133
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparative optimization of macronutrient removal from a cyanobacterium and a microalga grown in synthetic wastewater for potential use as a biodiesel source

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1041-1053 | Received 25 Jan 2022, Accepted 15 May 2022, Published online: 24 May 2022

References

  • Chew KW, Chia SR, Show PL, et al. Effects of water culture medium, cultivation system and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng. 2018;91:332–344.
  • Ido AL, de Luna MDG, Capareda SC, et al. Application of Central composite design in the optimization of lipid yield from scenedesmus obliquus microalgae by ultrasonic-assisted solvent extraction. Energy. 2018;157:949–956.
  • Tiwari ON, Bhunia B, Bandyopadhyay TK, et al. Strategies for improved induction of lipid in leptolyngbya sp. BTA 287 for biodiesel production. Fuel. 2019;256:115896.
  • Jung J-H, Sirisuk P, Ra CH, et al. Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem. 2019;77:93–99.
  • Sorokina KN, Samoylova YV, Parmon VN. Comparative analysis of microalgae metabolism on BBM and municipal wastewater during salt induced lipid accumulation. Bioresour Technol Rep. 2020;11:100548.
  • Liu J, Yin J, Ge Y, et al. Improved lipid productivity of scenedesmus obliquus with high nutrient removal efficiency by mixotrophic cultivation in actual minucipal wastewater. Chemosphere. 2021;285:131475.
  • Lu W, Asraful Alam M, Liu S, et al. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: a review. Sci Total Environ. 2020;716:135247.
  • Msanne J, Polle J, Starkenburg S. An assessment of heterotrophy and mixotrophy in scenedesmus and its utilization in wastewater treatment. Algal Res. 2020;48:101911.
  • Aketo T, Hoshikawa Y, Nojima D, et al. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. J Biosci Bioeng. 2020;129(5):565–572.
  • Fan H, Wang K, Wang C, et al. A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes. Environ Technol Innov. 2020;19:100849.
  • Fontoura JTd, Rolim GS, Farenzena M, et al. Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalga scenedesmus sp. Process Saf Environ Prot. 2017;111:355–362.
  • Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102(1):17–25.
  • Nath Tiwari O, Bhunia B, Muthuraj M, et al. Optimization of process parameters on lipid biosynthesis for sustainable biodiesel production and evaluation of its fuel characteristics. Fuel. 2020;269:117471.
  • Farhad Talebi A, Kaveh Mohtashami S, Tabatabaei M, et al. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013;2(3):258–267.
  • Abdel-Raouf N, Al-Homaidan A, Ibraheem I. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19(3):257–275.
  • Nagarajan D, Lee D-J, Chen C-Y, et al. Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol. 2020;302:122817.
  • Li K, Liu Q, Fang F, et al. Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol. 2019;291:121934.
  • Paulo Rocha R, Machado M, Gomes Marcal Vieira Vaz M, et al. Exploring the metabolic and physiological diversity of native microalgal strains (chlorophyta) isolated from tropical freshwater reservoirs. Algal Research. 2017;28:139–150.
  • Ramesh Kumar V, Narendrakumar G, Thyagarajan R, et al. A comparative analysis of biodiesel production and its properties from leptolyngbya sp. BI-107 and chlorella vulgaris under heat shock stress. Biocatal Agric Biotechnol. 2018;16:502–506.
  • Alves Silva D, Guimaraes Cardoso L, Sueira de Jesus Silva J, et al. Strategy for cultivation of chlorella vulgaris with high biomass production and biofuel potential in wastewater from the oil industry. Environ Technol Innov. 2022;25:102204.
  • Shahid A, Malik S, Zhu H, et al. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ. 2020;704:135303.
  • Ge Y, Liu J, Tian G. Growth characteristics of botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour Technol. 2011;102(1):130–134.
  • Wehr JD, Sheath RG, Kociolek JP. Freshwater algae of North America. In: Ecology and classification. San Diego: Academic Press, 2015.
  • Haris N, Manan H, Jusoh M, et al. Azman kasan, effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquac Rep. 2022;22:100925.
  • Church J, Hwang J-H, Kim K-T, et al. Hyoung lee, effect of salt type and concentration on the growth and lipid content of chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour Technol. 2017;243:147–153.
  • Miao M-s, Yao X-d, Shu L, et al. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. Int Biodeterior Biodegrad. 2016;113:1–6.
  • Guldhe A, Kumari S, Ramanna L, et al. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manage. 2017;203(Pt 1):299–315.
  • Hultberg M, Larsson Jonsson H, Bergstrand KJ, et al. Impact of light quality on biomass production and fatty acid content in the microalga chlorella vulgaris. Bioresour Technol. 2014;159:465–467.
  • Sacristán de Alva M, Luna Pabello VM, Orta Ledesma MT, et al. Cruz gómez, carbon, nitrogen, and phosphorus removal, and lípid production by three saline microalgae grown in synthetic wastewater irradiated with different photon fluxes. Algal Res. 2018;34:97–103.
