725
Views
9
CrossRef citations to date
0
Altmetric
Articles

Algae and their growth requirements for bioenergy: a review

, ORCID Icon, &
Pages 307-325 | Received 16 Dec 2017, Accepted 09 Apr 2018, Published online: 11 Jun 2018

References

  • Cecere E, Petrocelli A, Verlaque M. Vegetative reproduction by multicellular propagules in Rhodophyta: an overview. Mar Ecol. 2011;32(4):419–437.
  • de Meeus T, Prugnolle F, Agnew P. Asexual reproduction: Genetics and evolutionary aspects. Cell Mol Life Sci. 2007;1–18.
  • Frenkel J, Vyverman W, Pohnert G. Pheromone signaling during sexual reproduction in algae. Struct Diversity to Signal Regul Roles. 2014;79(4):632–644.
  • Popper ZA, Ralet MC, Domozych DS. Plant and algal cell walls: diversity and functionality. Annals Bot. 2014;114(6):1043–1048.
  • Black JG. Microbiology. Seventh ed. International student version. New Delhi: John Wiley & Sons (Asia) Pte Ltd; 2008.
  • Trainor FR. Introductory Phycology. New York: John Wiley & Sons; 1978. p. 1–12.
  • Umen JG. Green Algae and the Origins of Multicellularity in the Plant Kingdom. Cold Spring Harb Perspect Biol. 2014;6(11):a016170.
  • Mikkelsen MD, Harholt J, Ulvskov P, et al. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Annals Bot. 2014;114(6):1217–1236.
  • Moroney JV, Ynalvez RA. Algal Photosynthesis. Encyclopaedia of life sciences. Chichester, UK: John Wiley & Sons, Ltd; 2009.
  • Tazawa M. Sixty years research with Characean cells: fascinating material for plant cell biology. Prog Bot. 2010;72:5–34.
  • Majid M, Shafqat S, Inam H, et al. Production of Algal Biomass. Biomass Bioenerg. 2014;207–224.
  • Ding GT, Yaakob Z, Takriff MS, et al. Biomass production and nutrient removal by newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill effluent (POME). Int J Hydrogen Energ. 2016;41:4888–4895.
  • Mobin S, Alam F. Biofuel production from algae utilizing wastewater. 19th Australasian Fluid Mechanics Conference; 2014. p. 1–7.
  • Rawat I, Ranjit KR, Mutanda T, et al. Duel role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energ. 2011;88:3411–3424.
  • Zainal A, Yaakob Z, Takriff MS, et al. Phycoremediation in anaerobically digested Palm Oil Mill Effluent using cyanobacterium, Spirulina platensis. J Biobased Mater Bio. 2012;6:1–6.
  • Ruiz J, Alvarev P, Arbib Z, et al. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremediat. 2011;13(9):884–896.
  • Kamarudin KF, Ding GT, Yaakob Z, et al. A review on wastewater treatment and microalgal by-product production with a prospect of palm oil mill effluent (POME) utilization for algae. Der Pharma Chemica. 2015;7(7):73–89.
  • Zeng X, Danquah MK, Chen XD, et al. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sust Energ Rev. 2011;15:3252–3260.
  • Cao X, Xiong Y, Lund J. The effects of micro-algae characteristics on the bioremediation rate of deepwater horizon crude oil. J Emerg Invest. 2013;1–7.
  • Japar AS, Takriff MS, Mohd Yasin NH. Harvesting microalgal biomass and lipid extraction for potential biofuel production: A review. J Environ Chem Eng. 2017;5:555–563.
  • Shurin JB, Burkart MD, Mayfield SP, et al. Recent progress and future challenges in algal biofuel production. Version 1 F1000Res. 2016;5:F1000. Faculty Rev-2434.
  • Hamed SM, Abd El-Rhman AA, Abdel-Raouf N, et al. I.B.M. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef University J Basic Appl Sci. 2018;7(1):104–110.
  • Demirbas A, Demirbas MF. Importance of algae oil as a source of biodiesel. Energy Convers Manage. 2011;52:163–170.
  • Garson J. Marine natural products. Nat Prod Rep. 1989;6:143–170.
  • Ghadiryanfar M, Rosentrater KA, Keyhani A, et al. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sust Energ Rev. 2016;54:473–481.
  • Yang Y, Chai Z, Wang Q, et al. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Research. 2015;9:236–244.
  • Wells ML, Potin P, Craigie JS, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29(2):949–982.
  • Nedumaran T. Seaweed: A Fertilizer for Sustainable Agriculture. Sust Agrcult Towards Food Security. 2017;159–174.
  • Smit AJ. Medicinal and pharmaceutical uses of seaweed natural products: A review. J Appl Phycol. 2004;16:245–262.
  • Hosikian A, Lim S, Halim R, et al. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects. Int J Chem Eng. 2010;1–11.
  • Wetzel RG. Limnology: lake and river ecosystems. San Diego: Academic Press; 2001. p. 106.
