260
Views
11
CrossRef citations to date
0
Altmetric
Articles

Sugarcane bagasse as a novel low/no cost organic carbon source for growth of Chlorella sp. BR2

ORCID Icon, , , , , & show all
Pages 1067-1073 | Received 19 Aug 2018, Accepted 17 Jan 2019, Published online: 23 Apr 2019

References

  • Bruce ER. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100:203–212.
  • Vasudevan PT, Briggs M. Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol. 2008;35:421–430.
  • IEA. World energy outlook 2007. Paris: International Energy Agency; 2007.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  • Fernando S, Hall C, Jha S. NOx reduction from biodiesel fuels. Energy Fuels. 2006;20:376–382.
  • Rejinders L. Conditions for sustainability of biomass based fuel use. Energy Policy. 2006;34:863–876.
  • Behzadi S, Farid MM. Review: examining the use of different feedstock for the production of biodiesel. Asia-Pacific J Chem Eng. 2007;2:480–486.
  • Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res. 2008;1:20–43.
  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, et al. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 2008;19:235–240.
  • Searchinger T, Heimlich R, Houghton RA, et al. Use of U.Scroplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–1240.
  • Metting FB. Biodiversity and application of microalgae. J Ind Microbiol Biotechnol. 1996;17:477–489.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Cantrell KB, Ducey T, Ro KS, et al. Livestock waste-to-bioenergy generation opportunities. Bioresour Technol. 2008;99:7941–7953.
  • Guschina IA, Harwood JL. 2007. Complex lipid biosynthesis and its manipulation in plants. Improvement of crop plants for industrial end uses. Ranalli P. New York (NY): Springer; pp. 253–279.
  • Quinn JC, Davis R. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol. 2015;184:444–452.
  • Brasil BS, Silva FC, Siqueira F. Microalgae biorefineries: the Brazilian scenario in perspective. New Biotechnol. 2017;39(pt 1):90–98.
  • Kang Z, Kim B-H, Ramanan R, et al. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol. 2015;25:109–118.
  • Xu F, Sun J, Liub XCF, et al. Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr Res. 2006;34:253–261.
  • Cerón-García MC, Macías-Sánchez MD, Sánchez-Mirón A, et al. A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl Energy. 2013;103:341–349.
  • Santana H, Cereijo CR, Teles VC, et al. Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioresource Technol. 2017;228:133–140.
  • Wang WR, Zhou WW, Liu J, et al. Biodiesel production from hydrolysate of Cyperus esculentus waste by Ch1orella vulgaris. Bioresour Technol. 2013;136:24–29.
  • Gao CF, Zhai Y, Ding Y, et al. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy. 2010;87:756–761.
  • Miazek K, Remacle C, Richel A, et al. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresour Technol. 2017;230:122–131.
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.
  • Liguori R, Faraco V. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour Technol. 2016;215:13–20.
  • Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci. 2008;9:1621–1651.
  • Sun JX, Sun XF, Sun RC, et al. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers. 2004;56:195–204.
  • Nichols HW. Growth media–freshwater. In: Stein, J, editor. Handbook of phycological methods, culture methods and growth measurements. Cambridge: Cambridge University Press; 1973. p. 7–24.
  • Lim DKY, Garg S, Timmins M, et al. Isolation and evaluation of oil producing microalgae from subtropical coastal and brackish waters. PLoS ONE. 2012;7:40751.
  • Adarme-Vega TC, Thomas-Hall SR, Lim DKY, et al. Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Mar Drugs. 2014;12:3381–3398.
  • Sharma K, Li Y, Schenk PM. UV-C mediated lipid induction and settling, a step change towards economical microalgal biodiesel production. Green Chem. 2014;16:3539–3548.
  • Ho S, Chen HCY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:224–252.
  • Ahmed F, Fanning K, Netzel M, et al. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem. 2014;165:300–306.
  • Jeffrey SW, Humphrey GF. New spectrophotometric equations for determining chlorophyll a, b c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz. 1975;167:191–194.
  • Ma R, Thomas-Hall SR, Chua ET, et al. LED power efficiency of biomass, fatty acid and carotenoid production in Nannochloropsis microalgae. Bioresour Technol. 2018;252:118–126.
  • Lopez CVG, Garcia CC, Fernandez FGA, et al. Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol. 2010;101:7587–7591.
  • Chisti Y. Constraints to commercialization of algal fuels. J Biotechnol. 2013;167:201–214.
  • Chojnaka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol. 2004;34:461–465.
  • Wan M, Liu P, Xia J, et al. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol. 2011;91:835–844.
  • Rattanpolte P, Kaewkannetra P. Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials for lipid accumulation and biodiesel production. Appl Biochme Biotechnol. 2014;10:949–964.
  • Reddy HKY, Srijana M, Reddy MD, et al. Co-culture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol. 2010;9:1926–1934.
  • Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38:449–467.
  • Andrade MR, Costa JAV. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture. 2007;264:130–134.
  • Zheng Y, Chi Z, Lucker B, et al. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour Technol. 2012;103:484–488.
  • Abreu AP, Fernandes B, Vicente AA, et al. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol. 2012;118:61–66.
  • Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516.
  • Kong W, Song H, Cao Y, et al. The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African J Biotech. 2011;10:11620–11630.
  • Arora N, Patel A, Parul, et al. Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE). Appl Biochem Biotechnol. 2016;180:109–121.
  • Chu WL, Phang SM, Hock GS. Influence of carbon source on growth biochemical composition and pigmentation of Ankistrodesmus convolutus. J Appl Phycol. 1995;7:59–64.
  • Mu J, Li S, Chen D, et al. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Bioresour Technol. 2015;185:99–105.
  • Nguyen HC, Liang S-H, Chen S-S, et al. Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology. Energ Conversion Manag. 2018;158:168–175.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–232.
  • Thomas WH, Tornabene TG, Weissman J. Screening for lipid yielding microalgae: activities for 1983. Final subcontract report. Golden (CO): Solar Energy, Research Institute; 1984.
  • Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. J Energy Environ Sci. 2009;10:1039–1054.
  • Lin TS, Wu JY. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol. 2015;184:100–107.
  • Manzoor M, Tabssum F, Javaid H, et al. Lucrative future of microalgal biofuels in Pakistan:a review. Int J Energy Environ Eng. 2015;6:393–403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.