  • Ferro L, Gojkovic Z, Muñoz R, et al. Growth performance and nutrient removal of a Chlorella vulgaris-Rhizobium sp. co-culture during mixotrophic feed-batch cultivation in synthetic wastewater. Algal Res. 2019;44:101690.
  • Russel M, Meixue Q, Alam A, et al. Investigating the potentiality of scenedesmus obliquus and Acinetobacter pittii partnership system and their effects on nutrients removal from synthetic domestic wastewater. Bioresour Technol. 2020;299:122571.
  • Talapatra N, Gautam R, Mittal V, et al. A comparative study of the growth of microalgae-bacteria symbiotic consortium with the axenic culture of microalgae in dairy wastewater through extraction and quantification of chlorophyll. Materials Today: Proceedings. 2021.
  • Pandey A, Srivastava S, Kumar S. Sequential optimization of essential nutrients addition in simulated dairy effluent for improved scenedesmus sp. ASK22 growth, lipid production and nutrients removal. Biomass Bioenergy. 2019;128:105319.
  • Hena S, Fatimah S, Tabassum S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind. 2015;10:1–14.
  • Ye S, Gao L, Zhao J, et al. Simultaneous wastewater treatment and lipid production by scenedesmus sp. HXY2. Bioresour Technol. 2020;302:122903.
  • Papadopoulos KP, Economou CN, Dailianis S, et al. Brewery wastewater treatment using cyanobacterial-bacterial settleable aggregates. Algal Res. 2020;49:101957.
  • El-Fatah Abomohra A, Shang H, El-Sheekh M, et al. Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. Bioresour Technol. 2019;288.
  • Chaneva G, Furnadzhieva S, Minkova K, et al. Effect of light and temperature on the cyanobacterium arthronema africanum - a prospective phycobiliprotein - producing strain. J Appl Phycol. 2007;19(5):537–544.
  • Wang J, Zhou W, Yang H, et al. Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater. Bioresour Technol. 2015;196:668–676.
  • Sacristán de Alva M, Luna Pabello VM, Cadena Martínez E, et al. Producción de Biodiesel a Partir de Microalgas y Una Cianobacteria Cultivadas en Diferentes Calidades de Agua. Agrociencia. 2014;48:271–284.
  • Zhuang L-L, Dawei Y, Zhang J, et al. The characteristics and influencing factors of the attached microalgae cultivation: a review. Renew Sustain Energy Rev. 2018;94:1110–1119.
  • Richmond A. Inorganic algal nutrition. In: Handbook of microalgal culture. Hoboken: Wiley Blackwell; 2013. p. 123–133.
  • Fazeli Danesh A, Ebrahimi S, Salehi A, et al. Impact of nutrient starvation on intracellular biochemicals and calorific value of mixed microalgae. Biochem Eng J. 2017;125:56–64.
  • Mujtaba G, Muhammad R, Kim G, et al. Removal of nutrients and COD through co-culturing activated sludge and immobilized chlorella vulgaris. Chem Eng J. 2018;343:155–162.
  • Benítez MB, Champagne P, Ramos A, et al. Wastewater treatment for nutrient removal with ecuadorian native microalgae. Environ Technol. 2019;40(22):2977–2979.
  • Tsolcha ON, Tekerlekopoulou AG, Akratos CS, et al. Vayenas, biotreatment of raisin and winery wastewater and simultaneous biodiesel production using a leptolyngbya-based microbial consortium. J Cleaner Prod. 2017;148:185–193.
  • Richmond A, Hu Q. Environmental effects on cell composition. In: Handbook of microalgal culture applied phycology and biotechnology. Hoboken: Wiley Blackwell; 2013. p. 115.
  • Chen C-Y, Chang Y H. Engineering strategies for enhancing C. vulgaris ESP-31 lipid production using effluents of coke-making wastewater. J Biosci Bioeng. 2018;125(6):710–716.
  • Zhu LD, Li ZH, Hiltunen E. Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Hindawi. 2016;3:1–8.
  • Pandey A, Gupta A, Sunny A, et al. Multi-objective optimization of media components for improved algae biomass, fatty acid and starch biosynthesis from scenedesmus sp. ASK22 using desirability function approach. Renew Energy. 2020;150:476–486.
  • Shen L, Damascene Ndayambaje J, Murwanashyaka T, et al. Assessment upon heterotrophic microalgae screened from wastewater microbiota for concurrent pollutants removal and biofuel production. Bioresour Technol. 2017;245:386–393.
  • Khanra S, Mondal M, Halder G, et al. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: a review. Food Bioprod Process. 2018;110:60–84.
  • D’Alessandro EB, Antoniosi Filho NR. Antoniosi filho, concepts and studies on lipid and pigments of microalgae: a review. Renew Sustain Energy Rev. 2016;58:832–841.
  • Richmond A, Qiang H. Photosynthesis in microalgae. In Handbook of microalgal culture applied phycology and biotechnology. Reino Unido: Wiley Blackwell; 2012. p. 21–36.
  • Mur LR. Some aspects of the ecophysiology of cyanobacteria. Ann Microbiol (Inst Pasteur). 1983;134(1):61–72.
  • Arashiro LT, Boto-Ordóñez M, Van Hulle SWH, et al. Natural pigments from microalgae grown in industrial wastewater. Bioresour Technol. 2020;303:122894.
  • Singh J, Thakur IS. Evaluation of cyanobacterial endolith leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: a toxicological perspective. Algal Res. 2015;11:294–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.