  • Mark Cock J, Peters AF, Coelho SM. Brown Algae. Current Biol. 2011;21(15):1–3.
  • Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6(33):1–34.
  • Kadam SU, Tiwari BK, O'donnell CP. Application of novel extraction technologies for bioactives from marine algae. J Agricult Food Chem. 2013;61:4667–4675.
  • Raja A, Vipin C, Aiyappan A. Biological importance of marine algae - An overview. Int J Current Microbiol Appl Sci. 2013;2(5):222–227.
  • Campbell NA, Reece JB. Biology. Seventh Ed. ed. San Francisco: Pearson Education, Inc. Benjamin Cummings; 2005.
  • Doi H. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. population. Ecology. 2009;51:57–64.
  • Chen F, Chen GQ. Growing phototrophic cells without light, Biotechnol Lett. 2006;28:607–616.
  • Atia A, Saad A. Review on Freshwater Blue-Green Algae (Cyanobacteria): Occurrence, Classification and Toxicology. Biosci Biotechnol Res Asia. 2014;11(3):1319–1325.
  • Ashby MK, Houmard J, Mullineaux CW. The ycf27 genes from cyanobacteria and eukaryotic algae: distribution and implications for chloroplast evolution. FEMS Microbiol Lett. 2002;214(1):25–30.
  • Beardall J, Raven JA. Cyanobacterai vs green algae: which group has the edge? J. Exp Bot. 2017;68(14):3697–3699.
  • Singh SV, Ming Z, Fennell PS, et al. Progress in biofuel production from gasification. Prog Energ Combust Sci. 2017;61:189–248.
  • Paerla H. The cyanobacterial nitrogen fixation paradox in natural waters. Version 1. F1000 Res. 2017;6:244.
  • Singh JS, Kumar A, Rai AN, et al. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front Microbiol. 2016;7:529.
  • Talaro KP. Foundations in microbiology. Basic Principle, Sixth Ed ed. New York: McGraw-Hill; 2009. p. 809.
  • Sakai N, Sakamoto Y, Kishimoto N, et al. Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manage. 1995;6(6-9):693–696.
  • Satpati GG, Barman N, Chakraborty T, et al. Unusual habitat of algae. J Algal Biomass Utln. 2011;2(4):50–52.
  • Sharma OP. Textbook of Algae. McGraw Hill; 1986.
  • Williams WE, Gorton HL, Vogelmann TC. Surface gas-exchange processes of snow algae. Proc Natl Acad Sci USA. 2003;100(2):562–566.
  • Long H, Lia X, Wanga H, et al. Biomass resources and their bioenergy potential estimation: A review. Renew Sust Energ Rev. 2013;26:344–352.
  • Popa VI. Biomass as renewable raw material to obtain bioproducts of high-tech value. Biomass Fuels Biomat. 2018;1–37.
  • Abdeshahian P, Dashti MG, Kalil MS, et al. Production of biofuel using biomass as a sustainable biological resource. Biotechnol. 2010;9:274–282.
  • Araújo K, Mahajan D, Kerr R, et al. Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development. Agriculture. 2017;7(4): 32:1–22.
  • Quinn JC, Smith TG, Downes CM, et al. Microalgae to biofuels lifecycle assessment – Multiple pathway evaluation. Algal Research. 2014;4:116–122.
  • Stanley MS, Day JG. Algal Bioenergy. Article. Chichester: John Wiley & Sons, Ltd; 2014.
  • Chisti Y. Biodiesel from microalgae. Biotecnol Adv. 2007;25:294–306.
  • Khan S, Siddique R, Sajjad W, et al. Biodiesel production from algae to overcome the energy crisis. HAYATI J Biosci. 2017;24(4):163–167.
  • Quinn JC, Smith TG, Downes CM, et al. Microalgae to biofuels lifecycle assessment – Multiple pathway evaluation. Algal Research. 2014;4:116–122.
  • Bisth TS, Panwar A, Pandey M, et al. Algal biofuel and their impact on agriculture and environment. Int J Current Microbiol Appl Sci. 2015;4(10):586–604.
  • Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol. 1999;70:313–321.
  • Rodolfi L, Zittelli CG, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–112.
  • Slade R, Bauen A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 2013;53:29–38.
  • Chisti Y. Large-scale production of algal biomass: raceway ponds. Algae Biotechnol. 2016;21–40.
  • de Vree JH, Bosma R, Janssen M, et al. Comparison of four outdoor pilot-scale photobioreactors. Biotechnol. Biofuels. 2015;8:215.
  • Grima EM, Fernandez FGA, Camacho FG, et al. Photobioreactors: light regime, mass transfer and scaleup. J Biotechnol. 1999;70:231–247.
  • Mirón AS, Gómez AC, Camacho FG, et al. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol. 1999;70:249–270.
  • Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57:287–293.
  • Wen X, Du K, Wang Z, et al. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1 Biotechnol Biofuels. 2016;9:123.
  • Chen C-Y, Yeh K-L, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol. 2011;102:71–81.
