411
Views
5
CrossRef citations to date
0
Altmetric
Article

Improved bioethanol production using genome-shuffled Clostridium ragsdalei (DSM 15248) strains through syngas fermentation

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 81-89 | Received 05 Nov 2017, Accepted 08 Mar 2018, Published online: 11 Apr 2018

References

  • Daniell J, Köpke M, Simpson SD. Commercial biomass syngas fermentation. Energies. 2012;5(12):5372–5417.
  • Bengelsdorf, FR, Straub M, Dürre P. Bacterial synthesis gas (syngas) fermentation. Environ Technol. 2013;34(13-14):1639–1651.
  • Dry ME, Steinberg AP. Commercial FT process applications. Stud Surf Sci Catal. 2004;152:406–481.
  • Dutta A, Acharya B. Production of bio-syngas and biohydrogen via gasification. In: Handbook of biofuels production: Processes and technologies. Cambridge (UK): Woodhead Publishing; 2011. p. 420–459.
  • Köpke M, Mihalcea C, Bromley JC, et al. Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol. 2011;22(3):320–325.
  • Wood HG. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 1991;5(2):156–163.
  • Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochem Biophys Acta. 2008;1784(12):1873–1898.
  • Munasinghe PC, Khanal SK. Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol. 2010;101(13):5013–5022.
  • Gao J, Atiyeh HK, Phillips JR, et al. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresour Technol. 2013;147:508–515.
  • Gao X, Zhao H, Zhang G, et al. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone–butanol–ethanol (ABE). Curr Microbiol. 2012;65(2):128–132.
  • Shen Y, Brown RC, Wen Z. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy. 2017;187:585–594.
  • Kuehne SA, Minton NP. ClosTron-mediated engineering of Clostridium. Bioengineered. 2012;3(4):247–254.
  • Heap JT, Ehsaan M, Cooksley CM, et al. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res. 2012;40(8):e59–10. .
  • Ochi K. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot. 2016;70(1):25–40.
  • Jiang Y, Qian F, Yang J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
  • Patnaik R, Louie S, Gavrilovic V, Perry K, et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol. 2002;20(7):707–712.
  • Zhang YX, Perry K, Vinci VA, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature. 2002;415(6872):644–646.
  • Nieto JJ, Fernández-Castillo R, Megias M, et al. Ethyl methanesulfonate mutagenesis in extremely halophilicarchaebacteria: Isolation of auxotrophic mutants of Haloferax mediterranei and Haloferax gibbonsii. Curr Microbiol. 1992;24(1):41–47.
  • Rani KS, Swamy MV, Sunitha D, et al. Improved ethanol tolerance and production in strain of Clostridium thermocellum. World J Microbiol Biotechnol. 1996;12(1):57–60.
  • Li SB, Qian Y, Liang ZW, et al. Enhanced butanol production from cassava with Clostridium acetobutylicum by genome shuffling. World J Microbiol Biotechnol. 2016;32(4):1–10.
  • Li H, Xue F, Wang W, et al. Genome shuffling of Lactobacillus brevis for enhanced production of thymidine phosphorylase. Biotechnol Bioprocess Eng. 2015;20(2):333–340.
  • Otte B, Grunwaldt E, Mahmoud O, et al. Genome shuffling in Clostridium diolis DSM 15410 for improved 1, 3-propanediol production. Appl Environ Microbiol. 2009;75(24):7610–7616.
  • Devarapalli M, Atiyeh HK. A review of conversion process for bioethanol production with a focus on syngas fermentation. Biofuel Res J. 2015;7:268–280.
  • Saxena J, Tanner RS. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol. 2011;38(4):513–521.
  • Reysset G, Hubert J, Podvin L, et al. Protoplast formation and regeneration of Clostridium acetobutylicum strain N1-4080. Microbiology. 1987;133(9):2595–2600.
  • Maple J, Moller SG. Mutagenesis in arabidopsis. In: Circardian rhythms: Methods and protocols. New York (USA): Humana Press; 2007. p. 197–206.
  • De Gérando HM, Fayolle-Guichard F, Rudant L, et al. Improving isopropanol tolerance and production of Clostridium beijerinckii. Appl Microbiol Biotechnol. 2016;100(12):5427–5436.
  • Maddipati P, Atiyeh HK, Bellmer DD, et al. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol. 2011;102:6494–6501.
  • Trcek J, Mira NP, Jarboe LR. Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol. 2015;99(15):6215–6229.
  • Fodor K, Demiri E, Alföldi L. Polyethylene glycol-induced fusion of heat-inactivated and living protoplasts of Bacillus megaterium. J Bacteriol. 1978;135(1):68–70.
  • Minton NP, Morris JG. Regeneration of protoplasts of Clostridium pasteurianum ATCC 6013. J Bacteriol. 1983;155(1):432.
  • Babu B, Atiyeh HK, Wilkins MR, et al. Effect of reducing agent dithriothreitol on ethanol and acetic-acid production by Clostridium strain P11 using stimulated biomass-based syngas. J Bio Eng. 2010;3(1):19–35.
  • Kundiyana DK, Wilkins MR, Maddipati P, et al. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei.” Bioresour Technol. 2011b;102(10):5794–5799.
  • Devarapalli M, Atiyeh HK, Phillips JR, et al. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Bioresour Technol. 2016;209:56–65.
  • Devarapalli M, Lewis RS, Atiyeh HK. Continuous ethanol production from synthesis gas by Clostridium ragsdalei in a trickle-bed reactor. Fermentation. 2017;3(2):23.
  • Kundiyana KA. Process engineering and scale-up of autotrophic Clostridium strain P11 Syngas fermentation. Oklahoma: Oklahoma State University; 2010.
  • Kundiyana DK, Huhnke RL, Wilkins MR. Effect of nutrient limitation and two-stage continuous fermentor design on productivities during “Clostridium ragsdalei ” syngas fermentation. Bioresour Technol. 2011a;102(10):6058–6064.
  • Biot-Pelletier D, Martin V J. Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol. 2014;98(9):3877–3887.
  • Gong J, Zheng H, Wu Z, et al. Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv. 2009;27(6):996–1005.
  • Tanner RS, Miller LM, Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in Clostridial rRNA homology group I. Int J Syst Evol Microbiol. 1993;43(2):232–236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.