380
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of photo-autotrophic cultural conditions on the biomass productivity and composition of Chlorella vulgaris

, , , &
Pages 149-159 | Received 10 Apr 2019, Accepted 28 Jul 2019, Published online: 19 Aug 2019

References

  • Vello V, Phang SM, Chu WL, et al. Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. J Appl Phycol. 2014;26:1399–1413.
  • Mujtaba G, Choi W, Lee CG, et al. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour Technol. 2012;123:279–283.
  • Daliry S, Hallajisani A, Roshandeh JM, et al. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob J Environ Sci Manage. 2017;3:217–230.
  • Shen XF, Liu JJ, Chauhan AS, et al. Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Res. 2016;17:261–267.
  • Robles-Heredia JC, Sacramento-Rivero JC, Canedo-López Y, et al. A multistage gradual nitrogen reduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Braz J Chem Eng. 2015;32:335–345.
  • Xin L, Hu H, Ke G, et al. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101:5494–5500.
  • Prakash M, Rai MP, Gautom T, et al. Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. Online J Biol Sci. 2015;15:260–267.
  • Raeesossadati MJ, Ahmadzadeh H, McHenry MP, et al. CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res. 2014;6:78–85.
  • Takeshita T, Ota S, Yamazaki T, et al. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol. 2014;158:127–134.
  • Ho SH, Chen CY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–252.
  • Nordin N, Yusof N, Samsudin S. Biomass production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste Biomass Valorization. 2017;8:2301–2311.
  • Ganapathi S, Shetty V, Mokashi K. Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels: a review. J Energy Inst. 2015;89:1–5.
  • Safi C, Zebib B, Merah O, et al. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sustain Energy Rev. 2014;35:265–278.
  • Markou G, Depraetere O, Vandamme D, et al. Cultivation of Chlorella vulgaris and Arthrospira platensis with recovered phosphorus from wastewater by means of zeolite sorption. Int J Mol Sci. 2015;16:4250–4264.
  • Suthar S, Verma R, Kumar K. Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock. Process Saf Environ Prot. 2018;113:141–148.
  • Neves B, Jacob-Lopes E, Franco TT. Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol. 2010;85:395–403.
  • Fung KS, Liew EWT, Ngu HLN. Optimization of nutrient media composition for microalgae biomass production using central composite design. In: Wang L, editors. Proceeding of Chemeca 2013: Challenging Tomorrow; 2013; Barton, ACT: Engineers Australia; 2013. p. 278–282.
  • Hong SJ, Lee CG. Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp. PCC 6701. Biotechnol Bioprocess Eng. 2008;13:491–498.
  • Ho SH, Huang SW, Chen CY, et al. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol. 2013;135:157–165.
  • Nan Y, Liu J, Lin R, et al. Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: process optimization. J Supercrit Fluids. 2015;97:174–182.
  • Tuantet K, Temmink H, Zeeman G, et al. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Res. 2014;5:162–174.
  • Blair MF, Kokabian B, Gude VG. Light and growth medium effect on Chlorella vulgaris biomass production. J Environ Chem Eng. 2014;2:665–674.
  • Li L, Cui J, Liu Q, et al. Screening and phylogenetic analysis of lipid-rich microalgae. Algal Res. 2015;11:381–386.
  • Zhu S, Huang W, Xu J, et al. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol. 2014;152:292–298.
  • Ramos MJ, Fernández CM, Casas A, et al. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100:261–268.
  • Krisnangkura K. A simple method for estimation of cetane index of vegetable oil methyl esters. J Am Oil Chem Soc. 1986;63:552–553.
  • Talebi AF, Mohtashami SK, Tabatabaei M, et al. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013;2:258–267.
  • Arora N, Patel A, Pruthi PA, et al. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella Minutissima for biodiesel production. Bioresour Technol. 2016;213:79–87.
  • Su YC, Liu YA, Diaz Tovar CA, et al. Selection of prediction methods for thermophysical properties for process modeling and product design of biodiesel manufacturing. Ind Eng Chem Res. 2011;50:6809–6836.
  • Barghbani R, Rezaei K, Javanshir A. Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi’s experimental approach. Int J Biotechnol Wellness Ind. 2012;1:128–133.
  • Converti A, Casazza AA, Ortiz EY, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif. 2009;48:1146–1151.
  • Binnal P, Babu PN. Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. South African J Chem Eng. 2017;23:26–37.
  • Bidle KD, Falkowski PG. Cell death in planktonic photosynthetic microorganisms. Nat Rev Microbiol. 2004;2:643–655.
  • Zuppini A, Andreoli C, Baldan B. Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol. 2007;48:1000–1009.
  • Serra-Maia R, Bernard O, Gonzalves A, et al. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Res. 2016;18:352–359.
  • Nguyen TDP, Frappart M, Jaouen P, et al. Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition. Environ Technol. 2014;35:1378–1388.
  • Kumar A, Ergas S, Yuan X, et al. Enhanced CO2 fixation fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 2010;28:371–380.
  • Thawechai T, Cheirsilp B, Louhasakul Y, et al. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: effect of light illumination and carbon dioxide feeding strategies. Bioresour Technol. 2016;219:139–149.
  • Singh A, Olsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88:3548–3555.
  • Li T, Gargouri M, Feng J, et al. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour Technol. 2015;180:250–257.
  • Abdelaziz AEM, Leite GB, Belhaj MA, et al. Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour Technol. 2014;157:140–148.
  • Fan J, Xu H, Luo Y, et al. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella. Appl Microbiol Biotechnol. 2015;99:2451–2462.
  • Battah M, El-Ayoty Y, El-Fatah SA, et al. Optimization of growth and lipid production of the chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. World Appl Sci J. 2013;28:1536–1543.
  • Ramírez-López C, Chairez I, Fernández-Linares L. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Bioresour Technol. 2016;212:207–216.
  • Hu Q, Zeng R, Zhang SX, et al. Production of microalgal lipids as biodiesel feedstock with fixation of CO2 by Chlorella vulgaris. Food Technol Biotechnol. 2014;52:285–291.
  • Shekh AY, Shrivastava P, Krishnamurthi K, et al. Stress enhances poly-unsaturation rich lipid accumulation in Chlorella sp. and Chlamydomonas sp. Biomass Bioenergy. 2016;84:59–66.
  • Tale M, Ghosh S, Kapadnis B, et al. Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresour Technol. 2014;169:328–335.
  • Sinha SK, Gupta A, Bharalee R. Production of biodiesel from freshwater microalgae and evaluation of fuel properties based on fatty acid methyl ester profile. Biofuels. 2016;7:69–121.
  • Rawat I, Ranjith KR, Mutanda T, et al. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy. 2013;103:444–467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.