  • Huang Q, Jiang F, Wang L, et al. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering. 2017;3(3):318–329.
  • Placzek M, Patyna A, Witczak S. Technical evaluation of photobioreactors for microalgae cultivation. E3S Web of Conferences. 2017;19:1–10.
  • Wasanasathiana A, Penga CA. Chapter 19 – Algal Photobioreactor for Production of Lutein and Zeaxanthin. Bioprocessing for Value-Added Products from Renewable Resources. New Technol Appl. 2007;491–505.
  • Christiansen KT. Cost structures and life cycle impacts of algal biomass and biofuel production. Graduate thesis and dissertations. Iowa State University; 2011. p. 1–182.
  • Ullah K, Ahmad M, Vinod S, et al. Algal biomass as a global source of transport fuels: Overview and development perspectives. Prog Nat Sci: Mat Int. 2014;24(4):329–339.
  • Show PL, Tang MSY, Nagarajan D, et al. A Holistic Approach to Managing Microalgae for Biofuel Applications. Int J molecular sci. 2017;18(215):1–34.
  • Kroumov AD, Módenes AN, Trigueros DEG, et al. A systems approach for CO2 fixation from flue gas by microalgae - Theory review. Process Biochemist. 2016;51(11):1817–1832.
  • Chu W-L. Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European J Phycol. 2017;52:419–437.
  • Lammers PJ, Huesemann M, Boeing W, et al. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Res. 2017;22:166–186.
  • Muylaert K, Beuckels A, Depraetere O, et al. Wastewater as a Source of Nutrients for Microalgae Biomass Production. Biomass and Biofuels from Microalgae. 2015;75–94.
  • Nazari F, Raheb J. Genetic engineering of microalgae for enhanced biodiesel production suitable fuel replacement of fossil fuel as a novel energy source. American J Life Sci. 2015;3(1):32–41.
  • Cuellar-Bermudez SP, Romero-Ogawa MA, Vannela R, et al. Effects of light intensity and carbon dioxide on lipids and fatty acids produced by Synechocystis sp. PCC6803 during continuous flow. Algal Research. 2015;12:10–16.
  • Dong T, Knoshaug EP, Davis R, et al. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Research. 2016;19:316–323.
  • Moreno-Garcia L, Adjallé K, Barnabé S, et al. Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renew Sust Energ Rev. 2017;76:493–506.
  • Trivedi J, Aila M, Bangwal DP, et al. Algae based biorefinery – How to make sense ? Renew Sust Energ Rev. 2015;47:295–307.
  • Banerjee N, Ramakrishnan R, Jash T. Biodiesel production from used vegetable oil collected from shops selling fritters in Kolkata. Energ Procedia. 2014;54:161–165.
  • Demirbas A, Bafail A, Ahmad W, et al. Biodiesel production from non-edible plant oils. Energ Explor Exploit. 2016;34(2):290–318.
  • Adewale P, Dumont MJ, Ngadi M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew Sust Energ Rev. 2015;45:574–588.
  • Raqeeb MA, Bhargavi R. Biodiesel production from waste cooking oil. J Chem Pharmaceut Res. 2015;7(12):670–681.
  • Singh K, Kaloni D, Gaur S, et al. Current research and perspectives on microalgae-derived biodiesel. Biofuels. 2017;1–19.
  • Banerjee A, Sharma R, Chisti Y, et al. Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Critical Rev Biotechnol. 2002;22(3):245–279.
  • Metzger P, Largeau C. Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol. 2005;66(5):486–496.
  • Sharmin T, Monirul Hasan CM, Aftabuddin S, et al. Growth, Fatty Acid, and Lipid Composition of Marine Microalgae Skeletonema costatum Available in Bangladesh Coast: Consideration as Biodiesel Feedstock. J Mar Biol. 2016;1–8.
  • Bahadar A, Khan MB. Progress in energy from microalgae: A review. Renew Sust Energ Rev. 2013;27:128–148.
  • Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renew Energ. 2009;34:1–5.
  • Benemann JR, Goebel RP, Weissman JC, Augenstein DC. Microalgae as a source of liquid fuels. Final technical report to US Dept. of Energy, Washington DC; 1982.
  • Ben‐Amotz A, Tornabene TG, Thomas WH. Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol. 1985;21(1).
  • Mohapatra PK. Biotechnological approaches to microalga culture. Textbook of environmental biotechnology. New Delhi, India: IK International Publishing House PVT. LTD.; 2006. p. 167–200.
  • Xiong W, Li X, Xiang J, et al. High density fermentation of microalgae chlorella prothecoides in bioreactor for biodiesel production. Appl Microbiol Biotechnol. 2008;78:29–36.
  • Gouveia L, Oliveira AC. Microalgae as raw material for biofuel production. J Industrial Microbial Biotechnol. 2009;36:269–274.
  • Tsukahara K, Sawayama S. Liquid fuel production using microalgae. J Japan Petroleum Institute. 2005;48:251–259.
