359
Views
11
CrossRef citations to date
0
Altmetric
Articles

Evaluation of pretreatment methods and initial pH on mixed inoculum for fermentative hydrogen production from cassava wastewater

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 301-308 | Received 23 Jul 2019, Accepted 08 Oct 2019, Published online: 24 Oct 2019

References

  • Singh YD. Comprehensive characterization of indigenous lignocellulosic biomass from Northeast India for biofuel production. SN Appl Sci. 2019;1(5):458.
  • Singh YD, Satapathy KB. Conversion of lignocellulosic biomass to bioethanol: an overview with a focus on pretreatment. Int J Eng Technol. 2018;15:17–43.
  • Singh YD, Mahanta P, Bora U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew Energy. 2017;103:490–500.
  • Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C, et al. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res. 2014;32(5):353–365.
  • Lucas SDM, Peixoto G, Mockaitis G, et al. Energy recovery from agro-industrial wastewaters through biohydrogen production: kinetic evaluation and technological feasibility. Renew Energy. 2015;75:496–504.
  • Torres DGB, Lucas SDM, Andreani CL, et al. Hydrogen production and performance of anaerobic fixed-bed reactors using three support arrangements from cassava starch wastewater. Eng Agríc. 2017;37(1):160–172.
  • Chavadej S, Wangmor T, Maitriwong K, et al. Separate production of hydrogen and methane from cassava wastewater with added cassava residue under a thermophilic temperature in relation to digestibility. J Biotechnol. 2019;291:61–71.
  • Boodhun BSF, Mudhoo A, Kumar G, et al. Research perspectives on constraints, prospects and opportunities in biohydrogen production. Int J Hydrogen Energy. 2017;42(45):27471–27481.
  • Masset J, Hiligsmann S, Hamilton C, et al. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. Int J Hydrogen Energy. 2010;35(8):3371–3378.
  • Lindner J, Zielonka S, Oechsner H, et al. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environ Technol. 2015;36(2):198–207.
  • Levin D. Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy. 2004;29(2):173–185.
  • Jung KW, Kim DH, Kim SH, et al. Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol. 2011;102(18):8612–8620.
  • Krupp M, Widmann R. Biohydrogen production by dark fermentation: experiences of continuous operation in large lab scale. Int J Hydrogen Energy. 2009;34(10):4509–4516.
  • Wang JL, Wan W. Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy. 2009;34(2):799–811.
  • Balachandar G, Khanna N, Das D. Biohydrogen production from organic wastes by dark fermentation. In: Pandey A, Chang J-S, Hallenbeck P, Larroche C, editor. Biohydrogen. Amsterdam: Elsevier; 2013. p. 103–144.
  • Maintinguer SI, Fernandes BS, Duarte ICS, et al. Fermentative hydrogen production by microbial consortium. Int J Hydrogen Energy. 2008;33(16):4309–4317.
  • Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol. 2002;82(1):87–93.
  • Lin CY, Chang RC. Fermentative hydrogen production at ambient temperature. Int J Hydrogen Energy. 2004;29(7):715–720.
  • Oh SE, Logan BE. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 2005;39(19):4673–4682.
  • Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng. 2000;68(3):269–278.
  • Lin C, Chang C, Hung C. Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy. 2008;33(10):2445–2453.
  • Kim IS, Hwang MH, Jang NJ. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int J Hydrogen Energy 2004;29(11):1133–1140.
  • Valdez-Vazquez I, Poggi-Varaldo HM. Hydrogen production by fermentative consortia. Renew Sust Energy Rev. 2009; Jun13(5):1000–1013.
  • Narasu ML, Urbaniec K. International conference on advances in biological hydrogen production and applications ICABHPA 2012. J Clean Prod. 2013;52(0):11–13.
  • Elsharnouby O, Hafez H, Nakhla G, et al. A critical literature review on biohydrogen production by pure cultures. Int J Hydrogen Energy. 2013;38(12):4945–4966.
  • Mohammadi P, Ibrahim S, Annuar MSM, et al. Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. J Clean Prod. 2011;19(14):1654–1658.
  • Dessì P, Porca E, Frunzo L, et al. Inoculum pretreatment differentially affects the active microbial community performing mesophilic and thermophilic dark fermentation of xylose. Int J Hydrogen Energy. 2018;43(19):9233–9245.
  • Fang HHP, Li CL, Zhang T. Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy. 2006;31(6):683–692.
  • Kim S, Choi K, Kim JO, et al. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies. Biodegradation 2013;24(6):753–764.
  • Assawamongkholsiri T, Reungsang A, Pattra S. Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. Int J Hydrogen Energy. 2013;38(14):6146–6153.
  • Kim SH, Shin HS. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int J Hydrogen Energy. 2008;33(19):5266–5274.
  • Grimmler C, Janssen H, Krauβe D, et al. Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J Mol Microbiol Biotechnol. 2011;20(1):1–15.
  • Vendruscolo F. Starch: a potential substrate for biohydrogen production. Int J Energy Res. 2015;39(3):293–302.
  • Food and Agriculture Organization of the United Nations [Internet]. FAOSTAT. 2014. [cited 2017 Aug 22]. Available from: http://www.fao.org/faostat/es/#data/QC
  • Tran T, Da G, Moreno-Santander MA, et al. A comparison of energy use, water use and carbon footprint of cassava starch production in Thailand, Vietnam and Colombia. Resour Conserv Recy. 2015;100:31–40.
