311
Views
10
CrossRef citations to date
0
Altmetric
Articles

Heating rate effects on pyrolysis, gasification and combustion of olive waste

, , , , &
Pages 1157-1164 | Received 15 Oct 2018, Accepted 08 Feb 2019, Published online: 23 Apr 2019

References

  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.
  • Bram S, De Ruyck J, Lavric D. Using biomass: a system perturbation analysis. Appl. Energy. 2009;86:194–201.
  • Heschel W, Rweyemamu L, Scheibner T, et al. Abatement of emissions in small-scale combustors through utilization of blended pellet fuels. Fuel Process Technol. 1999;61:223–242.
  • Jeguirim M, Trouvé G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol. 2009;100:4026–4031.
  • Jeguirim M, Dorge S, Trouvé G. Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresour Technol. 2010;101:788–793.
  • Jayaraman K, Gokalp I. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers Manage. 2015;89:83–91.
  • Jauhiainen J, Martın-Gullon I, Conesa JA, et al. Emissions from pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrol. 2005;74:512–517.
  • Verma VK, Bram S, Delattin S, et al. Agropellets for domestic heating boilers: standard laboratory and real life performance. Appl. Energy. 2012;90:17–23.
  • Bridgewater AV. The technical and economic feasibility of biomass gasif ication for power generation. Fuel. 1995;74:631–653.
  • Ferreira CIA, Calisto V, Cuerda-Correa EM, et al. Comparative valorisation of agricultural and industrial biowastes by combustion and pyrolysis. Bioresour Thechnol. 2016;218:918–925.
  • Sanchez-Silva L, López-González D, Garcia-Minguillan AM, et al. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol. 2013;130:321–331.
  • Alvarez A, Pizarro C, Garcia R, et al. Deremination of kinetic parameters for biomass combustion. Bioresour Technol. 2016;216:36–43.
  • Manyà JJ, Roca FX, Perales JF. TGA study examining the effect of pressure and peak temperature on biocharyield during pyrolysis of two-phase olive mill waste. J Anal Appl Pyrol. 2013;103:86–95.
  • Abu-Qudais M. Fluidized-bed combustion for energy production from olive cake. Energy. 1996;21:173–178.
  • Caputo AC, Scacchia F, Pelagagge PM. Disposal of by-products in olive oli industry: waste-to-energy solutions. Appl Therm Eng. 2003;23:197–214.
  • Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88:87–97.
  • Chouchene A, Jeguirim M, Khiari B, et al. Thermal degradation of olive solid waste: influence of particle size and oxygen concentration. Resour Conserv Recy. 2010;54:271–277.
  • Lopez MC, Blanco CG, Martinez-Alonso A, et al. Composition of gases released during olive stones pyrolysis. J Anal Appl Pyrol. 2002;65:313–322.
  • García Ibañez P, Sanchez M, Cabanillas A, Thermogravimetric analysis of olive-oil residue in air atmosphere. Fuel Proces Technol. 2006;87:103–107.
  • Fokaides PA, Tsiftes K. Utilisation of olive husks in energy sector in Cyprus. In: International Conference Renewable Energy Sources and Energy Efficiency, 28–30 September, 2007, Nicosia, Greece, p 115–128.
  • Taralas G, Kontominas MG. Pyrolysis of solid residues commencing from the olive oil food industry for potential hydrogen production. J Anal Appl Pyrol. 2006;76:109–116.
  • Roig A, Cayuela ML, Sanchez-Monedero MA. An overview on olive mill wastes and their valorisation methods. Waste Manage. 2006;26:960–969.
  • Chouchene A, Jeguirim M, Khiari B, et al. Study on the emission mechanism during devolatilization/char oxidation and direct oxidation of olive solid waste in a fixed bed reactor. J Anal Appl Pyrol. 2010;87:168–174.
  • Alburquerque JA, Gonzalvez J, Garcıa D, et al. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour Technol. 2004;91:195–200.
  • Ozawa TA. A new method of analyzing thermogravimetric data. Bul Chem Soc Japan. 1965;38:1881–1886.
  • Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stan Sect A. 1966;70A:487–523.
  • Mangut V, Sabio E, Ganan J, et al. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Proc Technol. 2006;87:109–115.
  • Lajili M, Limousy L, Jeguirim M. Physico-chemical properties and thermal degradation characteristics of agropellets from olive mill by-products/sawdust blends. Fuel Process Technol. 2014;126:215–221.
  • Miranda T, Esteban A, Rojas S, et al. Combustion analysis of different olive residues. Int J Mol Sci. 2008;9:512–525.
  • Ounas A, Aboulkas A, El Harfi K, et al. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2011;102:11234–11238.
  • Burhenne L, Messmer J, Aicher T, et al. The effect of the biomass components lignin, cellulose and hemicellulose on TGAand fixed bed pyrolysis. J. Anal Appl Pyrolysis. 2013;101:177–184.
  • Jayaraman K, Versan Kok M, Gokalp I. Combustion properties and kinetics of different biomass samples using TG–MS technique. J Therm Anal Calorim. 2017;127:1361–1370.
  • Jayaraman K, Versan Kok M, Gokalp I. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal biomass blends. Renewable Energy. 2017;101:293–300.
  • Williams P, Besler S. The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor. Fuel. 1992;70:151–159.
  • Saldarriaga JF, Aguado R, Pablos A, et al. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel. 2015;140:744–751.
  • Buratti C, Mousavi S, Barbanera M, et al. Thermal behavior and kinetic study of the olive oil production chain residues and their mixtures during co-combustion. Bioresour Technol. 2016;214:266–275.
  • Seo DK, Park SS, Hwang J, et al. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis. 2010;89:66–73.
  • Chen W-H, Ye S-C, Sheen H-K. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol. 2012;118:195–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.