  • Leonardi PI, Popovich CA, Damiani MC. Feedstocks for second-generation biodiesel: microalgae's biology and oil composition. In: Dos Santos Bernardes MA editor. Croatia: Economic Effects of Biofuel Production; 2011.
  • Wahidin S, Idris A, Muhamad Shaleh SR. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technol. 2013;129:7–11.
  • Tornabene TG, Holzer G, Lien S, et al. Lipid composition of the nitrogen starved green Neochloris oleabundans. Enzyme Microbial Technol. 1983;5:435–440.
  • Yodsuwan N, Sawayama S, Sirisansaneeyaku S. Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agricult Nat Resources. 2017;51(3):190–197.
  • Becker EW. Microalgae: biotechnology and microbiology. Cambridge U.K.: Cambridge University Press; 1994.
  • Demirbas A, Demirbas MF. Algae energy: algae as a new source of biodiesel. London: Springer-Verlag; 2010.
  • Huntley ME, Redalje DG. CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigat adapt Strategy of Global Change. 2007;12:573–608.
  • Cui N. Biomethane as transport fuel. A study on upgrading technologies and biomethane potential in Finland. Thesis. Novia; 2015. p. 1–57.
  • Shah MS, Halder PK, Shamsuzzaman SM, et al. Perspectives biogas conversion into bio-CNG for automobile fuel in Bangladesh. J Renew Energy. 2017;1–15.
  • Achinas S, Achinas V, Euverink GJW. A technological overview of biogas production from biowaste. Engineering. 2017;3(3):299–307.
  • Montingelli ME, Tedesco S, Olabi AG. Biogas production from algal biomass: a review. Renew Sust Energ Rev. 2015;43:961–972.
  • Bagi Z, Ács N, Böjti T, et al. Biomethane: The energy storage, platform chemical and greenhouse gas mitigation target. Anaerobe. 2017;46:13–22.
  • Jankowska E, Sahu AK, Oleskowicz-Popi P. Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sust Energ Rev. 2017;75:692–709.
  • Ward AJ, Lewis DM, Green FB. Anaerobic digestion of algal biomass: A review. Algal Research. 2014;5:204–214.
  • Lakkala A. Biomass-based energy carriers in iron and steel industry: techno-economic assessment of thermochemical conversion technologies. Thesis. University of Oulu. Faculty of Technology; 2016. p. 1–27.
  • Ueda R, Hirayama S, Sugata K, et al. Process for the production of ethanol from microalgae. US Patent. 1996;5:472–578.
  • Chen C-Y, Zhao X-Q, Yen H-W, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2012;1–41.
  • El-Dalatony MM, Salama E-S, Kurade MB, et al. Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: A review. Energies. 2017;10:1–19.
  • Honig V, Kotek M, Marik J. Use of butanol as a fuel for internal combustion engines. Agronomy research. 2014;12(2):333–340.
  • da SilvaTrindade WR, dosSantos RG. Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renew Sust Energ Rev. 2017;69:642–651.
  • Benemann J. Microalgae for biofuels and animal feeds. Energies. 2013;6:5869–5886.
  • Maizatul AY, Radin Mohamed RMS, Al-Gheethi AA, et al. An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater. Int Aquatic Resour. 2017;9:177–193.
  • Dineshkumar R, Kumaravel R, Gopalsamy J, et al. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste and Biomass Valorization. 2017;1–8.
  • Becker W. Microalgae in human and animal nutrition. In: Richmond A editor. Handbook of microalgal culture. Oxford: Blackwell; 2004. p. 312–351.
  • Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Mar Drugs. 2011;9:625–644.
  • Mobin S, Alam F. Some promising microalgal species for commercial applications: A review. Energ Procedia. 2017;110:510–517.
  • Pandey JP, Pathak N, Tiwari A. Standardization of pH and light intensity for the biomass production of spirulina platensis. J Algal Biomass Utilization. 2010;1(2):93–102.
  • Gong XD, Chen F. Optimization of culture medium for growth of Haematococcus pluvialis. J Appl Phycol. 1997;9:437–444.
  • Montserrat S, Inaki R, Francois O, et al. Application of factorial design to the optimization of medium composition in batch cultures of Streptomyces lividans TK21 producing a hybrid antibiotic. Biotechnol Lett. 1993;15:559–564.
  • Borowitzka MA. Culturing microalgae in outdoor ponds. In: Anderson RA editor. Algal culturing techniques. 1st Edn ed. Burlington, USA: Elsevier; 2005. p. 205–219.
  • Hannon M, Gimpel J, Tran M, et al. Biofuels from algae: challenges and potential. Biofuels. 2010;1(5):763–784.
  • Yuvraj, Padmanabhan P. Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors. Biotech. 2017;7(2):119.
  • Mueller B, den Haan J, Visser PM, et al. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Reports. 2016;6:1–9.
  • Al-Qasmi M, Raut N, Talebi S, et al. A review of effect of light on microalgae growth. Proc World Congress on Eng. 2012;1:1–3.
