abed RMM, Kindi SA, Schramm A, et al. Short-term effects of flooding on bacterial community structure and nitrogenase activity in microbial mats from a desert stream. Aquat Microb Ecol. 2011;63:245–254.
  • Brentner LB, Eckelman MJ, Zimmerman JB. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol. 2011;45:7060–7067.
  • Widjaja A, Chien C, Ju Y. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng. 2009;40:13–20.
  • Rodolfi L, Zittelli GC, Bassi N, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–112.
  • Machado IMP, Atsumi S. Cyanobacterial biofuel production. J Biotechnol. 2012;162:50–56.
  • Devi MP, Subhash GV, Mohan SV. Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: Effect of nutrient supplementation. Renew Energy. 2012;43:276–283.
  • Stockenreiter M, Haupt F, Graber A, et al. Functional group richness: implications of biodiversity for light use and lipid yield in microalgae. J Phycol. 2013;0:1–10.
  • Nalley JO, Stockenreiter M, Litchman E. Community ecology of algal biofuels: Complementarity and trait-based approaches. Ind Biotechnol. 2014;10:191–201.
  • Hena S, Fatimah S, Tabassum S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind. 2015;10:1–14.
  • Stal LJ. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 1995;131:1–32.
  • Domozych DS, Ciancia M, Fangel JU, et al. The Cell Walls of Green Algae: A Journey through Evolution and Diversity. Front Plant Sci. 2012;3:1–7.
  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, et al. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics. 2011;12:1–17.
  • Stal LJ, Reed RH. Low-molecular mass carbohydrate accumulation in cyanobacteria from a marine microbial mat in response to salt. FEMS Microbiol Ecol. 1987;3:305–312.
  • Solovchenko AE. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ J Plant Physiol. 2012;59:167–176.
  • Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv. 2013;31:1532–1542.
  • Peters V, Conrad R. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol. 1995;61:1673–1676.
  • Segers R, Kengen SWM. Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biol Biochem. 1997;30:1107–1117.
  • Pei-dong T, Pei-dong L, Tie-heng S, et al. Greenhouse gas emissions from a constructed wetland for municipal sewage treatment. J Environ Sci. 2002;14:27–33.
  • Whitby C, Earl J, Lanyon C, et al. The molecular diversity of the methanogenic community in a hypereutrophic freshwater lake determined by PCR-RFLP. J Appl Microbiol. 2004;97:973–984.
  • Bernard BB. Methane in marine sediments. Deep-Sea Res. 1977;26A:429–443.
  • Orphan VJ, Jahnke LL, Embaye T, et al. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiol. 2008;6:376–393.
  • Fistarol GO, Rosato M, Thompson FL, et al. Use of a marine microbial community as inoculum for biomethane production. Environ Technol. 2016;37:360–368.
  • Lovley DR, Klug MJ. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim Cosmochim Acta. 1986;50:11–18.
  • Capone DG, Kiene RP. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism. Limnol Oceanogr. 1988;33:725–749.
  • Bomberg M, Montonen L, Münster U, et al. Diversity and function of archaea in freshwater habitats. Curr Trends Microbiol. 2006; 4:1.
  • Dubois M, Gilles KA, Hamilton K, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–356.
  • Vijayaraghavan P, Vincent SGP. Cow dung as a novel, inexpensive substrate for the production of a halo-tolerant alkaline protease by Halomonas sp. PV1 for eco-friendly applications. Biochem Eng J. 2012;69:57–60.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–428.
  • Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.
  • Al Ahmad M, Al-Zuhair S, Taher H, et al. RF Microalgal lipid content characterization. Sci Rep. 2014;4:5108.
  • Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol. 2006;126:499–507.
  • Lay J, Li Y, Noike T, et al. Analysis of environmental factors affecting methane production from high-solids organic waste. Water Sci Technol. 1997;36(6–7):493–500.
  • Sainju UM, Kim SY, Pramanik P, et al. Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. PLoS ONE. 2014;9:e113593.
  • Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012; 41: e1.
  • Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541.
  • DeSantis TZ, Hugenholtz P, Keller K, et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 2006;34:W394–W399.
  • Pinckney J, Paerl HW, Fitzpatrick M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar Ecol Prog Ser. 1995;123:207–216.
