402
Views
7
CrossRef citations to date
0
Altmetric
Articles

Hydrothermal liquefaction of municipal wastewater sludge and nutrient recovery from the aqueous phase

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 657-662 | Received 04 Sep 2020, Accepted 08 Dec 2020, Published online: 16 Jan 2021

References

  • Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37(1):181–189.
  • Arora N, Jaiswal KK, Kumar V, et al. Small-scale phyco-mitigation of raw urban wastewater integrated with biodiesel production and its utilization for aquaculture. Bioresour Technol. 2020;297:122489.
  • Jaiswal KK, Banerjee I, Singh D, et al. Ecological stress stimulus to improve microalgae biofuel generation: a review. Octa J Biosci. 2020;8:48–54.
  • Naruka M, Khadka M, Upadhayay S, et al. Potential applications of microalgae in bioproduct production: a review. Octa J Biosci. 2019;7:1–5.
  • Xue J, Grift TE, Hansen AC. Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev. 2011;15(2):1098–1116.
  • Kim Y, Parker W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour Technol. 2008;99(5):1409–1416.
  • Jaiswal KK, Prasath RA. Integrated growth potential of Chlorella pyrenoidosa using hostel mess wastewater and its biochemical analysis. Int J Environ Sci. 2016;6:592–599.
  • Li L, Xu ZR, Zhang C, et al. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge. Bioresour Technol. 2012;121:169–175.
  • Alvarez EA, Mochon MC, Sanchez JJ, et al. Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere. 2002;47(7):765–775.
  • Khanal SK, Grewell D, Sung S, et al. Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol. 2007;37(4):277–313.
  • Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods – a review. Renew Sustain Energy Rev. 2008;12(1):116–140.
  • Campbell HW. Sludge management—future issues and trends. Water Sci Technol. 2000;41(8):1–8.
  • Yu G, Zhang Y, Schideman L, et al. Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil. Trans Asabe. 2011;54:239–246.
  • Tian W, Liu R, Wang W, et al. Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst. Bioresour Technol. 2018;263:569–575.
  • Nazem MA, Tavakoli O. Bio-oil production from refinery oily sludge using hydrothermal liquefaction technology. J Supercrit Fluids. 2017;127:33–40.
  • Sugano M, Takagi H, Hirano K, et al. Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J Mater Sci. 2008;43(7):2476–2486.
  • Wang W, Yu Q, Meng H, et al. Catalytic liquefaction of municipal sewage sludge over transition metal catalysts in ethanol-water co-solvent. Bioresour Technol. 2018;249:361–367.
  • Aranda-Perez N, Ruiz MP, Echave J, et al. Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization. Appl Catal A. 2017;531:106–118.
  • ASTM E1755-01. 2015. Standard method for the determination of ash in biomass. In: Annual book of ASTM standards, volume 05–06. Philadelphia, PA: American Society for Testing and Materials, International.
  • Werle S, Dudziak M. Analysis of organic and inorganic contaminants in dried sewage sludge and by-products of dried sewage sludge gasification. Energies. 2014;7(1):462–476.
  • Kumar V, Kumar S, Chauhan PK, et al. Low-temperature catalyst based hydrothermal liquefaction of harmful macroalgal blooms, and aqueous phase nutrient recycling by microalgae. Sci Rep. 2019;9(1):9.
  • Guarnieri MT, Nag A, Yang S, et al. Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. J Proteomics. 2013;93:245–253.
  • Chatsungnoen T, Chisti Y. Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Res. 2016;15:100–109.
  • Zhao P, Chen H, Yoshikawa S, et al. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion. Appl Energy. 2013;111:199–205.
  • Francioso O, Rodriguez-Estrada MT, Montecchio D, et al. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production. J Hazard Mater. 2010;175(1–3):740–746.
  • Qian L, Wang S, Savage PE. Hydrothermal liquefaction of sewage sludge under isothermal and fast Conditions. Bioresour Technol. 2017;232:27–34.
  • Watson J, Wang T, Si B, et al. Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Prog Energy Combust Sci. 2020;77:100819.
  • Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev. 2011;15(3):1615–1624.
  • Demirbas A, Gullu D, Çaglar A, et al. Estimation of calorific values of fuels from lignocellulosics. Energy Sources. 1997;19(8):765–770.
  • Usman M, Chen H, Chen K, et al. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review. Green Chem. 2019;21(7):1553–1572.
  • Anastasakis K, Ross A. Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour Technol. 2011;102(7):4876–4883.
  • Berge ND, Ro KS, Mao J, et al. Hydrothermal carbonization of municipal waste streams. Environ Sci Technol. 2011;45(13):5696–5703.
  • Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels. 2010;24(6):3639–3646.
  • Gai C, Li Y, Peng N, et al. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Bioresour Technol. 2015;185:240–245.
  • Kumar V, Kumar R, Rawat D, et al. Synergistic dynamics of light, photoperiod and chemical stimulants influences biomass and lipid productivity in Chlorella singularis (UUIND5) for biodiesel production. Appl Biol Chem. 2018;61(1):7–13.
  • Cordova LT, Lad BC, Ali SA, et al. Valorizing a hydrothermal liquefaction aqueous phase through co-production of chemicals and lipids using the oleaginous yeast Yarrowia lipolytica. Bioresour Technol. 2020;313:123639.
  • Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28(1):64–70.
  • Fatima N, Kumar V. Microalgae based hybrid approach for bioenergy generation and bioremediation: a review. Octa J Biosci. 2020;8(2):113–123.
  • Perez-Garcia O, Escalante FM, De-Bashan LE, et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45(1):11–36.
  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol. 2010;101(1):58–64.
  • Patel A, Barrington S, Lefsrud M. Microalgae for phosphorus removal and biomass production: a six species screen for dual‐purpose organisms. Glob Change Biol Bioenergy. 2012;4(5):485–495.
  • Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100–112. doi:https://doi.org/10.1002/bit.22033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.