  • Patil S, Pandit R, Lali A. Response of algae to high light exposure: prerequisite for species selection for outdoor cultivation. J Algal Biomass Utilization. 2017;8(1):75–83.
  • Singh SP, Singh P. Effect of temperature and light on the growth of algae species: A review. Renew Sust Energ Rev. 2015;50:431–444.
  • Azov Y. Effect of pH on inorganic carbon uptake in algal cultures. Appl Environ Microbiol. 1986;43(6):1300–1306.
  • Gong Q, Feng Y, Kang L, et al. Effects of light and ph on cell density of chlorella vulgaris. Energ Procedia. 2014;61:2012–2015.
  • San L, Long T, Liu CK. Algal bioproductivity in turbulent water: an experimental study. Water. 2017;9:1–9.
  • Breuer F, Janz P, Farrelly E, et al. Environmental and structural factors influencing algal communities in small streams and ditches in central Germany. J Freshwater Ecol. 2016;32(1):65–83.
  • Mata TM, Melo AC, Simoes M, et al. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol. 2012;107:151–158.
  • Roleda MY, Slocombe SP, Leakey RJG, et al. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol. 2013;1(29):439–449.
  • Vasumathi KK, Premalatha M, Subramaniam P. Parameters influencing the design of photobioreactor for the growth of microalgae. Renew Sust Energ Rev. 2012;16:5443–5450.
  • Wu LF, Chen PC, Lee CM. The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeter Biodegr. 2013;85:506–510.
  • Zhu LD, Li ZH, Hiltunen E. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. Biomed Res Int. 2016;8792548.
  • Cebrucean D, Cebrucean V, Ionel. I. CO2 capture and storage from fossil feul power plants. Energ Procedia. 2014;63:18–26.
  • Brierley AS, Kingsford MJ. Impacts of Climate Change on Marine Organisms and Ecosystems. Current Biol. 2009;19(14):R602–R614.
  • Ghorani-azam A, Riadhi-zanjani B, Balali-mohod M. Effects of air pollution on human health and practical measures for prevention in Iran. J Research Medical Sci. 2016;21:65.
  • Chiu SY, Kao CY, Chen CH, et al. Reduction of CO2 by a high density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol. 2008;3389–3396.
  • Bilanovic D, Holland M, Armon R. Microalgal CO2 sequestering – Modelling microalgae production costs. Energ Conserv manage. 2012;58:104–109.
  • Richmond A. Handbook of microalgae culture. Biotechnology and applied phycology. Blackwell Science Ltd; 2004.
  • Singh SP, Singh P. Effects of CO2 concerntration on algal growth: A review. Renew Sust Energy Rev. 2014;38:172–179.
  • Sydney EB, Strum W, de Carvalho JC, et al. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 2010;101:5892–5896.
  • Roberts DA, de Nys R, Paul NA. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications. PLoS One. 2013;8(11):1–12.
  • Cheng L, Zhang L, Chen H, et al. Carbon dioxide removal from air by microalgae cultured in a membrane photobioreactor. Sep Purif Technol. 2006;50:324–329.
  • Coward T, Lee JGM, Caldwell GS. The effect of bubble size on the efficiency and economics of harvesting microalgae by foam flotation. J Appl Phycol. 2015;27(2):733–742.
  • Schipper K, Van Der Gijp S, van der Stel R, et al. New methodologies for the integration of power plants with algae ponds. Energ Procedia. 2013;37:6687–6695.
  • Langley NM, Harrison STL, van Hille RP. A critical evaluation of CO2 supplementation to algal systems by direct injection. Biochem Eng J. 2012;68:70–75.
  • Murray KE, Shields JA, Garcia ND, et al. Productivity, carbon utilization and energy content of mass in scalable microalgae systems. Bioresour Technol. 2012;114:499–506.
  • Eloka-Eboka AC, Inambao FL. Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl Energ. 2017;195:1100–1111.
  • Fogg GE. Algal cultures and phytoplankton ecology. 2nd edition. Madison, Winconsin: The University of Wisconsin Press; 1975.
  • Dammak M, Hadrich B, Miladi R, et al. Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. Lipids Health Dis. 2017;16:41.
  • Fields MW, Hise A, Lohman EJ, et al. Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biotechnol. 2014;98(11):4805–4816.
  • Juneja A, Ceballos RM, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae biofuels production: A review. Energies. 2013;6:4607–4638.
  • Müller MN, Trull TW, Hallegraeff GM. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi. The ISME J. 2017;11:1777–1787.
  • Dodds WK, Smith VH. Nitrogen, phosphorus and eutrophication in streams. Inland Waters. 2016;6(2):155–164.
  • Pitois S, Jackson MH, Wood BJB. Sources of the Eutrophication problems associated with toxic algae: An overview. J Environ Health. 2001;64:5–25.
  • Taylor DI, Nixon SW, Granger SL, et al. Responses of coastal lagoon plant communities to different forms of nutrient enrichment - a mesocosm experiment. Aquat Bot. 1995;52:19–34.