  • Toucanne S, Minto'o CMA, Fontanier C, et al. Tracking rainfall in the northern Mediterranean borderlands during sapropel deposition. Quat Sci Rev. 2015;129:178–195.
  • Russo DA, Couto N, Beckerman AP, et al. A Metaproteomic Analysis of the Response of a Freshwater Microbial Community under Nutrient Enrichment. Front Microbiol. 2016;7:1172.
  • Abed RMM, Dobretsov S, Al-Fori M, et al. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J Ind Microbiol Biotechnol. 2013;40:759–772.
  • Slade R, Bauen A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 2013;53:29–38.
  • ERNST A, BÖGER P. Glycogen accumulation and the induction of nitrogenase activity in the heterocyst-forming cyanobacterium Anabaena variabilis. J Gen Microbiol. 1985;131:3147–3153.
  • Nakamura Y. Some Cyanobacteria Synthesize Semi-amylopectin Type -Polyglucans Instead of Glycogen. Plant Cell Physiol. 2005;46:539–545.
  • Du W, Liang F, Duan Y, et al. Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab Eng. 2013;19:17–25.
  • Cannell RJP, Farmer P, Walker JM. Purification and characterization of pentagalloylglucose, an α-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. Biochem J. 1988;255:937–941.
  • Eshaq FS, Ali MN, Mohd MK. Production of bioethanol from next generation feed-stock alga Spirogyra species. Int J Eng Sci Res Technol. 2011;3:1749–1755.
  • Singh DP, Trivedi RK. Production of biofuel from algae: an economic and eco-friendly resource. Int J Sci Res. 2013;2:352–357.
  • Chen CY, Yeh KL, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol. 2011;102:71–81.
  • Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renew Energy. 2009;34:1–5.
  • Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng. 2006;101:223–226.
  • Griffiths MJ, vanHille RP, Harrison STL. Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids. 2010;45:1053–1060.
  • Li P, Miao X, Li R, et al. In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol. 2011;2011, DOI: 10.1155/2011/141207.
  • Salam KA, Velasquez-Orta SB, Harvey AP. A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review. Renew Sust Energy Rev. 2016;65:1179–1198.
  • Laurens LML, Quinn M, Wychen SV, et al. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Anal Bioanal Chem. 2012;403:167–178.
  • Velasquez-Orta SB, Lee JGM, Harvey AP. Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem Eng J. 2013;76:83–89.
  • Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in situ transesterification of microalgae lipids. Fuel. 2010;89:677–684.
  • Haas MJ, Wagner K. Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. Eur J Lipid Sci Technol. 2011;113:1219–1229.
  • Lee J, Tsang YF, Jung JM, et al. In-situ pyrogenic production of biodiesel from swine fat. Bioresour Technol. 2016;220:442–447.
  • Park J, Kim B, Lee JW. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresour Technol. 2016;221:55–60.
  • Huynh LH, Nguyen PLT, Ho QP, et al. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. Bioresour Technol. 2012;123:112–116.
  • Knothe G. “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels. 2008;22:1358–1364.
  • Alvarez R, Lidén G. Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenergy. 2009;33:527–533.
  • Lakaniemi AM, Hulatt CJ, Thomas DN, et al. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels. 2011;4:34.
  • Mussgnug JH, Klassen V, Schlüter A, et al. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol. 2010;150:51–56.
  • Pauss A, Andre G, Perrier M, et al. Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microbiol. 1990;56:1636–1644.
  • Angenent LT, Karim K, Al-Dahhan MH, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 2004;22:477–485.
  • Kim SY, Pramanik P, Bodelier PL, et al. Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. PLoS ONE. 2014;9:e113593.
  • Jang HM, Kim JH, Ha JH, et al. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour Technol. 2014;165:174–182.
  • Zhou J, Zhang R, Liu F, et al. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour Technol. 2016;217:44–49.
  • Earl J, Hall G, Pickup RW, et al. Analysis of methanogen diversity in a hypereutrophic lake using PCR-RFLP analysis of mcr sequences. Microb Ecol. 2003;46:270–278.
  • Chaudhary PP, Brablcová L, Buriánková I, et al. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol. 2013;97:7553–7562.
  • Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. PNAS. 2006;103:2815–2820.
  • Mikucki JA, Liu Y, Delwiche M, et al. Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol. 2003;69:3311–3316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.