67
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ultrasound processing of Chlorella vulgaris and a novel functional classification of power ultrasound test systems

&
Pages 503-509 | Received 04 May 2018, Accepted 11 Jun 2018, Published online: 31 Dec 2018

References

  • Adam F, Abert-Vian M, Peltier G, et al. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresource Technol. 2012;114:457–465. doi: 10.1016/j.biortech.2012.02.096.
  • Fajardo AR, Cerdán LE, Medina AR. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol. 2007;109(2):120–126. doi: 10.1002/ejlt.200600216.
  • Lee JY, Yoo C, Jun SY, et al. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technol. 2010;101 Suppl 1:S75–S77. doi: 10.1016/j.biortech.2009.03.058.
  • Balasundaram B, Harrison STL. Disruption of brewers' yeast by hydrodynamic cavitation: process variables and their influence on selective release. Biotechnol Bioeng. 2006;94(2):303–311. doi: 10.1002/bit.20878.
  • Zhao GL, Chen X, Wang L, et al. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresource Technol. 2013;128:337–344. doi: 10.1016/j.biortech.2012.10.038.
  • Luo J, Fang Z, Smith RL Jr. Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci. 2014;41:56–93. doi: 10.1016/j.pecs.2013.11.001.
  • Raso J, Mañas P, Pagán R, et al. Influence of different factors on the output power transferred into medium by ultrasound. Ultrason Sonochem. 1999;5(4):157–162. doi: http://dx.doi.org/10.1016/S1350-4177(98)00042-X.
  • Loning JM, Horst C, Hoffmann U. Investigations on the energy conversion in sonochemical processes. Ultrason Sonochem. 2002;9(3):169–179. doi: 10.1016/s1350-4177(01)00113-4.
  • Faı¨d F, Contamine F, Wilhelm AM, et al. Comparison of ultrasound effects in different reactors at 20 kHz. Ultrason Sonochem. 1998;5(3):119–124. doi: http://dx.doi.org/10.1016/S1350-4177(98)00009-1.
  • Contamine RF, Wilhelm AM, Berlan J, et al. Power measurement in sonochemistry. Ultrason Sonochem. 1995;2(1):S43–S47. doi: http://dx.doi.org/10.1016/1350-4177(94)00010-P.
  • Santos HM, Lodeiro C, Capelo-Martínez J-L. The Power of Ultrasound. In Ultrasound in Chemistry: Capelo-Martínez, JL, Editor Wiley-VCH Verlag GmbH & Co. Weinheim, Germany: KGaA; 2009. p. 1–16.
  • Lauterborn W, Mettin R. 3 - Acoustic cavitation: bubble dynamics in high-power ultrasonic fields. In: Gallego-Juárez JA, Graff KF, editors. Power Ultrasonics. Oxford: Woodhead Publishing; 2015. p. 37–78.
  • Sapozhnikov OA. 2 - High-intensity ultrasonic waves in fluids: nonlinear propagation and effects. In: Gallego-Juárez JA, Graff KF, editors. Power Ultrasonics. Oxford: Woodhead Publishing; 2015. p. 9–35.
  • Suslick KS, editor. Ultrasound: its chemical, physical, and biological effects. New York: VCH Publishers; 1988.
  • Louisnard O, González-García J. Acoustic Cavitation. In: Feng H, Barbosa-Cánovas GV, Weiss J, editors. Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. New York, NY: Springer; 2011. p. 13–64.
  • Ranjan A, Patil C, Moholkar VS. Mechanistic Assessment of Microalgal Lipid Extraction. Ind Eng Chem Res. 2010;49(6):2979–2985. doi: 10.1021/ie9016557.
  • Kimura T, Sakamoto T, Leveque JM, et al. Standardization of ultrasonic power for sonochemical reaction. Ultrason Sonochem. 1996;3(3):S157–S161. doi: 10.1016/s1350-4177(96)00021-1.
  • Bischoff HW, Bold HC. Some Soil Algae From Enchanted Rock and Related Algal Species. Phycological Studies IV. Austin: University of Texas; 1963. p. 1–95.
  • Yamamoto K, King PM, Wu X, et al. Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrason Sonochem. 2015;24:165–171. doi: http://dx.doi.org/10.1016/j.ultsonch.2014.11.002.
  • Petosic A, Svilar D, Ivancevic B. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Ultrason Sonochem. 2011;18(2):567–576. doi: 10.1016/j.ultsonch.2010.08.005
  • Mason TJ, Lorimer JP, Bates DM, et al. Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem. 1994;1(2):S91–S95. doi: 10.1016/1350-4177(94)90004-3.
  • Lee AK, Lewis DM, Ashman PJ. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass Bioenergy. 2012;46:89–101. doi: https://doi.org/10.1016/j.biombioe.2012.06.034.
  • Lee AK, Lewis DM, Ashman PJ. Force and energy requirement for microalgal cell disruption: an atomic force microscope evaluation. Bioresource Technol. 2013;128:199–206. doi: https://doi.org/10.1016/j.biortech.2012.10.032.
  • Follows M, Hetherington PJ, Dunnill P, et al. Release of enzymes from bakers' yeast by disruption in an industrial homogenizer. Biotechnol Bioeng. 1971;49(2):142–560. DOI: 10.1002/bit.260130408.
  • Halim R, Rupasinghe TWT, Tull DL, et al. Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresource Technol. 2013;140:53–63. doi: 10.1016/j.biortech.2013.04.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.