  • Thompson GA. Lipids and membrane function in green algae. Biochem Biophy Acta. 1996;1302:17–45.
  • Oncel SS. Microalgae for macroenergy world. Renew Sust Energ Rev. 2013;26:241–264.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstock for biofuelproduction: Perspectives and advances. Plant J. 2008;54:621–639.
  • El-Sheekh MM, Bedaiwy MY, Osman ME, et al. Mixotrophic and heterothrophic growth of some microalgae using extract of fungal-treated wheat bran. Int J Recycling of Organic Waste in Agriculture. 2012;1(12):1–9.
  • Gultom SO, Hu B. Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies. 2013;6(11):5921–5939.
  • Brar A, Kumar M, Vivekanand V, et al. Photoautotrophic microorganisms and bioremediation of industrial effluents: Current status and future prospects. Biotechnol. 2017;7:1–8.
  • Mioa X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol. 2006;97:841–846.
  • Cui H, Meng F, Li F, et al. Two-stage mixotrophic cultivation for enhancing the biomass and lipid productivity of Chlorella vulgaris. AMB Express. 2017;7:187.
  • Oliveira O, Gianesella S, Silva V, et al. Lipid and carbohydrate profile of a microalga isolated from wastewater. Energ Procedia. 2017;136:468–473.
  • Marquez FJ, Nishio N, Nagai S, et al. Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J Chem Technol Biotechnol. 1995;62:159–164.
  • Martinez ME, Camacho F, Jimenez JM, et al. Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochem. 1997;32(3):93–98.
  • Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516.
  • Agiman N, Cetin AK. Effect of nitrogen limitation on growth, total lipid accumulation and protein mount in scenedesmus acutus as biofuel reactor candidate. Nat Sci Discovery. 2017;3(3):33–38.
  • Fakhry EM, El Maghraby DM. Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Botanical Studies. 2015;56(6):1–8.
  • Kaplan D, Richmond A, Dubinsky Z, et al. Chapter 6 Algal nutrition, Handbook of microalgal mass culture. Richmond A editor. Boca Raton, FL: CRC Press; 1986. p. 147–198.
  • Admiraal W. Tolerance of estuarine benthic diatoms to high concentration of ammonia, nitrite ion, nitrate ion, and orthophosphate. Mar Biol. 1977;43:307–315.
  • Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol. 2009;100:3921–3926.
  • Welsh DT, Bartoli M, Nizzoli D, et al. Denitrification, nitrogen fixation, community primary productivity and inorganic – N and Oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser. 2000;208:65–77.
  • Brennan L, Owende P. Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14(2):557–577.
  • Widjaja A, Chien C, Ju Y. Study of increasing lipid production from fresh water microalga Chlorella vulgaris. J Taiwan Inst Chem Eng. 2009;40:13–20.
  • Illman AM, Scragg AH, Shales SW. Increase in Chlorella strain calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology. 2000;27:631–635.
  • Solovchenko A, Khozin-Goldberg I, Didi-cohen S, et al. Effect of light and nitrogen starvation on the content and composition of carotenoids of green microalga Parietochloris incisa. Russian J Plant Physiol. 2008;55:455–462.
  • Zhao L-S, Li K, Wang Q-M, et al. Nitrogen Starvation Impacts the Photosynthetic Performance of Porphyridium cruentum as Revealed by Chlorophyll a Fluorescence. Scientific Reports. 2017;7:1–11.
  • González LE, Cańizaresb RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphis. Bioresour Technol. 1997;60:259–262.
  • Brembu T, Muhlroth A, Alipanah L, et al. The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Trans Royal Society B. 2017;372:1–10.
  • Celekli A, Yavuzatmaca M, Bozkurt H. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresour Technol. 2009;100(14):3625–3629.
  • Li X, Hu HY, Gan K, et al. Effects of different nitrogen and phosphorus concentratios on the growth, nutrient uptake and lipid accumulation of a freshwater microalga scenedesmus sp. Bioresour Technol. 2010;101:5494–5500.
  • Correll DL. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J Environ Qual. 1998;27:261–266.
  • Nesbitt JB. Phosphorus in wastewater treatment. In: Griffith EJ, Beeton A, Spencer JM, Mitchell DT, editors. Environmental phosphorus handbook. New York: Wiley; 1973. p. 649–668.
  • Zhang XF, Mei XY. Effects of benthic algae on release of soluble reactive phosphorus from sediments: a radioisotope tracing study. Water Sci Eng. 2015;8(2):127–131.
  • Einicker-Lamas M, Mezian GA, Fernandes TB, et al. Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut. 2002;120:779–786.
  • Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72.
  • Bilal M, Rasheed T, Sosa-Hernandez JE, et al. Biosorption: An interplay between marine algae and potentially toxic elements – a review. Mar drugs. 2018;16(65):1–16.
  • Volesky B. Biosorbent materials. Biotechnology and Bioengineering Symposium. 1986;16:121–126.