  • Torres P, Perez A, Marmolejo L, et al. View of agroindustry of cassava starch extraction from the process standardization [In Spanish: Una mirada a la agroindustria de extracción de almidón de yuca, desde la estandarización de procesos]. Revista EIA 2013;7(14):23–38.
  • Lamaison FDC, Fragata R, Antônio RV, et al. Pretreatment on anaerobic sludge for enhancement of biohydrogen production from cassava processing wastewater. Acta Sci Technol. 2014;36(3):437–444.
  • Guyot J-P, Gutierrez G, Rojas M. Anaerobic microbial counts of different potential anaerobic inocula. Appl Microbiol Biotechnol. 1993;40(1):139–142.
  • Colin X, Farinet JL, Rojas O, et al. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support. Bioresour Technol. 2007;98(8):1602–1607.
  • Penteado ED, Lazaro CZ, Sakamoto IK, et al. Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy. 2013;38(14):6137–6145.
  • Baghchehsaraee B, Nakhla G, Karamanev D, et al. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrogen Energy. 2008;33(15):4064–4073.
  • Mohd Yasin NH, Rahman NAA, Man HC, et al. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int J Hydrogen Energy. 2011;36(16):9571–9580.
  • Das D. Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrogen Energy. 2009;34(17):7349–7357.
  • Hernández-Avilés DM, Grisales-Penagos DK, Rodríguez-Chaparro AT. Efecto de la configuración de reactores anaerobios de alta tasa en la producción de hidrógeno: biomasa fija y UASB-híbrido. Revista Investigación, Optimización y Nuevos procesos en Ingeniería 2016;29(1):27–36.
  • APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association; 2005.
  • DuBois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • Aquino S, Chernicharo C, Foresti E, et al. Methodologies for determining the specific methanogenic activity (SMA) in anaerobic sludges [In Portuguese: Metodologias para determinação da atividade metanogênica específica (AME) em lodos anaeróbios]. Eng Sanit Ambient. 2007;12(2):192–201.
  • Torres P, Pérez A. Specific methanogenic activity: a tool for control and optimization of anaerobic wastewater treatment system [In Spanish: Actividad metanogénica específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales]. Ingeniería de recursos naturales y del ambiente 2010;9:5–14.
  • JDd S, Schneiders D, Till A, et al. Specific methanogenic activity (SMA) of industrial sludge from the aerobic and anaerobic biological treatment. Revista Ambiente Água 2013;8(2):135–145.
  • Abreu AA, Alves JI, Pereira MA, et al. Strategies to suppress hydrogen-consuming microorganisms affect macro and micro scale structure and microbiology of granular sludge. Biotechnol Bioeng. 2011;108(8):1766–1775.
  • Pirc ET, Novosel B, Bukovec P. Comparison of GC and OxiTop analysis of biogas composition produced by anaerobic digestion of glucose in cyanide inhibited systems. Acta Chim Slov 2012;59(2):398–404.
  • O-Thong S, Hniman A, Prasertsan P, et al. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int J Hydrogen Energy. 2011;36(5):3409–3416.
  • Pavlostathis SG. Kinetics and modeling of anaerobic treatment and biotransformation processes. In: Elsevier (Ed.) Comprehensive biotechnology. Burlington: Academic Press; 2011. p. 385–397.
  • Hallenbeck PC, Fundamentals of Biohydrogen. In: Pandey A, Chang J-S, Hallenbeck P, Larroche C, editor. Biohydrogen. Amsterdam: Elsevier; 2013. p. 25–43.
  • Wang JL, Wan W. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy. 2008;33(12):2934–2941.
  • Aquino S, Chernicharo C. Volatile fatty acids (VFAs) accumulation in anaerobic reactors under stress: causes and control strategies [In Portuguese: Acúmulo de ácidos graxos voláteis (AGVs) em reatores anaeróbios sob estresse: causas e estratégias de controle]. Eng San Ambient 2005;10(2):152–161.
  • Reginatto V, Lamaison F. D C, Amante ER, et al. Methods: long-term effect of nutrient supplementation of cassava wastewater on biohydrogen production by mixed culture. Ind Biotechnol. 2011;7(2):143–150.
  • Xiao BY, Han YP, Liu JX. Evaluation of biohydrogen production from glucose and protein at neutral initial pH. Int J Hydrogen Energy. 2010;35(12):6152–6160.
  • Goud RK, Sarkar O, Mohan SV. Regulation of biohydrogen production by heat-shock pretreatment facilitates selective enrichment of Clostridium sp. Int J Hydrogen Energy. 2014;39(14):7572–7586.
  • Wu CW, Whang LM, Cheng HH, et al. Fermentative biohydrogen production from lactate and acetate. Bioresour Technol. 2012;113:30–36.
  • Juang CP, Whang LM, Cheng HH. Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process. Bioresour Technol. 2011;102(9):5394–5399.
  • Matsumoto M, Nishimura Y. Hydrogen production by fermentation using acetic acid and lactic acid. J Biosci Bioeng. 2007;103(3):236–241.
  • Khanal SK, Chen WH, Li L, et al. Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 2004;29(11):1123–1131.
  • Venkata Mohan S. Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization⋆. Int J Hydrogen Energy. 2009;34(17):7460–7474.
  • Cappelletti BM, Reginatto V, Amante ER, et al. Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew Energy. 2011;36(12):3367–3372.
  • Chen SD, Lee KS, Lo YC, et al. Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. Int J Hydrogen Energy. 2008;33(7):1803–1812.
  • Torres P, Perez A, Cajigas Á, et al. Selection of chemical conditioners for cassava wastewater anaerobic treatment [In Spanish: Selección de acondicionadores químicos para el tratamiento anaerobio de aguas residuales del proceso de extracción de almidón de yucca]. Ingeniería de recursos naturales y del ambiente 2008;(7):66–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.