175
Views
5
CrossRef citations to date
0
Altmetric
Articles

Hydrothermal treatment of banana leaves for solid fuel combustion

, , , &
Pages 1123-1129 | Received 05 Jul 2018, Accepted 05 Feb 2019, Published online: 29 May 2019

References

  • Online Data of FAO, FAOSTAT. [Internet]. Crops: Banana [cited 2018 Jan 23]. Available from: http://www.fao.org/faostat/en/#data/QC/visualize
  • Guerrero AB, Ballesteros I, Ballesteros M. The potential of agricultural banana waste for bioethanol production. Fuel. 2018;213:176–185.
  • Fernandes ERF, Marangoni C, Souza O. Thermochemical characterization of banana leaves as a potential energy. Energy Convers. Manag. 2013;75:603–608.
  • Lam SS, Liew RK, Cheng CK, et al. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J. Environ. Manag. 2018;213:400–408.
  • Santa-Maria M, Ruiz-Colorado AA, Cruz G, et al. Assessing the feasibility of biofuel production from lignocellulosic banana waste in rural agricultural communities in Peru and Colombia. Bioenerg Res.. 2013; 6:1000–1011.
  • Chen H. Lignocellulose biorefinery engineering: Principles and applications. UK: Elsevier Ltd.; 2015.
  • Jena SP, Mishra S, Acharya SK, et al. An experimental approach to produce biogas from semi dried banana. Sustain. Energy Techn. and Assess. 2017;19:173–178.
  • Dong C, Wang Y, Zhang H, et al. Feasibility of high concentration cellulosic bioethanol production from undetoxified whole Monterey pine slurry. Biores. Tech. 2018;250:102–109.
  • Tarres Q, Espinosa E, Dominguez-Robles J, et al. The suitability of banana leaf residue as raw material for the production of high lignin content micro/nanofibers: From residue to value-added products. Indus. Crops and Products. 2017;99:27–33.
  • Arias BR, Pevida CG, Fermoso JD, et al. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Proc. Tech. 2008;89:169–175.
  • Zhao P, Shen Y, Ge S, et al. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy. 2014;131:345–367.
  • Cai J, Li B, Chen C, et al. Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour Technol. 2016;220:305–311.
  • Smith A, Singh S, Ross A. Fate of inorganic material during hydrothermal carbonization of biomass: Influence of feedstock on combustion behavior of hydrochar. Fuel. 2016;169:135–145.
  • Teri G, Luo L, Savage PE. Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures. Energy Fuels. 2014;28:7501–7509. pp
  • Nakatani N, Mosqueda A, Cabot JM, et al. Rapid screening of inorganic and organic anions in liquid by-products from hydrothermal treatment of biomass by capillary. Electrophoresis. Electro. 2018;0:1–7.
  • Bach Q, Tran K, Skreiberg O, et al. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions. Fuel. 2014;137:375–383.
  • Areeprasert C, Zhao P, Ma D, Al A. Alternative solid fuel production from paper sludge employing hydrothermal treatment. Energy Fuels.. 2014;28:1198–1206.
  • Islam MA, Kabir G, Asif M, et al. Combustion kinetics of hydrochar produced from hydrothermal carbonization of Karanj (Pongamia pinnata) fruit hulls via thermogravometric analysis. Biores. Tech. 2015;194:14–20.
  • Huff MD, Kumar S, Lee JW. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J. Environ. Manage. 2014;146:303–308.
  • Novianti S, Nurdiawati A, Zaini IN, et al. Hydrothermal treatment of palm oil empty fruit bunches: an investigation of the solid fuel and liquid organic fertilizer applications. Biofuels. 2016;7:627–636.
  • Hu B, Yu SH, Wang K, et al. Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans. 2008;0:5414–5423.
  • Bargmann I, Martens R, Rillig M, et al. Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Z Pflanzenernähr Bodenk.. 2014;177:59–67.
  • Jenkins BM, Baxter LL, Miles TR, Jr, et al. Combustion properties of biomass. Fuel Proc. Tech. 1998;54:17–46.
  • Cao W, Li J, Lue L. Study on the ignition behavior and kinetics of combustion of biomass. Proceedings of 10th International Conference of Applied. Energy; 2017 Aug 21-24; Cardiff, UK: Energy Procedia. 2017;142:136–141.
  • Chen X, Ma X, Peng X, et al. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Biores. Tech. 2018;249:900–907.
  • Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–1063.
  • Shahab Sokhansanj, Oak Ridge National Laboratory, September 2011. Oak Ridge, Tennessee: Biomass Energy Data Book – 2011 – http://cta.ornl.gov/bedb
  • Magalhães D, Kazanç F, Riaza J, et al. Combustion of Turkish lignites and olive residue: Experiments and kinetic modelling. Fuel. 2017;203:868–876.
  • Peng C, Zhai Y, Zhu Y, et al. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel. 2016;176:110–118.
  • Sait HH, Hussain A, Salema AA, et al. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Biores. Tech. 2012;118:382–389.
  • Liu Z, Quek A, Hoekman KS, et al. Thermogravimetric investigation of hydrochar-lignite co-combustion. Biores. Tech. 2012;123:646–652.
  • Parshetti GK, Hoekman SK, Balasubramanian R, et al. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Biores. Tech. 2013;135:683–689.
  • Sevilla M, Fuertes AB. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J.. 2009;15:4195–4203.
  • Xu M, Sheng C. Influences of the heat-treatment temperature and inorganic matter on combustion characteristics of cornstalk biochars. Energy Fuels. 2012;26:209–218.
  • Hoekman SK, Broch A, Robbins C. Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass. Energy Fuels. 2011;25:1802–1810.
  • Ge Z, Guo S, Guo L, et al. Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: Explore the way to complete gasification of lignite and bituminous coal. Int’l Jour. Hyd. Energy. 2013;38:12786–12794.
  • Krerkkaiwan S, Fushimi C, Tsutsumi A, et al. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal. Fuel Proc. Tech. 2013;115:11–18.
  • Funke A, Ziegler F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Bioref. 2010;4:160–177.
  • Wang T, Zhai Y, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sus. Energy Rev. 2018;90:223–247.
  • Yang W, Wang H, Zhang M, et al. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo. Biores. Tech. 2016;205:199–204.
  • Mäkelä M, Fullana A, Yoshikawa K. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock. Energy Convers. Manag. 2016;121:402–408.
  • Tortosa Maisa AA, Buhre BJP, Gupta RP. Characterising ash of biomass and waste. Fuel Process. Technol. 2007;88:1071–1081.
  • Demirbas A. Relationships between heating value and lignin, fixed carbon, and volatile material contents ofshells from biomass products. Energy Sources. 2010;25:629–635.
  • Haykiri-Ac H. Combustion characteristics of different biomass materials. Energy Convers. Manag. 2003;44:155–162.
  • Garcia-Maraver A, Salvachua D, Martinez MJ, et al. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manag. 2013; 33:2245–2249.
  • Xiu SN, Shahbazi A, Shirley V, et al. Hydrothermal pyrolysis of swine manure to bio-oil: effects of operating parameters on products yield and characterization of bio-oil. J. Anal. Appl. Pyrol. 2010;88:73–79.
  • Khan AA, de Jong W, Jansens PJ, et al. Biomass combustion in fluidized bed boilers:potential problems and remedies. Fuel Process. Technol. 2009;90:21–50.
  • Lee DW, Bae JS, Park SJ, et al. The pore structure variation of coal char during pyrolysis and its relationship with char combustion reactivity. Ind Eng Chem Res.. 2012;51:13580–13588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.