  • Perrine Z, Negi S, Sayre RT. Optimization of photosynthetic light energy utilization by microalgae. Algal Res. 2012;1:134–142.
  • Cepak V, Pribyl P, Vitova M. The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus. Folia Microbiol. 2006;51(4):342–348.
  • Yun YS, Park JM. Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Appl Microbiol Biotechnol. 2001;55(6):765–770.
  • Difusa A, Talukdar J, Kalita MC, et al. Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels. 2015;37–44.
  • Borowitzka MA. Chapter 12 Limits to growth. Wastewater treatment with algae. Wong YS, Tam NFY, editors. Berlin, Heidelberg: Springer Verlag; 1998. p. 203–226.
  • Marchello AE, Lombardi AT, Dellamano-Oliveira MJ, et al. Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Braz J Microbiol. 2015;46(1):75–84.
  • Fontes AG, Vargas MA, Moreno J, et al. Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Biomass. 1987;13:33–43.
  • Oswald WJ. Micro-algae and waste-water treatment in Micro-algal biotechnology. Borowitzka MA, Borowitzka LJ, editors. Cambridge: Cambridge University Press; 1988. p. 305–328.
  • Carvalho AP, Silva SO, Baptista JM, et al. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol. 2011;89(5):1275–1288.
  • Lee CG. Calculation of light penetration depth in photobioreactors. Biotechnol Bioproc Eng. 1999;4:78–81.
  • Wang S-K, Stiles AR, Guo C, et al. Microalgae cultivation in photobioreactors: An overview of light characteristics. Eng Life Sci. 2014;14:550–559.
  • Park KH, Lee CG. Optimization of algal photobioreactors using flashing lights. Biotechnol Bioproc Eng. 2000;5:186–190.
  • Seepratoomrosh J, Pokethitiyook P, Meetam M, et al. The Effect of Light Stress and Other Culture Conditions on Photoinhibition and Growth of Dunaliella tertiolecta. Appl Biochem Biotechnol. 2016;178:396–407.
  • Kok B. Photosynthesis in flashing light. Acta. 1956;21:245–258.
  • Phillips JN, Myers J. Growth rate of Chlorella in flashing light. Plant Physiol. 1954;29:152–161.
  • Hsia SY, Yang SK. Enhancing algal growth by stimulation with LED lighting and ultrasound. J Nanomater. 2015;1–11.
  • Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research. 2006;45:160–186.
  • Morgan-Kiss RM, Priscu JC, Pocock T, et al. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Molecular boil Rev. 2006;70:222–252.
  • Huesemann M, Crowe B, Waller P, et al. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Research. 2016;13:195–206.
  • Chinnasamy S, Ramakrishnan B, Bhatnagar A, et al. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int J Molecular Sci. 2009;10(2):518–532.
  • Rai SV, Rajashekhar M. Effect pf pH, salinity and temperature on the growth of six species of marine phytoplankton. J Algal Biomass Utln. 2014;5(4):55–59.
  • Talling J. Temperature increase - an uncertain stimulant of algal growth and primary production in freshwaters. Freshwater Rev. 2012;5(2):73–84.
  • Converti A, Casazza AA, Ortiz EY, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Processes. 2009;48(6):1146–1151.
  • Goldman JC, Azov Y, Riley CB, et al. The effect of pH in intensive cultures. I Biomass regulation. J Exp Mar Biol Ecol. 1982;57:1–13.
  • Wang L, Wang X, Jin X, et al. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor. Saudi J Biol Sci. 2017;24(3):556–562.
  • Grobbelaar JU. Open semi-defined systems for outdoor mass culture of algae in Wastewater for aquaculture. Bloemfontein, South Africa: University of the OFS Publication, Series C, No. 3; 1981.
  • Chen CY, Durbin EG. Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar Ecol Prog Ser. 1994;109:83–94.
  • del Ninno MP. Investigation of turbulent multiphase flows in a flat panel photobioreactor and consequent effect son microalgae cultivation; using computational fluid dynamics (CFD) simulation and partical image velocimetry (PIV). Graduate thesis and dissertation at Iowa State University. Iowa, USA; 2012. p. 1–59.
  • Oswald WJ, Benemann JR, Koopman BL. Production of biomass from fresh water aquatic systems. Concepts of large-scale bioconversion systems using microalgae. In: Proceedings of fuels from biomass symposium. Champaign, Ill: Univ of Ill.; 1977. p. 59–81.
  • Shelef G, Moraine R, Berner T, et al. Solar energy conversion via algal wastewater treatment and protein production. In: Proc Fourth Int Congr Photosynthesis. 1977. p. 657–675.
  • Ugwu CU, Aoyagi H. Microalgal culture systems: an insight into their designs, operation and applications. Biotechnology. 2012;11(3):127–132.
  • Persoone G, Morales J, Verlet H, et al. Air lift pumps and the effect of mixing on algal growth. Algae Biomass. 1980:505–522.
