275
Views
8
CrossRef citations to date
0
Altmetric
Articles

Conversion of levulinic acid and cellulose to γ-valerolactone over Raney-Ni catalyst using formic acid as a hydrogen donor

ORCID Icon, , , ORCID Icon &
Pages 423-427 | Received 20 Dec 2017, Accepted 10 May 2018, Published online: 27 Oct 2018

References

  • Ruppert AM, Jędrzejczyk M, Sneka-Płatek O, et al. Ru catalysts for levulinic acid hydrogenation with formic acid as a hydrogen source. Green Chem. 2016;18(7):2014–2028.
  • Omoruyi U, Page S, Hallett J, et al. Homogeneous catalyzed reactions of levulinic acid: to γ‐valerolactone and beyond. ChemSusChem. 2016;9(16):2037–2047.
  • Wei J, Tang X, Sun Y, et al. Applications of novel biomass-derived platform molecule γ-valerolactone. Progress Chem. 2016;28(11):1672–1681.
  • Yan K, Yang Y, Chai J, et al. Catalytic reactions of gamma-valerolactone: a platform to fuels and value-added chemicals. App Catal B: Environ. 2015;179:292–304.
  • Yan K, Jarvis C, Gu J, et al. Production and catalytic transformation of levulinic acid: a platform for speciality chemicals and fuels. Renew Sustain Energ Rev. 2015;51:986–997.
  • Horvath IT, Mehdi H, Fabos V, et al. γ–Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chem. 2008;10(2):238–242.
  • Tang X, Zeng X, Li Z, et al. Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew Sustain Energ Rev. 2014;40:608–620.
  • Obregón I, Gandarias I, Ocio A, et al. Structure-activity relationships of Ni-Cu/Al2O3 catalysts for γ-valerolactone conversion to 2-methyltetrahydrofuran. App Catal B: Environ. 2017;210:328–341.
  • Xin J, Yan D, Ayodele O, et al. Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid. Green Chem. 2015;17(2):1065–1070.
  • He J, Wang Z, Zhao W, et al. Catalytic upgrading of biomass-derived γ-valerolactone to biofuels and valuable chemicals. Current Catal. 2017;6(1):31–41.
  • Gürbüz EI, Alonso DM, Bond JQ, et al. Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels. ChemSusChem. 2011;4(3):357–361.
  • Bond JQ, Alonso DM, Wang D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science. 2010;327(5969):1110–1114.
  • Zhao Y, Fu Y, Guo Q-X. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass. Bioresource Technol. 2012;114:740–744.
  • Yan K, Lafleur T, Wu X, et al. Cascade upgrading of γ-valerolactone to biofuels. Chem Commun. 2015;51(32):6984–6987.
  • Zhang J, Wu S, Li B, et al. Advances in the catalytic production of valuable levulinic acid derivatives. ChemCatChem. 2012;4(9):1230–1237.
  • Yan K, Lafleur T, Jarvis C, et al. Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst. J Clean Product. 2014;72:230–232.
  • Yan K, Lafleur T, Wu G, et al. Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles. Appl Catal A: Gen. 2013;468:52–58.
  • Ortiz-Cervantes C, García JJ. Hydrogenation of levulinic acid to γ-valerolactone using ruthenium nanoparticles. Inorg Chim Acta. 2013;397:124–128.
  • Du X, Liu Y, Wang J, et al. Catalytic conversion of biomass-derived levulinic acid into γ-valerolactone using iridium nanoparticles supported on carbon nanotubes. Chinese J Catal. 2013;34(5):993–1001.
  • Sudhakar M, Lakshmi Kantam M, Swarna Jaya V, et al. Hydroxyapatite as a novel support for Ru in the hydrogenation of levulinic acid to γ-valerolactone. Catal Commun. 2014;50:101–104.
  • Yao Y, Wang Z, Zhao S, et al. A stable and effective Ru/polyethersulfone catalyst for levulinic acid hydrogenation to γ-valerolactone in aqueous solution. Catal Today. 2014;234:245–250.
  • Tang X, Chen H, Hu L, et al. Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Appl Catal B: Environ. 2014;147:827–834.
  • Alonso DM, Wettstein SG, Dumesic JA. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013;15(3):584–595.
  • Hengne A, Kadu B, Biradar N, et al. Transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over supported Ni catalysts. RSC Adv. 2016;6(64):59753–59761.
  • Christian RV, Brown HD, Hixon RM. Derivatives of γ-valerolactone, 1,4-pentanediol and 1,4-di-(β-cyanoethoxy)-pentane1. J Am Chem Soc. 1947;69(8):1961–1963.
  • Kyrides LP, Craver JK. Process for the production of lactones. US Patent, US 2368366A; 1945.
  • Mohan V, Venkateshwarlu V, Pramod CV, et al. Vapour phase hydrocyclisation of levulinic acid to g-valerolactone over supported Ni catalysts. Catal Sci Technol. 2014;4(5):1253–1259 .
  • Patel AD, Serrano-Ruiz JC, Dumesic JA, et al. Techno-economic analysis of 5-nonanone production from levulinic acid. Chem Eng J. 2010;160(1):311–321.
  • Luo W, Deka U, Beale AM, et al. Ruthenium-catalyzed hydrogenation of levulinic acid: influence of the support and solvent on catalyst selectivity and stability. J Catal. 2013;301:175–186.
  • Obregón I, Gandarias I, Al‐Shaal MG, et al. The role of the hydrogen source on the selective production of γ‐valerolactone and 2‐methyltetrahydrofuran from levulinic acid. ChemSusChem. 2016;9(17):2488–2495.
  • Yang Z, Huang Y-B, Guo Q-X, et al. Raney Ni catalyzed transfer hydrogenation of levulinate esters to g-valerolactone at room temperature. Chem Commun. 2013;49(46):5328–5330 .
  • Feng J, Gu X, Xue Y, et al. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source. Sci Total Environ. 2018;633:426–432.
  • Geboers J, Wang X, de Carvalho AB, et al. Densification of biorefinery schemes by H-transfer with Raney Ni and 2-propanol: a case study of a potential avenue for valorization of alkyl levulinates to alkyl γ-hydroxypentanoates and γ-valerolactone. J Molecul Catal A: Chem. 2014;388–389:106–115.
  • Upare PP, Jeong M-G, Hwang YK, et al. Nickel-promoted copper–silica nanocomposite catalysts for hydrogenation of levulinic acid to lactones using formic acid as a hydrogen feeder. Appl Catal A: Gen. 2015;491:127–135.
  • Varkolu M, Raju Burri D, Rao Kamaraju SR, et al. Hydrogenation of levulinic acid using formic acid as a hydrogen source over Ni/SiO2 catalysts. Chem Eng Technol. 2017;40:719–726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.