  • Richmond A. Spirulina. In: Borowitzka MA, Borowitzka L, editors. Micro-algal Biotechnology. Cambridge UP, NY; 1988 p. 85–121.
  • Fogg GE, Than-Tun. Interrelations of photosynthesis and assimilation of elementary nitrogen in a blue-green alga. Proc R Soc London. 1960;B153:111–127.
  • Jiménez C, Mercado J, Aguilera J, et al. Effect of turbulence and inorganic carbon supply on growth of Dunaliella viridis Teodoresco. Int J Salt Lake Research. 1995;4(3):223–232.
  • Lei Y, Long TY, San L, et al. Effects of turbulent fluctuation intensity on the growth of algae and water environment. Huan Jing Ke Xue. 2013;34(5):1761–1766.
  • Kilham S, Kreeger D, Goulden C, et al. Effect of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biol. 1997;38:591–596.
  • Kalacheva G, Zhila N, Dominguez A, et al. The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinous culture. World J Microbiol Biotechnol. 2004;20:31–35.
  • Visvki I, Palladino J. Growth and cytology on Chlamydomonas acidophila under acidic stress. Bull Environ Contamination Toxicol. 2001;66:623–630.
  • Sato N, Hagio M, Wada H, et al. Environmental effects on acidic lipids of thylakoid membranes. Biochem Society Trans. 2000;28:912–979.
  • Dean AP, Sigee DC, Estrada B, et al. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol. 2010;101:4499–4507.
  • Matthew T, Zhou W, Rupprecht J, et al. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by Sulfur depletion. J Biological Chem. 2009;284(35):23415–23425.
  • Moroney JV, Tolbert NE. Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiol. 1985;77:253–258.
  • Praveenkumar R, Shameera K, Mahalakshmi G, et al. Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., bum11008: Evaluation for biodiesel production. Biomass Bioenerg. 2012;37:60–66.
  • Guckert JB, Cooksey KE. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol. 1990;26:72–79.
  • Miyachi S, Kamiya A. Wavelenght effects on photosynthetic carbon metabolism in Chlorella. Plant Cell Physiol. 1978;19:277–288.
  • Converti A, Casazza AA, Ortiz EY, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Proc. 2009;48(6):1146–1151.
  • Yeh KL, Chang JS. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Biotechnol J. 2011;6:1358–1366.
  • Khan SA, Hussain RMZ, Prasad S, et al. Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev. 2009;13:2361–2372.
  • Joh T, Yoshida T, Yoshimoto M, et al. Composition and positional distribution of fatty acids in polar lipids from Chlorella ellipsoidea differing in chilling susceptibility and frost hardening. Physiologia Plantarum. 1993;89:285–290.
  • Liu BH, Lee YK. Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol. 2000;12:301–307.
  • Muradyan E, Klyachko-Gurvich G, Tsoglin L, et al. Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russian J Plant Physiol. 2004;51:53–62.
  • Greene RM, Geider RJ, Kolber Z, et al. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol. 1992;100:565–575.
  • Gordillo FJL, Goutx M, Figueroa FL, et al. Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol. 1998;10:135–144.
  • Tjahjono AE, Hayama Y, Kakizono T, et al. Hyper-accumulation of astaxantin in a green algal Haematococcus pluvialis at elevated temperatures. Biotechnol Lett. 1994;16:133–138.
  • Borowitzka MA, Huisman JM, Osborn A. Culture of astaxanthin-producing green alga Haematococcus pluvialis. Effects of nutrients on growth and cell type. J Appl Phycol. 1991;3:295–304.
  • Kobayashi M, Kakizono T, Nagai S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol. 1993;59:867–873.
  • Sukenik A, Carmeli Y, Berner T. Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Appl Phycol. 1989;25:686–692.
  • Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008;81(4):629–636.
  • Xin L, Hu H-Y, Gan K, et al. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101(14):5494–5500.
  • Bruton T, Lyons H, Lerat Y, et al. 2009. A Review of the potential of marine algae as a source of biofuel in Ireland. Report prepared for Sustainable Energy Ireland. 2009:1–92.
  • Slocombe SP, Zhang QY, Black, KD, et al. Determination of oil yields using a high-throughput screen for algal biofuels. J Appl Phycol. 2013;25:961–972.
  • Weldy CS, Huesemann M. Lipid production by Dunaliela salina in batch culture: Effects of nitrogen limitation and light intensity. J Undergrad Research VII. 2007:115–122.
  • Moazami N, Ranjbar R, Ashori A, et al. Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Eng. 2011;35:1935–1939.
  • Sikarwar VS, Zhao M, Paul SF, et al. Progress in biofuel production from gasification. Prog Energ Combust Sci. 2017;61:189–248.
  • Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies. 2012;5:1532–1553.
  • Azoy Y. Effect of pH on inorganic carbon uptake in algal cultures. Appl Environ Microbiol. 1982;43(6):1300–1306.
  • Fuentes-Grunewald C, Garces E, Alacid E, et al. Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. J Ind Microbiol Biotechnol. 2012;39:207–216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.